diff --git a/Environments.md b/Environments.md
index 412b41c..d1a010b 100644
--- a/Environments.md
+++ b/Environments.md
@@ -6,6 +6,8 @@
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
| Two wheeled System (Moving Goal) (Coming soon) | x | ✓ | 3 | 2 |
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
+| Nonlinear Sample System Env | x | ✓ | 2 | 1 |
+
## [FistOrderLagEnv](PythonLinearNonlinearControl/envs/first_order_lag.py)
@@ -53,4 +55,14 @@ mc = 1, mp = 0.2, l = 0.5, g = 9.81
### Cost.
-
\ No newline at end of file
+
+
+## [Nonlinear Sample System Env](PythonLinearNonlinearControl/envs/nonlinear_sample_system.py)
+
+## System equation.
+
+
+
+### Cost.
+
+
diff --git a/PythonLinearNonlinearControl/common/utils.py b/PythonLinearNonlinearControl/common/utils.py
index 8010737..e7f6d82 100644
--- a/PythonLinearNonlinearControl/common/utils.py
+++ b/PythonLinearNonlinearControl/common/utils.py
@@ -1,8 +1,9 @@
import numpy as np
+
def rotate_pos(pos, angle):
""" Transformation the coordinate in the angle
-
+
Args:
pos (numpy.ndarray): local state, shape(data_size, 2)
angle (float): rotate angle, in radians
@@ -14,9 +15,10 @@ def rotate_pos(pos, angle):
return np.dot(pos, rot_mat.T)
+
def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
""" Check angle range and correct the range
-
+
Args:
angle (numpy.ndarray): in radians
min_angle (float): maximum of range in radians, default -pi
@@ -29,7 +31,7 @@ def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
if (max_angle - min_angle) < 2.0 * np.pi:
raise ValueError("difference between max_angle \
and min_angle must be greater than 2.0 * pi")
-
+
output = np.array(angles)
output_shape = output.shape
@@ -41,4 +43,76 @@ def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
output += min_angle
output = np.minimum(max_angle, np.maximum(min_angle, output))
- return output.reshape(output_shape)
\ No newline at end of file
+ return output.reshape(output_shape)
+
+
+def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
+ """ update state in Runge Kutta methods
+ Args:
+ state (array-like): state of system
+ u (array-like): input of system
+ functions (list): update function of each state,
+ each function will be called like func(state, u)
+ We expect that this function returns differential of each state
+ dt (float): float in seconds
+ batch (bool): state and u is given by batch or not
+
+ Returns:
+ next_state (np.array): next state of system
+
+ Notes:
+ sample of function is as follows:
+
+ def func_x(self, x_1, x_2, u):
+ x_dot = (1. - x_1**2 - x_2**2) * x_2 - x_1 + u
+ return x_dot
+
+ Note that the function return x_dot.
+ """
+ if not batch:
+ state_size = len(state)
+ assert state_size == len(functions), \
+ "Invalid functions length, You need to give the state size functions"
+
+ k0 = np.zeros(state_size)
+ k1 = np.zeros(state_size)
+ k2 = np.zeros(state_size)
+ k3 = np.zeros(state_size)
+
+ for i, func in enumerate(functions):
+ k0[i] = dt * func(state, u)
+
+ for i, func in enumerate(functions):
+ k1[i] = dt * func(state + k0 / 2., u)
+
+ for i, func in enumerate(functions):
+ k2[i] = dt * func(state + k1 / 2., u)
+
+ for i, func in enumerate(functions):
+ k3[i] = dt * func(state + k2, u)
+
+ return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
+
+ else:
+ batch_size, state_size = state.shape
+ assert state_size == len(functions), \
+ "Invalid functions length, You need to give the state size functions"
+
+ k0 = np.zeros((batch_size, state_size))
+ k1 = np.zeros((batch_size, state_size))
+ k2 = np.zeros((batch_size, state_size))
+ k3 = np.zeros((batch_size, state_size))
+
+ for i, func in enumerate(functions):
+ k0[:, i] = dt * func(state, u)
+
+ for i, func in enumerate(functions):
+ k1[:, i] = dt * func(state + k0 / 2., u)
+
+ for i, func in enumerate(functions):
+ k2[:, i] = dt * func(state + k1 / 2., u)
+
+ for i, func in enumerate(functions):
+ k3[:, i] = dt * func(state + k2, u)
+
+ return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
diff --git a/PythonLinearNonlinearControl/configs/cartpole.py b/PythonLinearNonlinearControl/configs/cartpole.py
index bbcf99b..e8d10a6 100644
--- a/PythonLinearNonlinearControl/configs/cartpole.py
+++ b/PythonLinearNonlinearControl/configs/cartpole.py
@@ -1,5 +1,6 @@
import numpy as np
+
class CartPoleConfigModule():
# parameters
ENV_NAME = "CartPole-v0"
@@ -12,7 +13,7 @@ class CartPoleConfigModule():
DT = 0.02
# cost parameters
R = np.diag([0.01]) # 0.01 is worked for MPPI and CEM and MPPIWilliams
- # 1. is worked for iLQR
+ # 1. is worked for iLQR
TERMINAL_WEIGHT = 1.
Q = None
Sf = None
@@ -39,41 +40,41 @@ class CartPoleConfigModule():
"num_elites": 50,
"max_iters": 15,
"alpha": 0.3,
- "init_var":9.,
- "threshold":0.001
+ "init_var": 9.,
+ "threshold": 0.001
},
- "MPPI":{
- "beta" : 0.6,
+ "MPPI": {
+ "beta": 0.6,
"popsize": 5000,
"kappa": 0.9,
"noise_sigma": 0.5,
},
- "MPPIWilliams":{
+ "MPPIWilliams": {
"popsize": 5000,
"lambda": 1.,
"noise_sigma": 0.9,
},
- "iLQR":{
+ "iLQR": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
- },
- "DDP":{
+ },
+ "DDP": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
- },
- "NMPC-CGMRES":{
- },
- "NMPC-Newton":{
- },
- }
+ },
+ "NMPC-CGMRES": {
+ },
+ "NMPC-Newton": {
+ },
+ }
@staticmethod
def input_cost_fn(u):
@@ -87,7 +88,7 @@ class CartPoleConfigModule():
shape(pop_size, pred_len, input_size)
"""
return (u**2) * np.diag(CartPoleConfigModule.R)
-
+
@staticmethod
def state_cost_fn(x, g_x):
""" state cost function
@@ -103,21 +104,21 @@ class CartPoleConfigModule():
"""
if len(x.shape) > 2:
- return (6. * (x[:, :, 0]**2) \
- + 12. * ((np.cos(x[:, :, 2]) + 1.)**2) \
- + 0.1 * (x[:, :, 1]**2) \
- + 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
+ return (6. * (x[:, :, 0]**2)
+ + 12. * ((np.cos(x[:, :, 2]) + 1.)**2)
+ + 0.1 * (x[:, :, 1]**2)
+ + 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
elif len(x.shape) > 1:
- return (6. * (x[:, 0]**2) \
- + 12. * ((np.cos(x[:, 2]) + 1.)**2) \
- + 0.1 * (x[:, 1]**2) \
- + 0.1 * (x[:, 3]**2))[:, np.newaxis]
-
+ return (6. * (x[:, 0]**2)
+ + 12. * ((np.cos(x[:, 2]) + 1.)**2)
+ + 0.1 * (x[:, 1]**2)
+ + 0.1 * (x[:, 3]**2))[:, np.newaxis]
+
return 6. * (x[0]**2) \
- + 12. * ((np.cos(x[2]) + 1.)**2) \
- + 0.1 * (x[1]**2) \
- + 0.1 * (x[3]**2)
+ + 12. * ((np.cos(x[2]) + 1.)**2) \
+ + 0.1 * (x[1]**2) \
+ + 0.1 * (x[3]**2)
@staticmethod
def terminal_state_cost_fn(terminal_x, terminal_g_x):
@@ -134,18 +135,18 @@ class CartPoleConfigModule():
"""
if len(terminal_x.shape) > 1:
- return (6. * (terminal_x[:, 0]**2) \
- + 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2) \
- + 0.1 * (terminal_x[:, 1]**2) \
- + 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis] \
- * CartPoleConfigModule.TERMINAL_WEIGHT
-
- return (6. * (terminal_x[0]**2) \
- + 12. * ((np.cos(terminal_x[2]) + 1.)**2) \
- + 0.1 * (terminal_x[1]**2) \
- + 0.1 * (terminal_x[3]**2)) \
+ return (6. * (terminal_x[:, 0]**2)
+ + 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2)
+ + 0.1 * (terminal_x[:, 1]**2)
+ + 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis] \
* CartPoleConfigModule.TERMINAL_WEIGHT
-
+
+ return (6. * (terminal_x[0]**2)
+ + 12. * ((np.cos(terminal_x[2]) + 1.)**2)
+ + 0.1 * (terminal_x[1]**2)
+ + 0.1 * (terminal_x[3]**2)) \
+ * CartPoleConfigModule.TERMINAL_WEIGHT
+
@staticmethod
def gradient_cost_fn_with_state(x, g_x, terminal=False):
""" gradient of costs with respect to the state
@@ -153,26 +154,26 @@ class CartPoleConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
-
+
Returns:
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
or shape(1, state_size)
"""
if not terminal:
- cost_dx0 = 12. * x[:, 0]
+ cost_dx0 = 12. * x[:, 0]
cost_dx1 = 0.2 * x[:, 1]
cost_dx2 = 24. * (1 + np.cos(x[:, 2])) * -np.sin(x[:, 2])
cost_dx3 = 0.2 * x[:, 3]
- cost_dx = np.stack((cost_dx0, cost_dx1,\
+ cost_dx = np.stack((cost_dx0, cost_dx1,
cost_dx2, cost_dx3), axis=1)
return cost_dx
-
- cost_dx0 = 12. * x[0]
+
+ cost_dx0 = 12. * x[0]
cost_dx1 = 0.2 * x[1]
cost_dx2 = 24. * (1 + np.cos(x[2])) * -np.sin(x[2])
cost_dx3 = 0.2 * x[3]
cost_dx = np.array([[cost_dx0, cost_dx1, cost_dx2, cost_dx3]])
-
+
return cost_dx * CartPoleConfigModule.TERMINAL_WEIGHT
@staticmethod
@@ -206,21 +207,21 @@ class CartPoleConfigModule():
hessian[:, 0, 0] = 12.
hessian[:, 1, 1] = 0.2
hessian[:, 2, 2] = 24. * -np.sin(x[:, 2]) \
- * (-np.sin(x[:, 2])) \
- + 24. * (1. + np.cos(x[:, 2])) \
- * -np.cos(x[:, 2])
+ * (-np.sin(x[:, 2])) \
+ + 24. * (1. + np.cos(x[:, 2])) \
+ * -np.cos(x[:, 2])
hessian[:, 3, 3] = 0.2
return hessian
-
+
state_size = len(x)
hessian = np.eye(state_size)
hessian[0, 0] = 12.
hessian[1, 1] = 0.2
hessian[2, 2] = 24. * -np.sin(x[2]) \
- * (-np.sin(x[2])) \
- + 24. * (1. + np.cos(x[2])) \
- * -np.cos(x[2])
+ * (-np.sin(x[2])) \
+ + 24. * (1. + np.cos(x[2])) \
+ * -np.cos(x[2])
hessian[3, 3] = 0.2
return hessian[np.newaxis, :, :] * CartPoleConfigModule.TERMINAL_WEIGHT
@@ -239,7 +240,7 @@ class CartPoleConfigModule():
(pred_len, _) = u.shape
return np.tile(2.*CartPoleConfigModule.R, (pred_len, 1, 1))
-
+
@staticmethod
def hessian_cost_fn_with_input_state(x, u):
""" hessian costs with respect to the state and input
@@ -254,4 +255,4 @@ class CartPoleConfigModule():
(_, state_size) = x.shape
(pred_len, input_size) = u.shape
- return np.zeros((pred_len, input_size, state_size))
\ No newline at end of file
+ return np.zeros((pred_len, input_size, state_size))
diff --git a/PythonLinearNonlinearControl/configs/first_order_lag.py b/PythonLinearNonlinearControl/configs/first_order_lag.py
index 2c9d268..fef097d 100644
--- a/PythonLinearNonlinearControl/configs/first_order_lag.py
+++ b/PythonLinearNonlinearControl/configs/first_order_lag.py
@@ -1,5 +1,6 @@
import numpy as np
+
class FirstOrderLagConfigModule():
# parameters
ENV_NAME = "FirstOrderLag-v0"
@@ -34,43 +35,43 @@ class FirstOrderLagConfigModule():
"num_elites": 50,
"max_iters": 15,
"alpha": 0.3,
- "init_var":1.,
- "threshold":0.001
+ "init_var": 1.,
+ "threshold": 0.001
},
- "MPPI":{
- "beta" : 0.6,
+ "MPPI": {
+ "beta": 0.6,
"popsize": 5000,
"kappa": 0.9,
"noise_sigma": 0.5,
},
- "MPPIWilliams":{
+ "MPPIWilliams": {
"popsize": 5000,
"lambda": 1.,
"noise_sigma": 0.9,
},
- "MPC":{
- },
- "iLQR":{
+ "MPC": {
+ },
+ "iLQR": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
- },
- "DDP":{
+ },
+ "DDP": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
- },
- "NMPC-CGMRES":{
- },
- "NMPC-Newton":{
- },
- }
+ },
+ "NMPC-CGMRES": {
+ },
+ "NMPC-Newton": {
+ },
+ }
@staticmethod
def input_cost_fn(u):
@@ -83,7 +84,7 @@ class FirstOrderLagConfigModule():
shape(pop_size, pred_len, input_size)
"""
return (u**2) * np.diag(FirstOrderLagConfigModule.R)
-
+
@staticmethod
def state_cost_fn(x, g_x):
""" state cost function
@@ -111,8 +112,8 @@ class FirstOrderLagConfigModule():
shape(pop_size, pred_len)
"""
return ((terminal_x - terminal_g_x)**2) \
- * np.diag(FirstOrderLagConfigModule.Sf)
-
+ * np.diag(FirstOrderLagConfigModule.Sf)
+
@staticmethod
def gradient_cost_fn_with_state(x, g_x, terminal=False):
""" gradient of costs with respect to the state
@@ -120,16 +121,16 @@ class FirstOrderLagConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
-
+
Returns:
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
or shape(1, state_size)
"""
if not terminal:
return 2. * (x - g_x) * np.diag(FirstOrderLagConfigModule.Q)
-
- return (2. * (x - g_x) \
- * np.diag(FirstOrderLagConfigModule.Sf))[np.newaxis, :]
+
+ return (2. * (x - g_x)
+ * np.diag(FirstOrderLagConfigModule.Sf))[np.newaxis, :]
@staticmethod
def gradient_cost_fn_with_input(x, u):
@@ -138,7 +139,7 @@ class FirstOrderLagConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
-
+
Returns:
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
"""
@@ -151,7 +152,7 @@ class FirstOrderLagConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
-
+
Returns:
l_xx (numpy.ndarray): gradient of cost,
shape(pred_len, state_size, state_size) or
@@ -159,9 +160,9 @@ class FirstOrderLagConfigModule():
"""
if not terminal:
(pred_len, _) = x.shape
- return np.tile(2.*FirstOrderLagConfigModule.Q, (pred_len, 1, 1))
-
- return np.tile(2.*FirstOrderLagConfigModule.Sf, (1, 1, 1))
+ return np.tile(2.*FirstOrderLagConfigModule.Q, (pred_len, 1, 1))
+
+ return np.tile(2.*FirstOrderLagConfigModule.Sf, (1, 1, 1))
@staticmethod
def hessian_cost_fn_with_input(x, u):
@@ -170,7 +171,7 @@ class FirstOrderLagConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
-
+
Returns:
l_uu (numpy.ndarray): gradient of cost,
shape(pred_len, input_size, input_size)
@@ -178,7 +179,7 @@ class FirstOrderLagConfigModule():
(pred_len, _) = u.shape
return np.tile(2.*FirstOrderLagConfigModule.R, (pred_len, 1, 1))
-
+
@staticmethod
def hessian_cost_fn_with_input_state(x, u):
""" hessian costs with respect to the state and input
@@ -186,7 +187,7 @@ class FirstOrderLagConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
-
+
Returns:
l_ux (numpy.ndarray): gradient of cost ,
shape(pred_len, input_size, state_size)
diff --git a/PythonLinearNonlinearControl/configs/make_configs.py b/PythonLinearNonlinearControl/configs/make_configs.py
index a48aedc..1267470 100644
--- a/PythonLinearNonlinearControl/configs/make_configs.py
+++ b/PythonLinearNonlinearControl/configs/make_configs.py
@@ -1,6 +1,8 @@
from .first_order_lag import FirstOrderLagConfigModule
from .two_wheeled import TwoWheeledConfigModule
from .cartpole import CartPoleConfigModule
+from .nonlinear_sample_system import NonlinearSampleSystemConfigModule
+
def make_config(args):
"""
@@ -12,4 +14,6 @@ def make_config(args):
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
return TwoWheeledConfigModule()
elif args.env == "CartPole":
- return CartPoleConfigModule()
\ No newline at end of file
+ return CartPoleConfigModule()
+ elif args.env == "NonlinearSample":
+ return NonlinearSampleSystemConfigModule()
diff --git a/PythonLinearNonlinearControl/configs/nonlinear_sample_system.py b/PythonLinearNonlinearControl/configs/nonlinear_sample_system.py
new file mode 100644
index 0000000..62d9c9f
--- /dev/null
+++ b/PythonLinearNonlinearControl/configs/nonlinear_sample_system.py
@@ -0,0 +1,219 @@
+import numpy as np
+
+
+class NonlinearSampleSystemConfigModule():
+ # parameters
+ ENV_NAME = "NonlinearSampleSystem-v0"
+ PLANNER_TYPE = "Const"
+ TYPE = "Nonlinear"
+ TASK_HORIZON = 2500
+ PRED_LEN = 10
+ STATE_SIZE = 2
+ INPUT_SIZE = 1
+ DT = 0.01
+ R = np.diag([0.01])
+ Q = None
+ Sf = None
+ # bounds
+ INPUT_LOWER_BOUND = np.array([-0.5])
+ INPUT_UPPER_BOUND = np.array([0.5])
+
+ def __init__(self):
+ """
+ """
+ # opt configs
+ self.opt_config = {
+ "Random": {
+ "popsize": 5000
+ },
+ "CEM": {
+ "popsize": 500,
+ "num_elites": 50,
+ "max_iters": 15,
+ "alpha": 0.3,
+ "init_var": 9.,
+ "threshold": 0.001
+ },
+ "MPPI": {
+ "beta": 0.6,
+ "popsize": 5000,
+ "kappa": 0.9,
+ "noise_sigma": 0.5,
+ },
+ "MPPIWilliams": {
+ "popsize": 5000,
+ "lambda": 1.,
+ "noise_sigma": 0.9,
+ },
+ "iLQR": {
+ "max_iter": 500,
+ "init_mu": 1.,
+ "mu_min": 1e-6,
+ "mu_max": 1e10,
+ "init_delta": 2.,
+ "threshold": 1e-6,
+ },
+ "DDP": {
+ "max_iter": 500,
+ "init_mu": 1.,
+ "mu_min": 1e-6,
+ "mu_max": 1e10,
+ "init_delta": 2.,
+ "threshold": 1e-6,
+ },
+ "NMPC-CGMRES": {
+ },
+ "NMPC-Newton": {
+ },
+ }
+
+ @staticmethod
+ def input_cost_fn(u):
+ """ input cost functions
+
+ Args:
+ u (numpy.ndarray): input, shape(pred_len, input_size)
+ or shape(pop_size, pred_len, input_size)
+ Returns:
+ cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
+ shape(pop_size, pred_len, input_size)
+ """
+ return (u**2) * np.diag(NonlinearSampleSystemConfigModule.R)
+
+ @staticmethod
+ def state_cost_fn(x, g_x):
+ """ state cost function
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ or shape(pop_size, pred_len, state_size)
+ g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
+ or shape(pop_size, pred_len, state_size)
+ Returns:
+ cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
+ shape(pop_size, pred_len, 1)
+ """
+
+ if len(x.shape) > 2:
+ return (0.5 * (x[:, :, 0]**2) +
+ 0.5 * (x[:, :, 1]**2))[:, :, np.newaxis]
+
+ elif len(x.shape) > 1:
+ return (0.5 * (x[:, 0]**2) + 0.5 * (x[:, 1]**2))[:, np.newaxis]
+
+ return 0.5 * (x[0]**2) + 0.5 * (x[1]**2)
+
+ @ staticmethod
+ def terminal_state_cost_fn(terminal_x, terminal_g_x):
+ """
+
+ Args:
+ terminal_x (numpy.ndarray): terminal state,
+ shape(state_size, ) or shape(pop_size, state_size)
+ terminal_g_x (numpy.ndarray): terminal goal state,
+ shape(state_size, ) or shape(pop_size, state_size)
+ Returns:
+ cost (numpy.ndarray): cost of state, shape(pred_len, ) or
+ shape(pop_size, pred_len)
+ """
+
+ if len(terminal_x.shape) > 1:
+ return (0.5 * (terminal_x[:, 0]**2) +
+ 0.5 * (terminal_x[:, 1]**2))[:, np.newaxis]
+
+ return 0.5 * (terminal_x[0]**2) + 0.5 * (terminal_x[1]**2)
+
+ @ staticmethod
+ def gradient_cost_fn_with_state(x, g_x, terminal=False):
+ """ gradient of costs with respect to the state
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
+
+ Returns:
+ l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
+ or shape(1, state_size)
+ """
+ if not terminal:
+ cost_dx0 = x[:, 0]
+ cost_dx1 = x[:, 1]
+ cost_dx = np.stack((cost_dx0, cost_dx1), axis=1)
+ return cost_dx
+
+ cost_dx0 = x[0]
+ cost_dx1 = x[1]
+ cost_dx = np.array([[cost_dx0, cost_dx1]])
+
+ return cost_dx
+
+ @ staticmethod
+ def gradient_cost_fn_with_input(x, u):
+ """ gradient of costs with respect to the input
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ u (numpy.ndarray): goal state, shape(pred_len, input_size)
+ Returns:
+ l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
+ """
+ return 2. * u * np.diag(NonlinearSampleSystemConfigModule.R)
+
+ @ staticmethod
+ def hessian_cost_fn_with_state(x, g_x, terminal=False):
+ """ hessian costs with respect to the state
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
+ Returns:
+ l_xx (numpy.ndarray): gradient of cost,
+ shape(pred_len, state_size, state_size) or
+ shape(1, state_size, state_size) or
+ """
+ if not terminal:
+ (pred_len, state_size) = x.shape
+ hessian = np.eye(state_size)
+ hessian = np.tile(hessian, (pred_len, 1, 1))
+ hessian[:, 0, 0] = 1.
+ hessian[:, 1, 1] = 1.
+
+ return hessian
+
+ state_size = len(x)
+ hessian = np.eye(state_size)
+ hessian[0, 0] = 1.
+ hessian[1, 1] = 1.
+
+ return hessian[np.newaxis, :, :]
+
+ @ staticmethod
+ def hessian_cost_fn_with_input(x, u):
+ """ hessian costs with respect to the input
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ u (numpy.ndarray): goal state, shape(pred_len, input_size)
+ Returns:
+ l_uu (numpy.ndarray): gradient of cost,
+ shape(pred_len, input_size, input_size)
+ """
+ (pred_len, _) = u.shape
+
+ return np.tile(NonlinearSampleSystemConfigModule.R, (pred_len, 1, 1))
+
+ @ staticmethod
+ def hessian_cost_fn_with_input_state(x, u):
+ """ hessian costs with respect to the state and input
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ u (numpy.ndarray): goal state, shape(pred_len, input_size)
+ Returns:
+ l_ux (numpy.ndarray): gradient of cost ,
+ shape(pred_len, input_size, state_size)
+ """
+ (_, state_size) = x.shape
+ (pred_len, input_size) = u.shape
+
+ return np.zeros((pred_len, input_size, state_size))
diff --git a/PythonLinearNonlinearControl/configs/two_wheeled.py b/PythonLinearNonlinearControl/configs/two_wheeled.py
index 93de72a..56de209 100644
--- a/PythonLinearNonlinearControl/configs/two_wheeled.py
+++ b/PythonLinearNonlinearControl/configs/two_wheeled.py
@@ -4,6 +4,7 @@ from matplotlib.axes import Axes
from ..plotters.plot_objs import square_with_angle, square
from ..common.utils import fit_angle_in_range
+
class TwoWheeledConfigModule():
# parameters
ENV_NAME = "TwoWheeled-v0"
@@ -25,7 +26,7 @@ class TwoWheeledConfigModule():
R = np.diag([0.01, 0.01])
Q = np.diag([2.5, 2.5, 0.01])
Sf = np.diag([2.5, 2.5, 0.01])
-
+
# bounds
INPUT_LOWER_BOUND = np.array([-1.5, -3.14])
INPUT_UPPER_BOUND = np.array([1.5, 3.14])
@@ -46,41 +47,41 @@ class TwoWheeledConfigModule():
"num_elites": 50,
"max_iters": 15,
"alpha": 0.3,
- "init_var":1.,
- "threshold":0.001
+ "init_var": 1.,
+ "threshold": 0.001
},
- "MPPI":{
- "beta" : 0.6,
+ "MPPI": {
+ "beta": 0.6,
"popsize": 5000,
"kappa": 0.9,
"noise_sigma": 0.5,
},
- "MPPIWilliams":{
+ "MPPIWilliams": {
"popsize": 5000,
"lambda": 1,
"noise_sigma": 1.,
},
- "iLQR":{
+ "iLQR": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
- },
- "DDP":{
+ },
+ "DDP": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
- },
- "NMPC-CGMRES":{
- },
- "NMPC-Newton":{
- },
- }
+ },
+ "NMPC-CGMRES": {
+ },
+ "NMPC-Newton": {
+ },
+ }
@staticmethod
def input_cost_fn(u):
@@ -93,7 +94,7 @@ class TwoWheeledConfigModule():
shape(pop_size, pred_len, input_size)
"""
return (u**2) * np.diag(TwoWheeledConfigModule.R)
-
+
@staticmethod
def fit_diff_in_range(diff_x):
""" fit difference state in range(angle)
@@ -107,7 +108,7 @@ class TwoWheeledConfigModule():
fitted_diff_x (numpy.ndarray): same shape as diff_x
"""
if len(diff_x.shape) == 3:
- diff_x[:, :, -1] = fit_angle_in_range(diff_x[:, :, -1])
+ diff_x[:, :, -1] = fit_angle_in_range(diff_x[:, :, -1])
elif len(diff_x.shape) == 2:
diff_x[:, -1] = fit_angle_in_range(diff_x[:, -1])
elif len(diff_x.shape) == 1:
@@ -142,11 +143,11 @@ class TwoWheeledConfigModule():
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
shape(pop_size, pred_len)
"""
- terminal_diff = TwoWheeledConfigModule.fit_diff_in_range(terminal_x \
- - terminal_g_x)
-
+ terminal_diff = TwoWheeledConfigModule.fit_diff_in_range(terminal_x
+ - terminal_g_x)
+
return ((terminal_diff)**2) * np.diag(TwoWheeledConfigModule.Sf)
-
+
@staticmethod
def gradient_cost_fn_with_state(x, g_x, terminal=False):
""" gradient of costs with respect to the state
@@ -154,18 +155,18 @@ class TwoWheeledConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
-
+
Returns:
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
or shape(1, state_size)
"""
diff = TwoWheeledConfigModule.fit_diff_in_range(x - g_x)
-
+
if not terminal:
return 2. * (diff) * np.diag(TwoWheeledConfigModule.Q)
-
- return (2. * (diff) \
- * np.diag(TwoWheeledConfigModule.Sf))[np.newaxis, :]
+
+ return (2. * (diff)
+ * np.diag(TwoWheeledConfigModule.Sf))[np.newaxis, :]
@staticmethod
def gradient_cost_fn_with_input(x, u):
@@ -174,7 +175,7 @@ class TwoWheeledConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
-
+
Returns:
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
"""
@@ -187,7 +188,7 @@ class TwoWheeledConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
-
+
Returns:
l_xx (numpy.ndarray): gradient of cost,
shape(pred_len, state_size, state_size) or
@@ -195,9 +196,9 @@ class TwoWheeledConfigModule():
"""
if not terminal:
(pred_len, _) = x.shape
- return np.tile(2.*TwoWheeledConfigModule.Q, (pred_len, 1, 1))
-
- return np.tile(2.*TwoWheeledConfigModule.Sf, (1, 1, 1))
+ return np.tile(2.*TwoWheeledConfigModule.Q, (pred_len, 1, 1))
+
+ return np.tile(2.*TwoWheeledConfigModule.Sf, (1, 1, 1))
@staticmethod
def hessian_cost_fn_with_input(x, u):
@@ -206,7 +207,7 @@ class TwoWheeledConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
-
+
Returns:
l_uu (numpy.ndarray): gradient of cost,
shape(pred_len, input_size, input_size)
@@ -214,7 +215,7 @@ class TwoWheeledConfigModule():
(pred_len, _) = u.shape
return np.tile(2.*TwoWheeledConfigModule.R, (pred_len, 1, 1))
-
+
@staticmethod
def hessian_cost_fn_with_input_state(x, u):
""" hessian costs with respect to the state and input
@@ -222,7 +223,7 @@ class TwoWheeledConfigModule():
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
-
+
Returns:
l_ux (numpy.ndarray): gradient of cost ,
shape(pred_len, input_size, state_size)
@@ -230,4 +231,4 @@ class TwoWheeledConfigModule():
(_, state_size) = x.shape
(pred_len, input_size) = u.shape
- return np.zeros((pred_len, input_size, state_size))
\ No newline at end of file
+ return np.zeros((pred_len, input_size, state_size))
diff --git a/PythonLinearNonlinearControl/controllers/cem.py b/PythonLinearNonlinearControl/controllers/cem.py
index 238ff39..176607e 100644
--- a/PythonLinearNonlinearControl/controllers/cem.py
+++ b/PythonLinearNonlinearControl/controllers/cem.py
@@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class CEM(Controller):
""" Cross Entropy Method for linear and nonlinear method
@@ -19,6 +20,7 @@ class CEM(Controller):
using probabilistic dynamics models.
In Advances in Neural Information Processing Systems (pp. 4754-4765).
"""
+
def __init__(self, config, model):
super(CEM, self).__init__(config, model)
@@ -38,7 +40,7 @@ class CEM(Controller):
self.init_var = config.opt_config["CEM"]["init_var"]
self.opt_dim = self.input_size * self.pred_len
- # get bound
+ # get bound
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
self.pred_len)
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
@@ -50,18 +52,18 @@ class CEM(Controller):
self.input_cost_fn = config.input_cost_fn
# init mean
- self.init_mean = np.tile((config.INPUT_UPPER_BOUND \
+ self.init_mean = np.tile((config.INPUT_UPPER_BOUND
+ config.INPUT_LOWER_BOUND) / 2.,
self.pred_len)
self.prev_sol = self.init_mean.copy()
# init variance
var = np.ones_like(config.INPUT_UPPER_BOUND) \
- * config.opt_config["CEM"]["init_var"]
+ * config.opt_config["CEM"]["init_var"]
self.init_var = np.tile(var, self.pred_len)
# save
self.history_u = []
-
+
def clear_sol(self):
""" clear prev sol
"""
@@ -77,21 +79,21 @@ class CEM(Controller):
Returns:
opt_input (numpy.ndarray): optimal input, shape(input_size, )
"""
- # initialize
+ # initialize
opt_count = 0
# get configuration
- mean = self.prev_sol.flatten().copy()
+ mean = self.prev_sol.flatten().copy()
var = self.init_var.flatten().copy()
- # make distribution
+ # make distribution
X = stats.truncnorm(-1, 1,
- loc=np.zeros_like(mean),\
+ loc=np.zeros_like(mean),
scale=np.ones_like(mean))
-
+
while (opt_count < self.max_iters) and np.max(var) > self.epsilon:
# constrained
- lb_dist = mean - self.input_lower_bounds
+ lb_dist = mean - self.input_lower_bounds
ub_dist = self.input_upper_bounds - mean
constrained_var = np.minimum(np.minimum(np.square(lb_dist),
np.square(ub_dist)),
@@ -99,15 +101,15 @@ class CEM(Controller):
# sample
samples = X.rvs(size=[self.pop_size, self.opt_dim]) \
- * np.sqrt(constrained_var) \
- + mean
+ * np.sqrt(constrained_var) \
+ + mean
# calc cost
# samples.shape = (pop_size, opt_dim)
costs = self.calc_cost(curr_x,
samples.reshape(self.pop_size,
- self.pred_len,
- self.input_size),
+ self.pred_len,
+ self.input_size),
g_xs)
# sort cost
@@ -124,7 +126,7 @@ class CEM(Controller):
logger.debug("Var = {}".format(np.max(var)))
logger.debug("Costs = {}".format(np.mean(costs)))
opt_count += 1
-
+
sol = mean.copy()
self.prev_sol = np.concatenate((mean[self.input_size:],
np.zeros(self.input_size)))
diff --git a/PythonLinearNonlinearControl/controllers/controller.py b/PythonLinearNonlinearControl/controllers/controller.py
index 50abb01..35c2297 100644
--- a/PythonLinearNonlinearControl/controllers/controller.py
+++ b/PythonLinearNonlinearControl/controllers/controller.py
@@ -2,9 +2,11 @@ import numpy as np
from ..envs.cost import calc_cost
+
class Controller():
""" Controller class
"""
+
def __init__(self, config, model):
"""
"""
@@ -15,7 +17,7 @@ class Controller():
self.state_cost_fn = config.state_cost_fn
self.terminal_state_cost_fn = config.terminal_state_cost_fn
self.input_cost_fn = config.input_cost_fn
-
+
def obtain_sol(self, curr_x, g_xs):
""" calculate the optimal inputs
Args:
@@ -26,7 +28,7 @@ class Controller():
"""
raise NotImplementedError("Implement the algorithm to \
get optimal input")
-
+
def calc_cost(self, curr_x, samples, g_xs):
""" calculate the cost of input samples
@@ -46,22 +48,24 @@ class Controller():
# calc cost, pred_xs.shape = (pop_size, pred_len+1, state_size)
pred_xs = self.model.predict_traj(curr_x, samples)
-
+
# get particle cost
costs = calc_cost(pred_xs, samples, g_xs,
- self.state_cost_fn, self.input_cost_fn, \
+ self.state_cost_fn, self.input_cost_fn,
self.terminal_state_cost_fn)
-
+
return costs
@staticmethod
def gradient_hamiltonian_x(x, u, lam):
""" gradient of hamitonian with respect to the state,
"""
- raise NotImplementedError("Implement gradient of hamitonian with respect to the state")
+ raise NotImplementedError(
+ "Implement gradient of hamitonian with respect to the state")
@staticmethod
def gradient_hamiltonian_u(x, u, lam):
""" gradient of hamitonian with respect to the input
"""
- raise NotImplementedError("Implement gradient of hamitonian with respect to the input")
\ No newline at end of file
+ raise NotImplementedError(
+ "Implement gradient of hamitonian with respect to the input")
diff --git a/PythonLinearNonlinearControl/controllers/ddp.py b/PythonLinearNonlinearControl/controllers/ddp.py
index 4abb229..2ef8099 100644
--- a/PythonLinearNonlinearControl/controllers/ddp.py
+++ b/PythonLinearNonlinearControl/controllers/ddp.py
@@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class DDP(Controller):
""" Differential Dynamic Programming
@@ -18,11 +19,12 @@ class DDP(Controller):
https://github.com/studywolf/control, and
https://github.com/anassinator/ilqr
"""
+
def __init__(self, config, model):
"""
"""
super(DDP, self).__init__(config, model)
-
+
# model
self.model = model
@@ -56,7 +58,7 @@ class DDP(Controller):
self.Q = config.Q
self.R = config.R
self.Sf = config.Sf
-
+
# initialize
self.prev_sol = np.zeros((self.pred_len, self.input_size))
@@ -65,7 +67,7 @@ class DDP(Controller):
"""
logger.debug("Clear Sol")
self.prev_sol = np.zeros((self.pred_len, self.input_size))
-
+
def obtain_sol(self, curr_x, g_xs):
""" calculate the optimal inputs
@@ -89,26 +91,26 @@ class DDP(Controller):
while opt_count < self.max_iter:
accepted_sol = False
- # forward
+ # forward
if update_sol == True:
pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu,\
- l_x, l_xx, l_u, l_uu, l_ux = \
+ l_x, l_xx, l_u, l_uu, l_ux = \
self.forward(curr_x, g_xs, sol)
update_sol = False
-
+
try:
# backward
- k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu, \
+ k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu,
l_x, l_xx, l_u, l_uu, l_ux)
# line search
for alpha in alphas:
new_pred_xs, new_sol = \
self.calc_input(k, K, pred_xs, sol, alpha)
-
+
new_cost = calc_cost(new_pred_xs[np.newaxis, :, :],
new_sol[np.newaxis, :, :],
- g_xs[np.newaxis, :, :],
+ g_xs[np.newaxis, :, :],
self.state_cost_fn,
self.input_cost_fn,
self.terminal_state_cost_fn)
@@ -131,15 +133,15 @@ class DDP(Controller):
# accept the solution
accepted_sol = True
break
-
+
except np.linalg.LinAlgError as e:
logger.debug("Non ans : {}".format(e))
-
+
if not accepted_sol:
# increase regularization term.
self.delta = max(1.0, self.delta) * self.init_delta
self.mu = max(self.mu_min, self.mu * self.delta)
- logger.debug("Update regularization term to {}"\
+ logger.debug("Update regularization term to {}"
.format(self.mu))
if self.mu >= self.mu_max:
logger.debug("Reach Max regularization term")
@@ -156,7 +158,7 @@ class DDP(Controller):
self.prev_sol[-1] = sol[-1] # last use the terminal input
return sol[0]
-
+
def calc_input(self, k, K, pred_xs, sol, alpha):
""" calc input trajectory by using k and K
@@ -183,8 +185,8 @@ class DDP(Controller):
for t in range(pred_len):
new_sol[t] = sol[t] \
- + alpha * k[t] \
- + np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
+ + alpha * k[t] \
+ + np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t],
new_sol[t])
@@ -227,7 +229,7 @@ class DDP(Controller):
g_xs)
# calc gradinet in batch
- f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
+ f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt)
# calc hessian in batch
f_xx = self.model.calc_f_xx(pred_xs[:-1], sol, self.dt)
@@ -237,13 +239,13 @@ class DDP(Controller):
# gradint of costs
l_x, l_xx, l_u, l_uu, l_ux = \
self._calc_gradient_hessian_cost(pred_xs, g_xs, sol)
-
+
return pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu, \
l_x, l_xx, l_u, l_uu, l_ux
def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol):
""" calculate gradient and hessian of model and cost fn
-
+
Args:
pred_xs (numpy.ndarray): predict traj,
shape(pred_len+1, state_size)
@@ -268,7 +270,7 @@ class DDP(Controller):
self.gradient_cost_fn_with_state(pred_xs[-1],
g_x[-1], terminal=True)
- l_x = np.concatenate((l_x, terminal_l_x), axis=0)
+ l_x = np.concatenate((l_x, terminal_l_x), axis=0)
# l_u.shape = (pred_len, input_size)
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
@@ -281,7 +283,7 @@ class DDP(Controller):
g_x[-1], terminal=True)
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
-
+
# l_uu.shape = (pred_len, input_size, input_size)
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
@@ -321,7 +323,7 @@ class DDP(Controller):
# get size
(_, state_size, _) = f_x.shape
- # initialzie
+ # initialzie
V_x = l_x[-1]
V_xx = l_xx[-1]
k = np.zeros((self.pred_len, self.input_size))
@@ -388,7 +390,7 @@ class DDP(Controller):
"""
# get size
state_size = len(l_x)
-
+
Q_x = l_x + np.dot(f_x.T, V_x)
Q_u = l_u + np.dot(f_u.T, V_x)
Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x)
@@ -402,4 +404,4 @@ class DDP(Controller):
Q_ux += np.tensordot(V_x, f_ux, axes=1)
Q_uu += np.tensordot(V_x, f_uu, axes=1)
- return Q_x, Q_u, Q_xx, Q_ux, Q_uu
\ No newline at end of file
+ return Q_x, Q_u, Q_xx, Q_ux, Q_uu
diff --git a/PythonLinearNonlinearControl/controllers/ilqr.py b/PythonLinearNonlinearControl/controllers/ilqr.py
index 9a80dfa..7bb81cd 100644
--- a/PythonLinearNonlinearControl/controllers/ilqr.py
+++ b/PythonLinearNonlinearControl/controllers/ilqr.py
@@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class iLQR(Controller):
""" iterative Liner Quadratique Regulator
@@ -16,11 +17,12 @@ class iLQR(Controller):
Intelligent Robots and Systems (pp. 4906-4913). and Study Wolf,
https://github.com/studywolf/control
"""
+
def __init__(self, config, model):
"""
"""
super(iLQR, self).__init__(config, model)
-
+
# model
self.model = model
@@ -58,7 +60,7 @@ class iLQR(Controller):
"""
logger.debug("Clear Sol")
self.prev_sol = np.zeros((self.pred_len, self.input_size))
-
+
def obtain_sol(self, curr_x, g_xs):
""" calculate the optimal inputs
@@ -82,12 +84,12 @@ class iLQR(Controller):
while opt_count < self.max_iter:
accepted_sol = False
- # forward
+ # forward
if update_sol == True:
pred_xs, cost, f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux = \
self.forward(curr_x, g_xs, sol)
update_sol = False
-
+
try:
# backward
k, K = self.backward(f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux)
@@ -96,10 +98,10 @@ class iLQR(Controller):
for alpha in alphas:
new_pred_xs, new_sol = \
self.calc_input(k, K, pred_xs, sol, alpha)
-
+
new_cost = calc_cost(new_pred_xs[np.newaxis, :, :],
new_sol[np.newaxis, :, :],
- g_xs[np.newaxis, :, :],
+ g_xs[np.newaxis, :, :],
self.state_cost_fn,
self.input_cost_fn,
self.terminal_state_cost_fn)
@@ -122,15 +124,15 @@ class iLQR(Controller):
# accept the solution
accepted_sol = True
break
-
+
except np.linalg.LinAlgError as e:
logger.debug("Non ans : {}".format(e))
-
+
if not accepted_sol:
# increase regularization term.
self.delta = max(1.0, self.delta) * self.init_delta
self.mu = max(self.mu_min, self.mu * self.delta)
- logger.debug("Update regularization term to {}"\
+ logger.debug("Update regularization term to {}"
.format(self.mu))
if self.mu >= self.mu_max:
logger.debug("Reach Max regularization term")
@@ -147,7 +149,7 @@ class iLQR(Controller):
self.prev_sol[-1] = sol[-1] # last use the terminal input
return sol[0]
-
+
def calc_input(self, k, K, pred_xs, sol, alpha):
""" calc input trajectory by using k and K
@@ -174,8 +176,8 @@ class iLQR(Controller):
for t in range(pred_len):
new_sol[t] = sol[t] \
- + alpha * k[t] \
- + np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
+ + alpha * k[t] \
+ + np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t],
new_sol[t])
@@ -212,18 +214,18 @@ class iLQR(Controller):
g_xs)
# calc gradinet in batch
- f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
+ f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt)
# gradint of costs
l_x, l_xx, l_u, l_uu, l_ux = \
self._calc_gradient_hessian_cost(pred_xs, g_xs, sol)
-
+
return pred_xs, cost, f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux
def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol):
""" calculate gradient and hessian of model and cost fn
-
+
Args:
pred_xs (numpy.ndarray): predict traj,
shape(pred_len+1, state_size)
@@ -248,7 +250,7 @@ class iLQR(Controller):
self.gradient_cost_fn_with_state(pred_xs[-1],
g_x[-1], terminal=True)
- l_x = np.concatenate((l_x, terminal_l_x), axis=0)
+ l_x = np.concatenate((l_x, terminal_l_x), axis=0)
# l_u.shape = (pred_len, input_size)
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
@@ -261,7 +263,7 @@ class iLQR(Controller):
g_x[-1], terminal=True)
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
-
+
# l_uu.shape = (pred_len, input_size, input_size)
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
@@ -287,7 +289,7 @@ class iLQR(Controller):
shape(pred_len, input_size, input_size)
l_ux (numpy.ndarray): hessian of cost with respect
to state and input, shape(pred_len, input_size, state_size)
-
+
Returns:
k (numpy.ndarray): gain, shape(pred_len, input_size)
K (numpy.ndarray): gain, shape(pred_len, input_size, state_size)
@@ -295,7 +297,7 @@ class iLQR(Controller):
# get size
(_, state_size, _) = f_x.shape
- # initialzie
+ # initialzie
V_x = l_x[-1]
V_xx = l_xx[-1]
k = np.zeros((self.pred_len, self.input_size))
@@ -352,7 +354,7 @@ class iLQR(Controller):
"""
# get size
state_size = len(l_x)
-
+
Q_x = l_x + np.dot(f_x.T, V_x)
Q_u = l_u + np.dot(f_u.T, V_x)
Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x)
@@ -361,4 +363,4 @@ class iLQR(Controller):
Q_ux = l_ux + np.dot(np.dot(f_u.T, (V_xx + reg)), f_x)
Q_uu = l_uu + np.dot(np.dot(f_u.T, (V_xx + reg)), f_u)
- return Q_x, Q_u, Q_xx, Q_ux, Q_uu
\ No newline at end of file
+ return Q_x, Q_u, Q_xx, Q_ux, Q_uu
diff --git a/PythonLinearNonlinearControl/controllers/make_controllers.py b/PythonLinearNonlinearControl/controllers/make_controllers.py
index d5ec8df..1bc6138 100644
--- a/PythonLinearNonlinearControl/controllers/make_controllers.py
+++ b/PythonLinearNonlinearControl/controllers/make_controllers.py
@@ -6,6 +6,7 @@ from .mppi_williams import MPPIWilliams
from .ilqr import iLQR
from .ddp import DDP
+
def make_controller(args, config, model):
if args.controller_type == "MPC":
@@ -22,5 +23,5 @@ def make_controller(args, config, model):
return iLQR(config, model)
elif args.controller_type == "DDP":
return DDP(config, model)
-
- raise ValueError("No controller: {}".format(args.controller_type))
\ No newline at end of file
+
+ raise ValueError("No controller: {}".format(args.controller_type))
diff --git a/PythonLinearNonlinearControl/controllers/mpc.py b/PythonLinearNonlinearControl/controllers/mpc.py
index ddf5840..c1e0db3 100644
--- a/PythonLinearNonlinearControl/controllers/mpc.py
+++ b/PythonLinearNonlinearControl/controllers/mpc.py
@@ -9,6 +9,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class LinearMPC(Controller):
""" Model Predictive Controller for linear model
@@ -21,6 +22,7 @@ class LinearMPC(Controller):
Ref:
Maciejowski, J. M. (2002). Predictive control: with constraints.
"""
+
def __init__(self, config, model):
"""
Args:
@@ -55,7 +57,7 @@ class LinearMPC(Controller):
self.dt_input_upper_bound = config.DT_INPUT_UPPER_BOUND
self.input_lower_bound = config.INPUT_LOWER_BOUND
self.input_upper_bound = config.INPUT_UPPER_BOUND
-
+
# setup controllers
self.W = None
self.omega = None
@@ -66,7 +68,7 @@ class LinearMPC(Controller):
# history
self.history_u = [np.zeros(self.input_size)]
-
+
def setup(self):
"""
setup Model Predictive Control as a quadratic programming
@@ -77,11 +79,11 @@ class LinearMPC(Controller):
for _ in range(self.pred_len - 1):
temp_mat = np.matmul(A_factorials[-1], self.A)
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
- A_factorials.append(temp_mat) # after we use this factorials
-
+ A_factorials.append(temp_mat) # after we use this factorials
+
self.gamma_mat = self.B.copy()
gammma_mat_temp = self.B.copy()
-
+
for i in range(self.pred_len - 1):
temp_1_mat = np.matmul(A_factorials[i], self.B)
gammma_mat_temp = temp_1_mat + gammma_mat_temp
@@ -91,8 +93,8 @@ class LinearMPC(Controller):
for i in range(self.pred_len - 1):
temp_mat = np.zeros_like(self.gamma_mat)
- temp_mat[int((i + 1)*self.state_size): , :] =\
- self.gamma_mat[:-int((i + 1)*self.state_size) , :]
+ temp_mat[int((i + 1)*self.state_size):, :] =\
+ self.gamma_mat[:-int((i + 1)*self.state_size), :]
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
@@ -114,12 +116,12 @@ class LinearMPC(Controller):
for i in range(self.pred_len - 1):
for j in range(self.input_size):
- temp_F[j * 2: (j + 1) * 2,\
+ temp_F[j * 2: (j + 1) * 2,
((i+1) * self.input_size) + j] = np.array([1., -1.])
self.F = np.vstack((self.F, temp_F))
self.F1 = self.F[:, :self.input_size]
-
+
temp_f = []
for i in range(self.input_size):
temp_f.append(-1 * self.input_upper_bound[i])
@@ -168,7 +170,7 @@ class LinearMPC(Controller):
H = H * 0.5
# constraints
- A = []
+ A = []
b = []
if self.W is not None:
@@ -187,14 +189,14 @@ class LinearMPC(Controller):
# using cvxopt
def optimized_func(dt_us):
- return (np.dot(dt_us, np.dot(H, dt_us.reshape(-1, 1))) \
+ return (np.dot(dt_us, np.dot(H, dt_us.reshape(-1, 1)))
- np.dot(G.T, dt_us.reshape(-1, 1)))[0]
# constraint
lb = np.array([-np.inf for _ in range(len(ub))]) # one side cons
cons = LinearConstraint(A, lb, ub)
# solve
- opt_sol = minimize(optimized_func, self.prev_sol.flatten(),\
+ opt_sol = minimize(optimized_func, self.prev_sol.flatten(),
constraints=[cons])
opt_dt_us = opt_sol.x
@@ -213,21 +215,21 @@ class LinearMPC(Controller):
"""
# to dt form
- opt_dt_u_seq = np.cumsum(opt_dt_us.reshape(self.pred_len,\
+ opt_dt_u_seq = np.cumsum(opt_dt_us.reshape(self.pred_len,
self.input_size),
axis=0)
self.prev_sol = opt_dt_u_seq.copy()
-
+
opt_u_seq = opt_dt_u_seq + self.history_u[-1]
-
+
# save
self.history_u.append(opt_u_seq[0])
# check costs
costs = self.calc_cost(curr_x,
opt_u_seq.reshape(1,
- self.pred_len,
- self.input_size),
+ self.pred_len,
+ self.input_size),
g_xs)
logger.debug("Cost = {}".format(costs))
@@ -235,4 +237,4 @@ class LinearMPC(Controller):
return opt_u_seq[0]
def __str__(self):
- return "LinearMPC"
\ No newline at end of file
+ return "LinearMPC"
diff --git a/PythonLinearNonlinearControl/controllers/mppi.py b/PythonLinearNonlinearControl/controllers/mppi.py
index fc8d887..3b0be45 100644
--- a/PythonLinearNonlinearControl/controllers/mppi.py
+++ b/PythonLinearNonlinearControl/controllers/mppi.py
@@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class MPPI(Controller):
""" Model Predictive Path Integral for linear and nonlinear method
@@ -18,6 +19,7 @@ class MPPI(Controller):
Deep Dynamics Models for Learning Dexterous Manipulation.
arXiv preprint arXiv:1909.11652.
"""
+
def __init__(self, config, model):
super(MPPI, self).__init__(config, model)
@@ -35,7 +37,7 @@ class MPPI(Controller):
self.noise_sigma = config.opt_config["MPPI"]["noise_sigma"]
self.opt_dim = self.input_size * self.pred_len
- # get bound
+ # get bound
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
(self.pred_len, 1))
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
@@ -47,14 +49,14 @@ class MPPI(Controller):
self.input_cost_fn = config.input_cost_fn
# init mean
- self.prev_sol = np.tile((config.INPUT_UPPER_BOUND \
+ self.prev_sol = np.tile((config.INPUT_UPPER_BOUND
+ config.INPUT_LOWER_BOUND) / 2.,
self.pred_len)
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
# save
self.history_u = [np.zeros(self.input_size)]
-
+
def clear_sol(self):
""" clear prev sol
"""
@@ -74,24 +76,24 @@ class MPPI(Controller):
"""
# get noised inputs
noise = np.random.normal(
- loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
- self.input_size)) * self.noise_sigma
+ loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
+ self.input_size)) * self.noise_sigma
noised_inputs = noise.copy()
-
+
for t in range(self.pred_len):
if t > 0:
noised_inputs[:, t, :] = self.beta \
- * (self.prev_sol[t, :] \
- + noise[:, t, :]) \
- + (1 - self.beta) \
- * noised_inputs[:, t-1, :]
+ * (self.prev_sol[t, :]
+ + noise[:, t, :]) \
+ + (1 - self.beta) \
+ * noised_inputs[:, t-1, :]
else:
noised_inputs[:, t, :] = self.beta \
- * (self.prev_sol[t, :] \
- + noise[:, t, :]) \
- + (1 - self.beta) \
- * self.history_u[-1]
-
+ * (self.prev_sol[t, :]
+ + noise[:, t, :]) \
+ + (1 - self.beta) \
+ * self.history_u[-1]
+
# clip actions
noised_inputs = np.clip(
noised_inputs, self.input_lower_bounds, self.input_upper_bounds)
@@ -108,7 +110,7 @@ class MPPI(Controller):
# weight actions
weighted_inputs = exp_rewards[:, np.newaxis, np.newaxis] \
- * noised_inputs
+ * noised_inputs
sol = np.sum(weighted_inputs, 0) / denom
# update
@@ -121,4 +123,4 @@ class MPPI(Controller):
return sol[0]
def __str__(self):
- return "MPPI"
\ No newline at end of file
+ return "MPPI"
diff --git a/PythonLinearNonlinearControl/controllers/mppi_williams.py b/PythonLinearNonlinearControl/controllers/mppi_williams.py
index 1fd0102..3ffaaa1 100644
--- a/PythonLinearNonlinearControl/controllers/mppi_williams.py
+++ b/PythonLinearNonlinearControl/controllers/mppi_williams.py
@@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class MPPIWilliams(Controller):
""" Model Predictive Path Integral for linear and nonlinear method
@@ -19,6 +20,7 @@ class MPPIWilliams(Controller):
2017 IEEE International Conference on Robotics and Automation (ICRA),
Singapore, 2017, pp. 1714-1721.
"""
+
def __init__(self, config, model):
super(MPPIWilliams, self).__init__(config, model)
@@ -35,7 +37,7 @@ class MPPIWilliams(Controller):
self.noise_sigma = config.opt_config["MPPIWilliams"]["noise_sigma"]
self.opt_dim = self.input_size * self.pred_len
- # get bound
+ # get bound
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
(self.pred_len, 1))
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
@@ -47,14 +49,14 @@ class MPPIWilliams(Controller):
self.input_cost_fn = config.input_cost_fn
# init mean
- self.prev_sol = np.tile((config.INPUT_UPPER_BOUND \
+ self.prev_sol = np.tile((config.INPUT_UPPER_BOUND
+ config.INPUT_LOWER_BOUND) / 2.,
self.pred_len)
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
# save
self.history_u = [np.zeros(self.input_size)]
-
+
def clear_sol(self):
""" clear prev sol
"""
@@ -62,7 +64,7 @@ class MPPIWilliams(Controller):
self.prev_sol = \
(self.input_upper_bounds + self.input_lower_bounds) / 2.
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
-
+
def calc_cost(self, curr_x, samples, g_xs):
""" calculate the cost of input samples by using MPPI's eq
@@ -82,12 +84,12 @@ class MPPIWilliams(Controller):
# calc cost, pred_xs.shape = (pop_size, pred_len+1, state_size)
pred_xs = self.model.predict_traj(curr_x, samples)
-
+
# get particle cost
costs = calc_cost(pred_xs, samples, g_xs,
- self.state_cost_fn, None, \
+ self.state_cost_fn, None,
self.terminal_state_cost_fn)
-
+
return costs
def obtain_sol(self, curr_x, g_xs):
@@ -101,9 +103,9 @@ class MPPIWilliams(Controller):
"""
# get noised inputs
noise = np.random.normal(
- loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
- self.input_size)) * self.noise_sigma
-
+ loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
+ self.input_size)) * self.noise_sigma
+
noised_inputs = self.prev_sol + noise
# clip actions
@@ -120,7 +122,7 @@ class MPPIWilliams(Controller):
# mppi update
beta = np.min(costs)
eta = np.sum(np.exp(- 1. / self.lam * (costs - beta)), axis=0) \
- + 1e-10
+ + 1e-10
# weight
# eta.shape = (pred_len, input_size)
@@ -128,7 +130,7 @@ class MPPIWilliams(Controller):
# update inputs
sol = self.prev_sol \
- + np.sum(weights[:, np.newaxis, np.newaxis] * noise, axis=0)
+ + np.sum(weights[:, np.newaxis, np.newaxis] * noise, axis=0)
# update
self.prev_sol[:-1] = sol[1:]
@@ -140,4 +142,4 @@ class MPPIWilliams(Controller):
return sol[0]
def __str__(self):
- return "MPPIWilliams"
\ No newline at end of file
+ return "MPPIWilliams"
diff --git a/PythonLinearNonlinearControl/controllers/random.py b/PythonLinearNonlinearControl/controllers/random.py
index 53a7622..e82fbdf 100644
--- a/PythonLinearNonlinearControl/controllers/random.py
+++ b/PythonLinearNonlinearControl/controllers/random.py
@@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
logger = getLogger(__name__)
+
class RandomShooting(Controller):
""" Random Shooting Method for linear and nonlinear method
@@ -19,6 +20,7 @@ class RandomShooting(Controller):
using probabilistic dynamics models.
In Advances in Neural Information Processing Systems (pp. 4754-4765).
"""
+
def __init__(self, config, model):
super(RandomShooting, self).__init__(config, model)
@@ -33,7 +35,7 @@ class RandomShooting(Controller):
self.pop_size = config.opt_config["Random"]["popsize"]
self.opt_dim = self.input_size * self.pred_len
- # get bound
+ # get bound
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
self.pred_len)
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
@@ -46,7 +48,7 @@ class RandomShooting(Controller):
# save
self.history_u = []
-
+
def obtain_sol(self, curr_x, g_xs):
""" calculate the optimal inputs
@@ -65,8 +67,8 @@ class RandomShooting(Controller):
# calc cost
costs = self.calc_cost(curr_x,
samples.reshape(self.pop_size,
- self.pred_len,
- self.input_size),
+ self.pred_len,
+ self.input_size),
g_xs)
# solution
sol = samples[np.argmin(costs)]
@@ -74,4 +76,4 @@ class RandomShooting(Controller):
return sol.reshape(self.pred_len, self.input_size).copy()[0]
def __str__(self):
- return "RandomShooting"
\ No newline at end of file
+ return "RandomShooting"
diff --git a/PythonLinearNonlinearControl/envs/__init__.py b/PythonLinearNonlinearControl/envs/__init__.py
index 837b5d8..e649609 100644
--- a/PythonLinearNonlinearControl/envs/__init__.py
+++ b/PythonLinearNonlinearControl/envs/__init__.py
@@ -5,4 +5,4 @@ from PythonLinearNonlinearControl.envs.first_order_lag \
from PythonLinearNonlinearControl.envs.two_wheeled \
import TwoWheeledConstEnv # NOQA
from PythonLinearNonlinearControl.envs.two_wheeled \
- import TwoWheeledTrackEnv # NOQA
\ No newline at end of file
+ import TwoWheeledTrackEnv # NOQA
diff --git a/PythonLinearNonlinearControl/envs/cartpole.py b/PythonLinearNonlinearControl/envs/cartpole.py
index fd70d47..f64b0df 100644
--- a/PythonLinearNonlinearControl/envs/cartpole.py
+++ b/PythonLinearNonlinearControl/envs/cartpole.py
@@ -4,6 +4,7 @@ from matplotlib.axes import Axes
from .env import Env
from ..plotters.plot_objs import square
+
class CartPoleEnv(Env):
""" Cartpole Environment
@@ -13,13 +14,14 @@ class CartPoleEnv(Env):
6-832-underactuated-robotics-spring-2009/readings/
MIT6_832s09_read_ch03.pdf
"""
+
def __init__(self):
"""
"""
- self.config = {"state_size" : 4,
- "input_size" : 1,
- "dt" : 0.02,
- "max_step" : 500,
+ self.config = {"state_size": 4,
+ "input_size": 1,
+ "dt": 0.02,
+ "max_step": 500,
"input_lower_bound": [-3.],
"input_upper_bound": [3.],
"mp": 0.2,
@@ -30,7 +32,7 @@ class CartPoleEnv(Env):
}
super(CartPoleEnv, self).__init__(self.config)
-
+
def reset(self, init_x=None):
""" reset state
@@ -39,7 +41,7 @@ class CartPoleEnv(Env):
info (dict): information
"""
self.step_count = 0
-
+
theta = np.random.randn(1)
self.curr_x = np.array([0., 0., theta[0], 0.])
@@ -48,7 +50,7 @@ class CartPoleEnv(Env):
# goal
self.g_x = np.array([0., 0., -np.pi, 0.])
-
+
# clear memory
self.history_x = []
self.history_g_x = []
@@ -76,50 +78,50 @@ class CartPoleEnv(Env):
# x
d_x0 = self.curr_x[1]
# v_x
- d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2]) \
- * (self.config["l"] * (self.curr_x[3]**2) \
- + self.config["g"] * np.cos(self.curr_x[2]))) \
- / (self.config["mc"] + self.config["mp"] \
- * (np.sin(self.curr_x[2])**2))
+ d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2])
+ * (self.config["l"] * (self.curr_x[3]**2)
+ + self.config["g"] * np.cos(self.curr_x[2]))) \
+ / (self.config["mc"] + self.config["mp"]
+ * (np.sin(self.curr_x[2])**2))
# theta
d_x2 = self.curr_x[3]
-
+
# v_theta
- d_x3 = (-u[0] * np.cos(self.curr_x[2]) \
- - self.config["mp"] * self.config["l"] * (self.curr_x[3]**2) \
- * np.cos(self.curr_x[2]) * np.sin(self.curr_x[2]) \
- - (self.config["mc"] + self.config["mp"]) * self.config["g"] \
- * np.sin(self.curr_x[2])) \
- / (self.config["l"] * (self.config["mc"] + self.config["mp"] \
- * (np.sin(self.curr_x[2])**2)))
-
+ d_x3 = (-u[0] * np.cos(self.curr_x[2])
+ - self.config["mp"] * self.config["l"] * (self.curr_x[3]**2)
+ * np.cos(self.curr_x[2]) * np.sin(self.curr_x[2])
+ - (self.config["mc"] + self.config["mp"]) * self.config["g"]
+ * np.sin(self.curr_x[2])) \
+ / (self.config["l"] * (self.config["mc"] + self.config["mp"]
+ * (np.sin(self.curr_x[2])**2)))
+
next_x = self.curr_x +\
- np.array([d_x0, d_x1, d_x2, d_x3]) * self.config["dt"]
+ np.array([d_x0, d_x1, d_x2, d_x3]) * self.config["dt"]
# TODO: costs
costs = 0.
costs += 0.1 * np.sum(u**2)
costs += 6. * self.curr_x[0]**2 \
- + 12. * (np.cos(self.curr_x[2]) + 1.)**2 \
- + 0.1 * self.curr_x[1]**2 \
- + 0.1 * self.curr_x[3]**2
+ + 12. * (np.cos(self.curr_x[2]) + 1.)**2 \
+ + 0.1 * self.curr_x[1]**2 \
+ + 0.1 * self.curr_x[3]**2
# save history
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
-
+
# update
self.curr_x = next_x.flatten().copy()
# update costs
self.step_count += 1
return next_x.flatten(), costs, \
- self.step_count > self.config["max_step"], \
- {"goal_state" : self.g_x}
-
+ self.step_count > self.config["max_step"], \
+ {"goal_state": self.g_x}
+
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
""" plot cartpole object function
-
+
Args:
to_plot (axis or imgs): plotted objects
i (int): frame count
@@ -131,29 +133,29 @@ class CartPoleEnv(Env):
"""
if isinstance(to_plot, Axes):
imgs = {} # create new imgs
-
+
imgs["cart"] = to_plot.plot([], [], c="k")[0]
imgs["pole"] = to_plot.plot([], [], c="k", linewidth=5)[0]
- imgs["center"] = to_plot.plot([], [], marker="o", c="k",\
+ imgs["center"] = to_plot.plot([], [], marker="o", c="k",
markersize=10)[0]
# centerline
- to_plot.plot(np.linspace(-1., 1., num=50), np.zeros(50),\
+ to_plot.plot(np.linspace(-1., 1., num=50), np.zeros(50),
c="k", linestyle="dashed")
-
+
# set axis
to_plot.set_xlim([-1., 1.])
to_plot.set_ylim([-0.55, 1.5])
-
+
return imgs
# set imgs
cart_x, cart_y, pole_x, pole_y = \
self._plot_cartpole(history_x[i])
-
+
to_plot["cart"].set_data(cart_x, cart_y)
to_plot["pole"].set_data(pole_x, pole_y)
to_plot["center"].set_data(history_x[i][0], 0.)
-
+
def _plot_cartpole(self, curr_x):
""" plot cartpole fucntions
@@ -166,13 +168,13 @@ class CartPoleEnv(Env):
pole_y (numpy.ndarray): y data of pole
"""
# cart
- cart_x, cart_y = square(curr_x[0], 0.,\
+ cart_x, cart_y = square(curr_x[0], 0.,
self.config["cart_size"], 0.)
-
- # pole
- pole_x = np.array([curr_x[0], curr_x[0] + self.config["l"] \
- * np.cos(curr_x[2]-np.pi/2)])
- pole_y = np.array([0., self.config["l"] \
- * np.sin(curr_x[2]-np.pi/2)])
- return cart_x, cart_y, pole_x, pole_y
\ No newline at end of file
+ # pole
+ pole_x = np.array([curr_x[0], curr_x[0] + self.config["l"]
+ * np.cos(curr_x[2]-np.pi/2)])
+ pole_y = np.array([0., self.config["l"]
+ * np.sin(curr_x[2]-np.pi/2)])
+
+ return cart_x, cart_y, pole_x, pole_y
diff --git a/PythonLinearNonlinearControl/envs/cost.py b/PythonLinearNonlinearControl/envs/cost.py
index 117d5f2..3247dec 100644
--- a/PythonLinearNonlinearControl/envs/cost.py
+++ b/PythonLinearNonlinearControl/envs/cost.py
@@ -4,6 +4,7 @@ import numpy as np
logger = getLogger(__name__)
+
def calc_cost(pred_xs, input_sample, g_xs,
state_cost_fn, input_cost_fn, terminal_state_cost_fn):
""" calculate the cost
@@ -24,20 +25,21 @@ def calc_cost(pred_xs, input_sample, g_xs,
# state cost
state_cost = 0.
if state_cost_fn is not None:
- state_pred_par_cost = state_cost_fn(pred_xs[:, 1:-1, :], g_xs[:, 1:-1, :])
+ state_pred_par_cost = state_cost_fn(
+ pred_xs[:, 1:-1, :], g_xs[:, 1:-1, :])
state_cost = np.sum(np.sum(state_pred_par_cost, axis=-1), axis=-1)
# terminal cost
terminal_state_cost = 0.
if terminal_state_cost_fn is not None:
terminal_state_par_cost = terminal_state_cost_fn(pred_xs[:, -1, :],
- g_xs[:, -1, :])
+ g_xs[:, -1, :])
terminal_state_cost = np.sum(terminal_state_par_cost, axis=-1)
-
+
# act cost
act_cost = 0.
if input_cost_fn is not None:
act_pred_par_cost = input_cost_fn(input_sample)
act_cost = np.sum(np.sum(act_pred_par_cost, axis=-1), axis=-1)
- return state_cost + terminal_state_cost + act_cost
\ No newline at end of file
+ return state_cost + terminal_state_cost + act_cost
diff --git a/PythonLinearNonlinearControl/envs/env.py b/PythonLinearNonlinearControl/envs/env.py
index 4f63903..9f59141 100644
--- a/PythonLinearNonlinearControl/envs/env.py
+++ b/PythonLinearNonlinearControl/envs/env.py
@@ -1,13 +1,15 @@
import numpy as np
+
class Env():
""" Environments class
Attributes:
-
+
curr_x (numpy.ndarray): current state
history_x (list[numpy.ndarray]): historty of state, shape(step_count*state_size)
step_count (int): step count
"""
+
def __init__(self, config):
"""
"""
@@ -25,12 +27,12 @@ class Env():
info (dict): information
"""
self.step_count = 0
-
+
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
self.curr_x = init_x
-
+
# clear memory
self.history_x = []
self.history_g_x = []
@@ -52,4 +54,4 @@ class Env():
def __repr__(self):
"""
"""
- return self.config
\ No newline at end of file
+ return self.config
diff --git a/PythonLinearNonlinearControl/envs/first_order_lag.py b/PythonLinearNonlinearControl/envs/first_order_lag.py
index 5597a07..f7f06bc 100644
--- a/PythonLinearNonlinearControl/envs/first_order_lag.py
+++ b/PythonLinearNonlinearControl/envs/first_order_lag.py
@@ -3,25 +3,27 @@ import scipy
from scipy import integrate
from .env import Env
+
class FirstOrderLagEnv(Env):
""" First Order Lag System Env
"""
+
def __init__(self, tau=0.63):
"""
"""
- self.config = {"state_size" : 4,\
- "input_size" : 2,\
- "dt" : 0.05,\
- "max_step" : 500,\
- "input_lower_bound": [-0.5, -0.5],\
+ self.config = {"state_size": 4,
+ "input_size": 2,
+ "dt": 0.05,
+ "max_step": 500,
+ "input_lower_bound": [-0.5, -0.5],
"input_upper_bound": [0.5, 0.5],
}
super(FirstOrderLagEnv, self).__init__(self.config)
# to get discrete system matrix
- self.A, self.B = self._to_state_space(tau, dt=self.config["dt"])
-
+ self.A, self.B = self._to_state_space(tau, dt=self.config["dt"])
+
@staticmethod
def _to_state_space(tau, dt=0.05):
"""
@@ -34,13 +36,13 @@ class FirstOrderLagEnv(Env):
"""
# continuous
Ac = np.array([[-1./tau, 0., 0., 0.],
- [0., -1./tau, 0., 0.],
- [1., 0., 0., 0.],
- [0., 1., 0., 0.]])
+ [0., -1./tau, 0., 0.],
+ [1., 0., 0., 0.],
+ [0., 1., 0., 0.]])
Bc = np.array([[1./tau, 0.],
- [0., 1./tau],
- [0., 0.],
- [0., 0.]])
+ [0., 1./tau],
+ [0., 0.],
+ [0., 0.]])
# to discrete system
A = scipy.linalg.expm(dt*Ac)
# B = np.matmul(np.matmul(scipy.linalg.expm(Ac*dt) -
@@ -55,7 +57,7 @@ class FirstOrderLagEnv(Env):
B[m, n] = sol[0]
return A, B
-
+
def reset(self, init_x=None):
""" reset state
Returns:
@@ -63,7 +65,7 @@ class FirstOrderLagEnv(Env):
info (dict): information
"""
self.step_count = 0
-
+
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
@@ -71,7 +73,7 @@ class FirstOrderLagEnv(Env):
# goal
self.g_x = np.array([0., 0, -2., 3.])
-
+
# clear memory
self.history_x = []
self.history_g_x = []
@@ -94,7 +96,7 @@ class FirstOrderLagEnv(Env):
self.config["input_upper_bound"])
next_x = np.matmul(self.A, self.curr_x[:, np.newaxis]) \
- + np.matmul(self.B, u[:, np.newaxis])
+ + np.matmul(self.B, u[:, np.newaxis])
# cost
cost = 0
@@ -104,17 +106,17 @@ class FirstOrderLagEnv(Env):
# save history
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
-
+
# update
self.curr_x = next_x.flatten()
# update costs
self.step_count += 1
return next_x.flatten(), cost, \
- self.step_count > self.config["max_step"], \
- {"goal_state" : self.g_x}
-
+ self.step_count > self.config["max_step"], \
+ {"goal_state": self.g_x}
+
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
"""
"""
- raise ValueError("FirstOrderLag does not have animation")
\ No newline at end of file
+ raise ValueError("FirstOrderLag does not have animation")
diff --git a/PythonLinearNonlinearControl/envs/make_envs.py b/PythonLinearNonlinearControl/envs/make_envs.py
index 253f3ed..5603b45 100644
--- a/PythonLinearNonlinearControl/envs/make_envs.py
+++ b/PythonLinearNonlinearControl/envs/make_envs.py
@@ -2,6 +2,8 @@ from .first_order_lag import FirstOrderLagEnv
from .two_wheeled import TwoWheeledConstEnv
from .two_wheeled import TwoWheeledTrackEnv
from .cartpole import CartPoleEnv
+from .nonlinear_sample_system import NonlinearSampleSystemEnv
+
def make_env(args):
@@ -13,5 +15,7 @@ def make_env(args):
return TwoWheeledTrackEnv()
elif args.env == "CartPole":
return CartPoleEnv()
-
- raise NotImplementedError("There is not {} Env".format(args.env))
\ No newline at end of file
+ elif args.env == "NonlinearSample":
+ return NonlinearSampleSystemEnv()
+
+ raise NotImplementedError("There is not {} Env".format(args.env))
diff --git a/PythonLinearNonlinearControl/envs/nonlinear_sample_system.py b/PythonLinearNonlinearControl/envs/nonlinear_sample_system.py
new file mode 100644
index 0000000..38a827f
--- /dev/null
+++ b/PythonLinearNonlinearControl/envs/nonlinear_sample_system.py
@@ -0,0 +1,97 @@
+import numpy as np
+import scipy
+from scipy import integrate
+from .env import Env
+from ..common.utils import update_state_with_Runge_Kutta
+
+
+class NonlinearSampleSystemEnv(Env):
+ """ Nonlinear Sample Env
+ """
+
+ def __init__(self):
+ """
+ """
+ self.config = {"state_size": 2,
+ "input_size": 1,
+ "dt": 0.01,
+ "max_step": 2000,
+ "input_lower_bound": [-0.5],
+ "input_upper_bound": [0.5],
+ }
+
+ super(NonlinearSampleSystemEnv, self).__init__(self.config)
+
+ def reset(self, init_x=np.array([2., 0.])):
+ """ reset state
+ Returns:
+ init_x (numpy.ndarray): initial state, shape(state_size, )
+ info (dict): information
+ """
+ self.step_count = 0
+
+ self.curr_x = np.zeros(self.config["state_size"])
+
+ if init_x is not None:
+ self.curr_x = init_x
+
+ # goal
+ self.g_x = np.array([0., 0.])
+
+ # clear memory
+ self.history_x = []
+ self.history_g_x = []
+
+ return self.curr_x, {"goal_state": self.g_x}
+
+ def step(self, u):
+ """
+ Args:
+ u (numpy.ndarray) : input, shape(input_size, )
+ Returns:
+ next_x (numpy.ndarray): next state, shape(state_size, )
+ cost (float): costs
+ done (bool): end the simulation or not
+ info (dict): information
+ """
+ # clip action
+ u = np.clip(u,
+ self.config["input_lower_bound"],
+ self.config["input_upper_bound"])
+
+ functions = [self._func_x_1, self._func_x_2]
+
+ next_x = update_state_with_Runge_Kutta(self.curr_x, u,
+ functions, self.config["dt"],
+ batch=False)
+
+ # cost
+ cost = 0
+ cost = np.sum(u**2)
+ cost += np.sum((self.curr_x - self.g_x)**2)
+
+ # save history
+ self.history_x.append(next_x.flatten())
+ self.history_g_x.append(self.g_x.flatten())
+
+ # update
+ self.curr_x = next_x.flatten()
+ # update costs
+ self.step_count += 1
+
+ return next_x.flatten(), cost, \
+ self.step_count > self.config["max_step"], \
+ {"goal_state": self.g_x}
+
+ def _func_x_1(self, x, u):
+ x_dot = x[1]
+ return x_dot
+
+ def _func_x_2(self, x, u):
+ x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
+ return x_dot
+
+ def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
+ """
+ """
+ raise ValueError("NonlinearSampleSystemEnv does not have animation")
diff --git a/PythonLinearNonlinearControl/envs/two_wheeled.py b/PythonLinearNonlinearControl/envs/two_wheeled.py
index 43f5f0c..be59d3e 100644
--- a/PythonLinearNonlinearControl/envs/two_wheeled.py
+++ b/PythonLinearNonlinearControl/envs/two_wheeled.py
@@ -5,47 +5,50 @@ import matplotlib.pyplot as plt
from .env import Env
from ..plotters.plot_objs import circle_with_angle, square, circle
+
def step_two_wheeled_env(curr_x, u, dt, method="Oylar"):
""" step two wheeled enviroment
-
+
Args:
curr_x (numpy.ndarray): current state, shape(state_size, )
u (numpy.ndarray): input, shape(input_size, )
dt (float): sampling time
Returns:
next_x (numpy.ndarray): next state, shape(state_size. )
-
+
Notes:
TODO: deal with another method, like Runge Kutta
"""
B = np.array([[np.cos(curr_x[-1]), 0.],
[np.sin(curr_x[-1]), 0.],
[0., 1.]])
-
+
x_dot = np.matmul(B, u[:, np.newaxis])
next_x = x_dot.flatten() * dt + curr_x
return next_x
+
class TwoWheeledConstEnv(Env):
""" Two wheeled robot with constant goal Env
"""
+
def __init__(self):
"""
"""
- self.config = {"state_size" : 3,\
- "input_size" : 2,\
- "dt" : 0.01,\
- "max_step" : 500,\
- "input_lower_bound": (-1.5, -3.14),\
- "input_upper_bound": (1.5, 3.14),\
- "car_size": 0.2,\
+ self.config = {"state_size": 3,
+ "input_size": 2,
+ "dt": 0.01,
+ "max_step": 500,
+ "input_lower_bound": (-1.5, -3.14),
+ "input_upper_bound": (1.5, 3.14),
+ "car_size": 0.2,
"wheel_size": (0.075, 0.015)
}
super(TwoWheeledConstEnv, self).__init__(self.config)
-
+
def reset(self, init_x=None):
""" reset state
@@ -54,7 +57,7 @@ class TwoWheeledConstEnv(Env):
info (dict): information
"""
self.step_count = 0
-
+
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
@@ -62,7 +65,7 @@ class TwoWheeledConstEnv(Env):
# goal
self.g_x = np.array([2.5, 2.5, 0.])
-
+
# clear memory
self.history_x = []
self.history_g_x = []
@@ -96,32 +99,32 @@ class TwoWheeledConstEnv(Env):
# save history
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
-
+
# update
self.curr_x = next_x.flatten()
# update costs
self.step_count += 1
return next_x.flatten(), costs, \
- self.step_count > self.config["max_step"], \
- {"goal_state" : self.g_x}
-
+ self.step_count > self.config["max_step"], \
+ {"goal_state": self.g_x}
+
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
""" plot cartpole object function
-
+
Args:
to_plot (axis or imgs): plotted objects
i (int): frame count
history_x (numpy.ndarray): history of state, shape(iters, state)
history_g_x (numpy.ndarray): history of goal state,
shape(iters, state)
-
+
Returns:
None or imgs : imgs order is ["cart_img", "pole_img"]
"""
if isinstance(to_plot, Axes):
imgs = {} # create new imgs
-
+
imgs["car"] = to_plot.plot([], [], c="k")[0]
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
@@ -139,9 +142,9 @@ class TwoWheeledConstEnv(Env):
# set imgs
# car imgs
car_x, car_y, car_angle_x, car_angle_y, \
- left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
+ left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
self._plot_car(history_x[i])
-
+
to_plot["car"].set_data(car_x, car_y)
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
@@ -150,7 +153,7 @@ class TwoWheeledConstEnv(Env):
# goal and trajs
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
-
+
def _plot_car(self, curr_x):
""" plot car fucntions
"""
@@ -158,53 +161,55 @@ class TwoWheeledConstEnv(Env):
car_x, car_y, car_angle_x, car_angle_y = \
circle_with_angle(curr_x[0], curr_x[1],
self.config["car_size"], curr_x[2])
-
+
# left tire
- center_x = (self.config["car_size"] \
+ center_x = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
- center_y = (self.config["car_size"] \
+ * np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
+ center_y = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
-
+ * np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
+
left_tire_x, left_tire_y = \
- square(center_x, center_y,
+ square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
# right tire
- center_x = (self.config["car_size"] \
+ center_x = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
- center_y = (self.config["car_size"] \
+ * np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
+ center_y = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
-
+ * np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
+
right_tire_x, right_tire_y = \
- square(center_x, center_y,
+ square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
-
+
return car_x, car_y, car_angle_x, car_angle_y,\
- left_tire_x, left_tire_y,\
- right_tire_x, right_tire_y
+ left_tire_x, left_tire_y,\
+ right_tire_x, right_tire_y
+
class TwoWheeledTrackEnv(Env):
""" Two wheeled robot with constant goal Env
"""
+
def __init__(self):
"""
"""
- self.config = {"state_size" : 3,\
- "input_size" : 2,\
- "dt" : 0.01,\
- "max_step" : 1000,\
- "input_lower_bound": (-1.5, -3.14),\
- "input_upper_bound": (1.5, 3.14),\
- "car_size": 0.2,\
+ self.config = {"state_size": 3,
+ "input_size": 2,
+ "dt": 0.01,
+ "max_step": 1000,
+ "input_lower_bound": (-1.5, -3.14),
+ "input_upper_bound": (1.5, 3.14),
+ "car_size": 0.2,
"wheel_size": (0.075, 0.015)
}
super(TwoWheeledTrackEnv, self).__init__(self.config)
-
+
@staticmethod
def make_road(linelength=3., circle_radius=1.):
""" make track
@@ -220,23 +225,23 @@ class TwoWheeledTrackEnv(Env):
# circle
circle_1_x, circle_1_y = circle(linelength/2., circle_radius,
- circle_radius, start=-np.pi/2., end=np.pi/2., n_point=50)
- circle_1 = np.stack((circle_1_x , circle_1_y), axis=1)
-
+ circle_radius, start=-np.pi/2., end=np.pi/2., n_point=50)
+ circle_1 = np.stack((circle_1_x, circle_1_y), axis=1)
+
circle_2_x, circle_2_y = circle(-linelength/2., circle_radius,
- circle_radius, start=np.pi/2., end=3*np.pi/2., n_point=50)
- circle_2 = np.stack((circle_2_x , circle_2_y), axis=1)
+ circle_radius, start=np.pi/2., end=3*np.pi/2., n_point=50)
+ circle_2 = np.stack((circle_2_x, circle_2_y), axis=1)
road_pos = np.concatenate((line_1, circle_1, line_2, circle_2), axis=0)
# calc road angle
road_diff = road_pos[1:] - road_pos[:-1]
- road_angle = np.arctan2(road_diff[:, 1], road_diff[:, 0])
+ road_angle = np.arctan2(road_diff[:, 1], road_diff[:, 0])
road_angle = np.concatenate((np.zeros(1), road_angle))
road = np.concatenate((road_pos, road_angle[:, np.newaxis]), axis=1)
- return np.tile(road, (3, 1))
+ return np.tile(road, (3, 1))
def reset(self, init_x=None):
""" reset state
@@ -246,7 +251,7 @@ class TwoWheeledTrackEnv(Env):
info (dict): information
"""
self.step_count = 0
-
+
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
@@ -254,7 +259,7 @@ class TwoWheeledTrackEnv(Env):
# goal
self.g_traj = self.make_road()
-
+
# clear memory
self.history_x = []
self.history_g_x = []
@@ -286,32 +291,32 @@ class TwoWheeledTrackEnv(Env):
# save history
self.history_x.append(next_x.flatten())
-
+
# update
self.curr_x = next_x.flatten()
# update costs
self.step_count += 1
return next_x.flatten(), costs, \
- self.step_count > self.config["max_step"], \
- {"goal_state" : self.g_traj}
-
+ self.step_count > self.config["max_step"], \
+ {"goal_state": self.g_traj}
+
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
""" plot cartpole object function
-
+
Args:
to_plot (axis or imgs): plotted objects
i (int): frame count
history_x (numpy.ndarray): history of state, shape(iters, state)
history_g_x (numpy.ndarray): history of goal state,
shape(iters, state)
-
+
Returns:
None or imgs : imgs order is ["cart_img", "pole_img"]
"""
if isinstance(to_plot, Axes):
imgs = {} # create new imgs
-
+
imgs["car"] = to_plot.plot([], [], c="k")[0]
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
@@ -333,9 +338,9 @@ class TwoWheeledTrackEnv(Env):
# set imgs
# car imgs
car_x, car_y, car_angle_x, car_angle_y, \
- left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
+ left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
self._plot_car(history_x[i])
-
+
to_plot["car"].set_data(car_x, car_y)
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
@@ -344,7 +349,7 @@ class TwoWheeledTrackEnv(Env):
# goal and trajs
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
-
+
def _plot_car(self, curr_x):
""" plot car fucntions
"""
@@ -352,31 +357,31 @@ class TwoWheeledTrackEnv(Env):
car_x, car_y, car_angle_x, car_angle_y = \
circle_with_angle(curr_x[0], curr_x[1],
self.config["car_size"], curr_x[2])
-
+
# left tire
- center_x = (self.config["car_size"] \
+ center_x = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
- center_y = (self.config["car_size"] \
+ * np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
+ center_y = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
-
+ * np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
+
left_tire_x, left_tire_y = \
- square(center_x, center_y,
+ square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
# right tire
- center_x = (self.config["car_size"] \
+ center_x = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
- center_y = (self.config["car_size"] \
+ * np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
+ center_y = (self.config["car_size"]
+ self.config["wheel_size"][1]) \
- * np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
-
+ * np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
+
right_tire_x, right_tire_y = \
- square(center_x, center_y,
+ square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
-
+
return car_x, car_y, car_angle_x, car_angle_y,\
- left_tire_x, left_tire_y,\
- right_tire_x, right_tire_y
\ No newline at end of file
+ left_tire_x, left_tire_y,\
+ right_tire_x, right_tire_y
diff --git a/PythonLinearNonlinearControl/helper.py b/PythonLinearNonlinearControl/helper.py
index 7fa2058..26844ef 100644
--- a/PythonLinearNonlinearControl/helper.py
+++ b/PythonLinearNonlinearControl/helper.py
@@ -7,6 +7,7 @@ import six
import pickle
from logging import DEBUG, basicConfig, getLogger, FileHandler, StreamHandler, Formatter, Logger
+
def make_logger(save_dir):
"""
Args:
@@ -21,7 +22,7 @@ def make_logger(save_dir):
# mypackage log level
logger = getLogger("PythonLinearNonlinearControl")
logger.setLevel(DEBUG)
-
+
# file handler
log_path = os.path.join(save_dir, "log.txt")
file_handler = FileHandler(log_path)
@@ -33,6 +34,7 @@ def make_logger(save_dir):
# sh_handler = StreamHandler()
# logger.addHandler(sh_handler)
+
def int_tuple(s):
""" transform str to tuple
Args:
@@ -42,6 +44,7 @@ def int_tuple(s):
"""
return tuple(int(i) for i in s.split(','))
+
def bool_flag(s):
""" transform str to bool flg
Args:
@@ -54,6 +57,7 @@ def bool_flag(s):
msg = 'Invalid value "%s" for bool flag (should be 0 or 1)'
raise ValueError(msg % s)
+
def file_exists(path):
""" Check file existence on given path
Args:
@@ -63,6 +67,7 @@ def file_exists(path):
"""
return os.path.exists(path)
+
def create_dir_if_not_exist(outdir):
""" Check directory existence and creates new directory if not exist
Args:
@@ -77,6 +82,7 @@ def create_dir_if_not_exist(outdir):
return
os.makedirs(outdir)
+
def write_text_to_file(file_path, data):
""" Write given text data to file
Args:
@@ -86,6 +92,7 @@ def write_text_to_file(file_path, data):
with open(file_path, 'w') as f:
f.write(data)
+
def read_text_from_file(file_path):
""" Read given file as text
Args:
@@ -96,6 +103,7 @@ def read_text_from_file(file_path):
with open(file_path, 'r') as f:
return f.read()
+
def save_pickle(file_path, data):
""" pickle given data to file
Args:
@@ -105,6 +113,7 @@ def save_pickle(file_path, data):
with open(file_path, 'wb') as f:
pickle.dump(data, f)
+
def load_pickle(file_path):
""" load pickled data from file
Args:
@@ -118,6 +127,7 @@ def load_pickle(file_path):
else:
return pickle.load(f, encoding='bytes')
+
def prepare_output_dir(base_dir, args, time_format='%Y-%m-%d-%H%M%S'):
""" prepare a directory with current datetime as name.
created directory contains the command and args when the script was called as text file.
@@ -144,4 +154,4 @@ def prepare_output_dir(base_dir, args, time_format='%Y-%m-%d-%H%M%S'):
argv = ' '.join(sys.argv)
write_text_to_file(argv_file_path, argv)
- return outdir
\ No newline at end of file
+ return outdir
diff --git a/PythonLinearNonlinearControl/models/cartpole.py b/PythonLinearNonlinearControl/models/cartpole.py
index db8ef61..cc9bfda 100644
--- a/PythonLinearNonlinearControl/models/cartpole.py
+++ b/PythonLinearNonlinearControl/models/cartpole.py
@@ -2,9 +2,11 @@ import numpy as np
from .model import Model
+
class CartPoleModel(Model):
""" cartpole model
"""
+
def __init__(self, config):
"""
"""
@@ -17,7 +19,7 @@ class CartPoleModel(Model):
def predict_next_state(self, curr_x, u):
""" predict next state
-
+
Args:
curr_x (numpy.ndarray): current state, shape(state_size, ) or
shape(pop_size, state_size)
@@ -31,59 +33,59 @@ class CartPoleModel(Model):
# x
d_x0 = curr_x[1]
# v_x
- d_x1 = (u[0] + self.mp * np.sin(curr_x[2]) \
- * (self.l * (curr_x[3]**2) \
- + self.g * np.cos(curr_x[2]))) \
- / (self.mc + self.mp * (np.sin(curr_x[2])**2))
+ d_x1 = (u[0] + self.mp * np.sin(curr_x[2])
+ * (self.l * (curr_x[3]**2)
+ + self.g * np.cos(curr_x[2]))) \
+ / (self.mc + self.mp * (np.sin(curr_x[2])**2))
# theta
d_x2 = curr_x[3]
# v_theta
- d_x3 = (-u[0] * np.cos(curr_x[2]) \
- - self.mp * self.l * (curr_x[3]**2) \
- * np.cos(curr_x[2]) * np.sin(curr_x[2]) \
+ d_x3 = (-u[0] * np.cos(curr_x[2])
+ - self.mp * self.l * (curr_x[3]**2)
+ * np.cos(curr_x[2]) * np.sin(curr_x[2])
- (self.mc + self.mp) * self.g * np.sin(curr_x[2])) \
- / (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
-
+ / (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
+
next_x = curr_x +\
- np.array([d_x0, d_x1, d_x2, d_x3]) * self.dt
-
+ np.array([d_x0, d_x1, d_x2, d_x3]) * self.dt
+
return next_x
elif len(u.shape) == 2:
# x
d_x0 = curr_x[:, 1]
# v_x
- d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2]) \
- * (self.l * (curr_x[:, 3]**2) \
- + self.g * np.cos(curr_x[:, 2]))) \
- / (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
+ d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2])
+ * (self.l * (curr_x[:, 3]**2)
+ + self.g * np.cos(curr_x[:, 2]))) \
+ / (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
# theta
d_x2 = curr_x[:, 3]
# v_theta
- d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2]) \
- - self.mp * self.l * (curr_x[:, 3]**2) \
- * np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2]) \
+ d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2])
+ - self.mp * self.l * (curr_x[:, 3]**2)
+ * np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2])
- (self.mc + self.mp) * self.g * np.sin(curr_x[:, 2])) \
- / (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
-
+ / (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
+
next_x = curr_x +\
- np.stack((d_x0, d_x1, d_x2, d_x3), axis=1) * self.dt
+ np.stack((d_x0, d_x1, d_x2, d_x3), axis=1) * self.dt
return next_x
-
+
def calc_f_x(self, xs, us, dt):
""" gradient of model with respect to the state in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_x (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size)
Notes:
This should be discrete form !!
- """
+ """
# get size
(_, state_size) = xs.shape
(pred_len, _) = us.shape
@@ -95,36 +97,36 @@ class CartPoleModel(Model):
# f_theta
tmp = ((self.mc + self.mp * np.sin(xs[:, 2])**2)**(-2)) \
- * self.mp * 2. * np.sin(xs[:, 2]) * np.cos(xs[:, 2])
+ * self.mp * 2. * np.sin(xs[:, 2]) * np.cos(xs[:, 2])
tmp2 = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
f_x[:, 1, 2] = - us[:, 0] * tmp \
- - tmp * (self.mp * np.sin(xs[:, 2]) \
- * (self.l * xs[:, 3]**2 \
+ - tmp * (self.mp * np.sin(xs[:, 2])
+ * (self.l * xs[:, 3]**2
+ self.g * np.cos(xs[:, 2]))) \
- + tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l \
- * xs[:, 3]**2 \
- + self.mp * self.g * (np.cos(xs[:, 2])**2 \
- - np.sin(xs[:, 2])**2))
+ + tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l
+ * xs[:, 3]**2
+ + self.mp * self.g * (np.cos(xs[:, 2])**2
+ - np.sin(xs[:, 2])**2))
f_x[:, 3, 2] = - 1. / self.l * tmp \
- * (-us[:, 0] * np.cos(xs[:, 2]) \
- - self.mp * self.l * (xs[:, 3]**2) \
- * np.cos(xs[:, 2]) * np.sin(xs[:, 2]) \
- - (self.mc + self.mp) * self.g * np.sin(xs[:, 2])) \
- + 1. / self.l * tmp2 \
- * (us[:, 0] * np.sin(xs[:, 2]) \
- - self.mp * self.l * xs[:, 3]**2 \
- * (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2) \
- - (self.mc + self.mp) \
- * self.g * np.cos(xs[:, 2]))
+ * (-us[:, 0] * np.cos(xs[:, 2])
+ - self.mp * self.l * (xs[:, 3]**2)
+ * np.cos(xs[:, 2]) * np.sin(xs[:, 2])
+ - (self.mc + self.mp) * self.g * np.sin(xs[:, 2])) \
+ + 1. / self.l * tmp2 \
+ * (us[:, 0] * np.sin(xs[:, 2])
+ - self.mp * self.l * xs[:, 3]**2
+ * (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2)
+ - (self.mc + self.mp)
+ * self.g * np.cos(xs[:, 2]))
# f_theta_dot
- f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2]) \
- * self.l * 2 * xs[:, 3])
+ f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2])
+ * self.l * 2 * xs[:, 3])
f_x[:, 2, 3] = np.ones(pred_len)
f_x[:, 3, 3] = 1. / self.l * tmp2 \
- * (-2. * self.mp * self.l * xs[:, 3] \
- * np.cos(xs[:, 2]) * np.sin(xs[:, 2]))
+ * (-2. * self.mp * self.l * xs[:, 3]
+ * np.cos(xs[:, 2]) * np.sin(xs[:, 2]))
return f_x * dt + np.eye(state_size) # to discrete form
@@ -133,25 +135,25 @@ class CartPoleModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_u (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size)
Notes:
This should be discrete form !!
- """
+ """
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_u = np.zeros((pred_len, state_size, input_size))
-
+
f_u[:, 1, 0] = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
-
+
f_u[:, 3, 0] = -np.cos(xs[:, 2]) \
- / (self.l * (self.mc \
- + self.mp * (np.sin(xs[:, 2])**2)))
+ / (self.l * (self.mc
+ + self.mp * (np.sin(xs[:, 2])**2)))
return f_u * dt # to discrete form
@@ -161,7 +163,7 @@ class CartPoleModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_xx (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size, state_size)
@@ -180,7 +182,7 @@ class CartPoleModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_ux (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, state_size)
@@ -199,7 +201,7 @@ class CartPoleModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_uu (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, input_size)
@@ -210,4 +212,4 @@ class CartPoleModel(Model):
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
- raise NotImplementedError
\ No newline at end of file
+ raise NotImplementedError
diff --git a/PythonLinearNonlinearControl/models/first_order_lag.py b/PythonLinearNonlinearControl/models/first_order_lag.py
index a4a97fb..f3ccec5 100644
--- a/PythonLinearNonlinearControl/models/first_order_lag.py
+++ b/PythonLinearNonlinearControl/models/first_order_lag.py
@@ -3,6 +3,7 @@ import scipy.linalg
from scipy import integrate
from .model import LinearModel
+
class FirstOrderLagModel(LinearModel):
""" first order lag model
Attributes:
@@ -10,13 +11,15 @@ class FirstOrderLagModel(LinearModel):
u (numpy.ndarray):
history_pred_xs (numpy.ndarray):
"""
+
def __init__(self, config, tau=0.63):
"""
Args:
tau (float): time constant
- """
+ """
# param
- self.A, self.B = self._to_state_space(tau, dt=config.DT) # discrete system
+ self.A, self.B = self._to_state_space(
+ tau, dt=config.DT) # discrete system
super(FirstOrderLagModel, self).__init__(self.A, self.B)
@staticmethod
@@ -31,21 +34,22 @@ class FirstOrderLagModel(LinearModel):
"""
# continuous
Ac = np.array([[-1./tau, 0., 0., 0.],
- [0., -1./tau, 0., 0.],
- [1., 0., 0., 0.],
- [0., 1., 0., 0.]])
+ [0., -1./tau, 0., 0.],
+ [1., 0., 0., 0.],
+ [0., 1., 0., 0.]])
Bc = np.array([[1./tau, 0.],
- [0., 1./tau],
- [0., 0.],
- [0., 0.]])
+ [0., 1./tau],
+ [0., 0.],
+ [0., 0.]])
# to discrete system
A = scipy.linalg.expm(dt*Ac)
# B = np.matmul(np.matmul(scipy.linalg.expm(Ac*dt)-scipy.linalg.expm(Ac*0.), np.linalg.inv(Ac)), Bc)
B = np.zeros_like(Bc)
for m in range(Bc.shape[0]):
for n in range(Bc.shape[1]):
- integrate_fn = lambda tau: np.matmul(scipy.linalg.expm(Ac*tau), Bc)[m, n]
+ def integrate_fn(tau): return np.matmul(
+ scipy.linalg.expm(Ac*tau), Bc)[m, n]
sol = integrate.quad(integrate_fn, 0, dt)
B[m, n] = sol[0]
- return A, B
\ No newline at end of file
+ return A, B
diff --git a/PythonLinearNonlinearControl/models/make_models.py b/PythonLinearNonlinearControl/models/make_models.py
index fb628ad..50f11f0 100644
--- a/PythonLinearNonlinearControl/models/make_models.py
+++ b/PythonLinearNonlinearControl/models/make_models.py
@@ -1,14 +1,18 @@
from .first_order_lag import FirstOrderLagModel
from .two_wheeled import TwoWheeledModel
from .cartpole import CartPoleModel
+from .nonlinear_sample_system import NonlinearSampleSystemModel
+
def make_model(args, config):
-
+
if args.env == "FirstOrderLag":
return FirstOrderLagModel(config)
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
return TwoWheeledModel(config)
elif args.env == "CartPole":
return CartPoleModel(config)
-
- raise NotImplementedError("There is not {} Model".format(args.env))
\ No newline at end of file
+ elif args.env == "NonlinearSample":
+ return NonlinearSampleSystemModel(config)
+
+ raise NotImplementedError("There is not {} Model".format(args.env))
diff --git a/PythonLinearNonlinearControl/models/model.py b/PythonLinearNonlinearControl/models/model.py
index 5eb2cb7..7e43234 100644
--- a/PythonLinearNonlinearControl/models/model.py
+++ b/PythonLinearNonlinearControl/models/model.py
@@ -1,8 +1,10 @@
import numpy as np
+
class Model():
""" base class of model
"""
+
def __init__(self):
"""
"""
@@ -22,17 +24,17 @@ class Model():
or shape(pop_size, pred_len+1, state_size)
"""
if len(us.shape) == 3:
- pred_xs =self._predict_traj_alltogether(curr_x, us)
+ pred_xs = self._predict_traj_alltogether(curr_x, us)
elif len(us.shape) == 2:
pred_xs = self._predict_traj(curr_x, us)
else:
raise ValueError("Invalid us")
-
+
return pred_xs
-
+
def _predict_traj(self, curr_x, us):
""" predict trajectories
-
+
Args:
curr_x (numpy.ndarray): current state, shape(state_size, )
us (numpy.ndarray): inputs, shape(pred_len, input_size)
@@ -53,10 +55,10 @@ class Model():
x = next_x
return pred_xs
-
+
def _predict_traj_alltogether(self, curr_x, us):
""" predict trajectories for all samples
-
+
Args:
curr_x (numpy.ndarray): current state, shape(pop_size, state_size)
us (numpy.ndarray): inputs, shape(pop_size, pred_len, input_size)
@@ -75,12 +77,12 @@ class Model():
# next_x.shape = (pop_size, state_size)
next_x = self.predict_next_state(x, us[t])
# update
- pred_xs = np.concatenate((pred_xs, next_x[np.newaxis, :, :]),\
- axis=0)
+ pred_xs = np.concatenate((pred_xs, next_x[np.newaxis, :, :]),
+ axis=0)
x = next_x
return np.transpose(pred_xs, (1, 0, 2))
-
+
def predict_next_state(self, curr_x, u):
""" predict next state
"""
@@ -99,23 +101,23 @@ class Model():
# get size
(pred_len, input_size) = us.shape
# pred final adjoint state
- lam = self.predict_terminal_adjoint_state(xs[-1],\
+ lam = self.predict_terminal_adjoint_state(xs[-1],
terminal_g_x=g_xs[-1])
lams = lam[np.newaxis, :]
- for t in range(pred_len-1, 0, -1):
+ for t in range(pred_len-1, 0, -1):
prev_lam = \
- self.predict_adjoint_state(lam, xs[t], us[t],\
+ self.predict_adjoint_state(lam, xs[t], us[t],
goal=g_xs[t], t=t)
# update
lams = np.concatenate((prev_lam[np.newaxis, :], lams), axis=0)
lam = prev_lam
-
+
return lams
def predict_adjoint_state(self, lam, x, u, goal=None, t=None):
""" predict adjoint states
-
+
Args:
lam (numpy.ndarray): adjoint state, shape(state_size, )
x (numpy.ndarray): state, shape(state_size, )
@@ -129,7 +131,7 @@ class Model():
def predict_terminal_adjoint_state(self, terminal_x, terminal_g_x=None):
""" predict terminal adjoint state
-
+
Args:
terminal_x (numpy.ndarray): terminal state, shape(state_size, )
terminal_g_x (numpy.ndarray): terminal goal state,
@@ -143,7 +145,7 @@ class Model():
@staticmethod
def calc_f_x(xs, us, dt):
""" gradient of model with respect to the state in batch form
- """
+ """
raise NotImplementedError("Implement gradient of model \
with respect to the state")
@@ -153,11 +155,11 @@ class Model():
"""
raise NotImplementedError("Implement gradient of model \
with respect to the input")
-
+
@staticmethod
def calc_f_xx(xs, us, dt):
""" hessian of model with respect to the state in batch form
- """
+ """
raise NotImplementedError("Implement hessian of model \
with respect to the state")
@@ -171,27 +173,29 @@ class Model():
@staticmethod
def calc_f_uu(xs, us, dt):
""" hessian of model with respect to the state in batch form
- """
+ """
raise NotImplementedError("Implement hessian of model \
with respect to the input")
+
class LinearModel(Model):
""" discrete linear model, x[k+1] = Ax[k] + Bu[k]
-
+
Attributes:
A (numpy.ndarray): shape(state_size, state_size)
B (numpy.ndarray): shape(state_size, input_size)
"""
+
def __init__(self, A, B):
"""
"""
super(LinearModel, self).__init__()
self.A = A
self.B = B
-
+
def predict_next_state(self, curr_x, u):
""" predict next state
-
+
Args:
curr_x (numpy.ndarray): current state, shape(state_size, ) or
shape(pop_size, state_size)
@@ -203,7 +207,7 @@ class LinearModel(Model):
"""
if len(u.shape) == 1:
next_x = np.matmul(self.A, curr_x[:, np.newaxis]) \
- + np.matmul(self.B, u[:, np.newaxis])
+ + np.matmul(self.B, u[:, np.newaxis])
return next_x.flatten()
@@ -211,7 +215,7 @@ class LinearModel(Model):
next_x = np.matmul(curr_x, self.A.T) + np.matmul(u, self.B.T)
return next_x
-
+
def calc_f_x(self, xs, us, dt):
""" gradient of model with respect to the state in batch form
@@ -223,7 +227,7 @@ class LinearModel(Model):
shape(pred_len, state_size, state_size)
Notes:
This should be discrete form !!
- """
+ """
# get size
(pred_len, _) = us.shape
@@ -240,7 +244,7 @@ class LinearModel(Model):
shape(pred_len, state_size, input_size)
Notes:
This should be discrete form !!
- """
+ """
# get size
(pred_len, input_size) = us.shape
@@ -283,7 +287,7 @@ class LinearModel(Model):
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
return f_ux
-
+
@staticmethod
def calc_f_uu(xs, us, dt):
""" hessian of model with respect to input in batch form
@@ -301,4 +305,4 @@ class LinearModel(Model):
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
- return f_uu
+ return f_uu
diff --git a/PythonLinearNonlinearControl/models/nonlinear_sample_system.py b/PythonLinearNonlinearControl/models/nonlinear_sample_system.py
new file mode 100644
index 0000000..490d2ba
--- /dev/null
+++ b/PythonLinearNonlinearControl/models/nonlinear_sample_system.py
@@ -0,0 +1,164 @@
+import numpy as np
+
+from .model import Model
+from ..common.utils import update_state_with_Runge_Kutta
+
+
+class NonlinearSampleSystemModel(Model):
+ """ nonlinear sample system model
+ """
+
+ def __init__(self, config):
+ """
+ """
+ super(NonlinearSampleSystemModel, self).__init__()
+ self.dt = config.DT
+
+ def predict_next_state(self, curr_x, u):
+ """ predict next state
+
+ Args:
+ curr_x (numpy.ndarray): current state, shape(state_size, ) or
+ shape(pop_size, state_size)
+ u (numpy.ndarray): input, shape(input_size, ) or
+ shape(pop_size, input_size)
+ Returns:
+ next_x (numpy.ndarray): next state, shape(state_size, ) or
+ shape(pop_size, state_size)
+ """
+ if len(u.shape) == 1:
+ func_1 = self._func_x_1
+ func_2 = self._func_x_2
+ functions = [func_1, func_2]
+ next_x = update_state_with_Runge_Kutta(
+ curr_x, u, functions, batch=False)
+ return next_x
+
+ elif len(u.shape) == 2:
+ def func_1(xs, us): return self._func_x_1(xs, us, batch=True)
+ def func_2(xs, us): return self._func_x_2(xs, us, batch=True)
+ functions = [func_1, func_2]
+ next_x = update_state_with_Runge_Kutta(
+ curr_x, u, functions, batch=True)
+
+ return next_x
+
+ def _func_x_1(self, x, u, batch=False):
+ if not batch:
+ x_dot = x[1]
+ else:
+ x_dot = x[:, 1]
+ return x_dot
+
+ def _func_x_2(self, x, u, batch=False):
+ if not batch:
+ x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
+ else:
+ x_dot = (1. - x[:, 0]**2 - x[:, 1]**2) * \
+ x[:, 1] - x[:, 0] + u[:, 0]
+ return x_dot
+
+ def calc_f_x(self, xs, us, dt):
+ """ gradient of model with respect to the state in batch form
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_x (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, state_size)
+
+ Notes:
+ This should be discrete form !!
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, _) = us.shape
+
+ f_x = np.zeros((pred_len, state_size, state_size))
+ f_x[:, 0, 1] = 1.
+ f_x[:, 1, 0] = 2. * xs[:, 0] * xs[:, 1] - 1.
+ f_x[:, 1, 1] = - 2. * xs[:, 1] * xs[:, 1] + \
+ (1. - xs[:, 0]**2 - xs[:, 1]**2)
+
+ return f_x * dt + np.eye(state_size) # to discrete form
+
+ def calc_f_u(self, xs, us, dt):
+ """ gradient of model with respect to the input in batch form
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_u (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, input_size)
+
+ Notes:
+ This should be discrete form !!
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, input_size) = us.shape
+
+ f_u = np.zeros((pred_len, state_size, input_size))
+
+ f_u[:, 1, 0] = 1.
+
+ return f_u * dt # to discrete form
+
+ def calc_f_xx(self, xs, us, dt):
+ """ hessian of model with respect to the state in batch form
+
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_xx (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, state_size, state_size)
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, _) = us.shape
+
+ f_xx = np.zeros((pred_len, state_size, state_size, state_size))
+
+ raise NotImplementedError
+
+ def calc_f_ux(self, xs, us, dt):
+ """ hessian of model with respect to state and input in batch form
+
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_ux (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, input_size, state_size)
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, input_size) = us.shape
+
+ f_ux = np.zeros((pred_len, state_size, input_size, state_size))
+
+ raise NotImplementedError
+
+ def calc_f_uu(self, xs, us, dt):
+ """ hessian of model with respect to input in batch form
+
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_uu (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, input_size, input_size)
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, input_size) = us.shape
+
+ f_uu = np.zeros((pred_len, state_size, input_size, input_size))
+
+ raise NotImplementedError
diff --git a/PythonLinearNonlinearControl/models/two_wheeled.py b/PythonLinearNonlinearControl/models/two_wheeled.py
index 3bd60d7..3a81ff5 100644
--- a/PythonLinearNonlinearControl/models/two_wheeled.py
+++ b/PythonLinearNonlinearControl/models/two_wheeled.py
@@ -2,9 +2,11 @@ import numpy as np
from .model import Model
+
class TwoWheeledModel(Model):
""" two wheeled model
"""
+
def __init__(self, config):
"""
"""
@@ -13,7 +15,7 @@ class TwoWheeledModel(Model):
def predict_next_state(self, curr_x, u):
""" predict next state
-
+
Args:
curr_x (numpy.ndarray): current state, shape(state_size, ) or
shape(pop_size, state_size)
@@ -50,21 +52,21 @@ class TwoWheeledModel(Model):
next_x = x_dot[:, :, 0] * self.dt + curr_x
return next_x
-
+
@staticmethod
def calc_f_x(xs, us, dt):
""" gradient of model with respect to the state in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_x (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size)
Notes:
This should be discrete form !!
- """
+ """
# get size
(_, state_size) = xs.shape
(pred_len, _) = us.shape
@@ -81,14 +83,14 @@ class TwoWheeledModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_u (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size)
Notes:
This should be discrete form !!
- """
+ """
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
@@ -107,7 +109,7 @@ class TwoWheeledModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_xx (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size, state_size)
@@ -130,7 +132,7 @@ class TwoWheeledModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_ux (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, state_size)
@@ -145,7 +147,7 @@ class TwoWheeledModel(Model):
f_ux[:, 1, 0, 2] = np.cos(xs[:, 2])
return f_ux * dt
-
+
@staticmethod
def calc_f_uu(xs, us, dt):
""" hessian of model with respect to input in batch form
@@ -153,7 +155,7 @@ class TwoWheeledModel(Model):
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
-
+
Return:
f_uu (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, input_size)
@@ -164,4 +166,4 @@ class TwoWheeledModel(Model):
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
- return f_uu * dt
\ No newline at end of file
+ return f_uu * dt
diff --git a/PythonLinearNonlinearControl/planners/closest_point_planner.py b/PythonLinearNonlinearControl/planners/closest_point_planner.py
index 291aff3..cf24a97 100644
--- a/PythonLinearNonlinearControl/planners/closest_point_planner.py
+++ b/PythonLinearNonlinearControl/planners/closest_point_planner.py
@@ -1,9 +1,11 @@
import numpy as np
from .planner import Planner
+
class ClosestPointPlanner(Planner):
""" This planner make goal state according to goal path
"""
+
def __init__(self, config):
"""
"""
@@ -24,7 +26,7 @@ class ClosestPointPlanner(Planner):
min_idx = np.argmin(np.linalg.norm(curr_x[:-1] - g_traj[:, :-1],
axis=1))
- start = (min_idx+self.n_ahead)
+ start = (min_idx+self.n_ahead)
if start > len(g_traj):
start = len(g_traj)
@@ -32,8 +34,8 @@ class ClosestPointPlanner(Planner):
if (min_idx+self.n_ahead+self.pred_len+1) > len(g_traj):
end = len(g_traj)
-
+
if abs(start - end) != self.pred_len + 1:
return np.tile(g_traj[-1], (self.pred_len+1, 1))
- return g_traj[start:end]
\ No newline at end of file
+ return g_traj[start:end]
diff --git a/PythonLinearNonlinearControl/planners/const_planner.py b/PythonLinearNonlinearControl/planners/const_planner.py
index a0569a2..caa8110 100644
--- a/PythonLinearNonlinearControl/planners/const_planner.py
+++ b/PythonLinearNonlinearControl/planners/const_planner.py
@@ -1,9 +1,11 @@
import numpy as np
from .planner import Planner
+
class ConstantPlanner(Planner):
""" This planner make constant goal state
"""
+
def __init__(self, config):
"""
"""
@@ -20,4 +22,4 @@ class ConstantPlanner(Planner):
Returns:
g_xs (numpy.ndarrya): goal state, shape(pred_len, state_size)
"""
- return np.tile(g_x, (self.pred_len+1, 1))
\ No newline at end of file
+ return np.tile(g_x, (self.pred_len+1, 1))
diff --git a/PythonLinearNonlinearControl/planners/make_planners.py b/PythonLinearNonlinearControl/planners/make_planners.py
index 9f18e51..eb77082 100644
--- a/PythonLinearNonlinearControl/planners/make_planners.py
+++ b/PythonLinearNonlinearControl/planners/make_planners.py
@@ -1,8 +1,9 @@
from .const_planner import ConstantPlanner
from .closest_point_planner import ClosestPointPlanner
+
def make_planner(args, config):
-
+
if args.env == "FirstOrderLag":
return ConstantPlanner(config)
elif args.env == "TwoWheeledConst":
@@ -11,5 +12,8 @@ def make_planner(args, config):
return ClosestPointPlanner(config)
elif args.env == "CartPole":
return ConstantPlanner(config)
-
- raise NotImplementedError("There is not {} Planner".format(args.planner_type))
\ No newline at end of file
+ elif args.env == "NonlinearSample":
+ return ConstantPlanner(config)
+
+ raise NotImplementedError(
+ "There is not {} Planner".format(args.planner_type))
diff --git a/PythonLinearNonlinearControl/planners/planner.py b/PythonLinearNonlinearControl/planners/planner.py
index 7e20b4f..c524ea7 100644
--- a/PythonLinearNonlinearControl/planners/planner.py
+++ b/PythonLinearNonlinearControl/planners/planner.py
@@ -1,8 +1,10 @@
import numpy as np
+
class Planner():
"""
"""
+
def __init__(self):
"""
"""
@@ -15,4 +17,4 @@ class Planner():
Returns:
g_xs (numpy.ndarrya): goal state, shape(pred_len, state_size)
"""
- raise NotImplementedError("Implement plan func")
\ No newline at end of file
+ raise NotImplementedError("Implement plan func")
diff --git a/PythonLinearNonlinearControl/plotters/animator.py b/PythonLinearNonlinearControl/plotters/animator.py
index 2260707..49a9d05 100644
--- a/PythonLinearNonlinearControl/plotters/animator.py
+++ b/PythonLinearNonlinearControl/plotters/animator.py
@@ -8,9 +8,11 @@ import matplotlib.animation as animation
logger = getLogger(__name__)
+
class Animator():
""" animation class
"""
+
def __init__(self, env, args=None):
"""
"""
@@ -34,7 +36,7 @@ class Animator():
# make fig
self.anim_fig = plt.figure()
- # axis
+ # axis
self.axis = self.anim_fig.add_subplot(111)
self.axis.set_aspect('equal', adjustable='box')
@@ -65,12 +67,12 @@ class Animator():
"""
# set up animation figures
self._setup()
- _update_img = lambda i: self._update_img(i, history_x, history_g_x)
+ def _update_img(i): return self._update_img(i, history_x, history_g_x)
# Set up formatting for the movie files
Writer = animation.writers['ffmpeg']
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
-
+
# call funcanimation
ani = FuncAnimation(
self.anim_fig,
@@ -79,6 +81,6 @@ class Animator():
# save animation
path = os.path.join(self.result_dir, self.controller_type,
"animation-" + self.env_name + ".mp4")
- logger.info("Saved Animation to {} ...".format(path))
+ logger.info("Saved Animation to {} ...".format(path))
ani.save(path, writer=writer)
diff --git a/PythonLinearNonlinearControl/plotters/plot_func.py b/PythonLinearNonlinearControl/plotters/plot_func.py
index 3d2a7de..d25e1c5 100644
--- a/PythonLinearNonlinearControl/plotters/plot_func.py
+++ b/PythonLinearNonlinearControl/plotters/plot_func.py
@@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
from ..helper import save_pickle, load_pickle
+
def plot_result(history, history_g=None, ylabel="x",
save_dir="./result", name="state_history"):
"""
@@ -28,14 +29,14 @@ def plot_result(history, history_g=None, ylabel="x",
def plot(axis, history, history_g=None):
axis.plot(range(iters), history, c="r", linewidth=3)
if history_g is not None:
- axis.plot(range(iters), history_g,\
+ axis.plot(range(iters), history_g,
c="b", linewidth=3, label="goal")
if i < size:
plot(axis1, history[:, i], history_g=history_g[:, i])
if i+1 < size:
plot(axis2, history[:, i+1], history_g=history_g[:, i+1])
- if i+2 < size:
+ if i+2 < size:
plot(axis3, history[:, i+2], history_g=history_g[:, i+2])
# save
@@ -47,6 +48,7 @@ def plot_result(history, history_g=None, ylabel="x",
axis1.legend(ncol=1, bbox_to_anchor=(0., 1.02, 1., 0.102), loc=3)
figure.savefig(path, bbox_inches="tight", pad_inches=0.05)
+
def plot_results(history_x, history_u, history_g=None, args=None):
"""
@@ -64,12 +66,13 @@ def plot_results(history_x, history_u, history_g=None, args=None):
controller_type = args.controller_type
plot_result(history_x, history_g=history_g, ylabel="x",
- name= env + "-state_history",
+ name=env + "-state_history",
save_dir="./result/" + controller_type)
plot_result(history_u, history_g=np.zeros_like(history_u), ylabel="u",
- name= env + "-input_history",
+ name=env + "-input_history",
save_dir="./result/" + controller_type)
+
def save_plot_data(history_x, history_u, history_g=None, args=None):
""" save plot data
@@ -98,6 +101,7 @@ def save_plot_data(history_x, history_u, history_g=None, args=None):
env + "-history_g.pkl")
save_pickle(path, history_g)
+
def load_plot_data(env, controller_type, result_dir="./result"):
"""
Args:
@@ -123,6 +127,7 @@ def load_plot_data(env, controller_type, result_dir="./result"):
return history_x, history_u, history_g
+
def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
save_dir="./result", name="state_history"):
"""
@@ -130,7 +135,7 @@ def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
history (numpy.ndarray): history, shape(iters, size)
"""
(_, iters, size) = histories.shape
-
+
for i in range(0, size, 2):
figure = plt.figure()
@@ -146,17 +151,17 @@ def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
axis.plot(range(iters), history,
linewidth=3, label=label, alpha=0.7, linestyle="dashed")
if history_g is not None:
- axis.plot(range(iters), history_g,\
+ axis.plot(range(iters), history_g,
c="b", linewidth=3)
if i < size:
for j, (history, history_g) \
- in enumerate(zip(histories, histories_g)):
+ in enumerate(zip(histories, histories_g)):
plot(axis1, history[:, i],
history_g=history_g[:, i], label=labels[j])
if i+1 < size:
for j, (history, history_g) in \
- enumerate(zip(histories, histories_g)):
+ enumerate(zip(histories, histories_g)):
plot(axis2, history[:, i+1],
history_g=history_g[:, i+1], label=labels[j])
diff --git a/PythonLinearNonlinearControl/plotters/plot_objs.py b/PythonLinearNonlinearControl/plotters/plot_objs.py
index 911cb5f..1e14bcb 100644
--- a/PythonLinearNonlinearControl/plotters/plot_objs.py
+++ b/PythonLinearNonlinearControl/plotters/plot_objs.py
@@ -5,9 +5,10 @@ import matplotlib.pyplot as plt
from ..common.utils import rotate_pos
+
def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
""" Create circle matrix
-
+
Args:
center_x (float): the center x position of the circle
center_y (float): the center y position of the circle
@@ -29,6 +30,7 @@ def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
return np.array(circle_xs), np.array(circle_ys)
+
def circle_with_angle(center_x, center_y, radius, angle):
""" Create circle matrix with angle line matrix
@@ -50,6 +52,7 @@ def circle_with_angle(center_x, center_y, radius, angle):
return circle_x, circle_y, angle_x, angle_y
+
def square(center_x, center_y, shape, angle):
""" Create square
@@ -74,9 +77,10 @@ def square(center_x, center_y, shape, angle):
trans_points = rotate_pos(square_xy, angle)
# translation
trans_points += np.array([center_x, center_y])
-
+
return trans_points[:, 0], trans_points[:, 1]
+
def square_with_angle(center_x, center_y, shape, angle):
""" Create square with angle line
@@ -96,4 +100,4 @@ def square_with_angle(center_x, center_y, shape, angle):
angle_x = np.array([center_x, center_x + np.cos(angle) * shape[0]])
angle_y = np.array([center_y, center_y + np.sin(angle) * shape[1]])
- return square_x, square_y, angle_x, angle_y
\ No newline at end of file
+ return square_x, square_y, angle_x, angle_y
diff --git a/PythonLinearNonlinearControl/runners/__init__.py b/PythonLinearNonlinearControl/runners/__init__.py
index 8fd5521..0406fea 100644
--- a/PythonLinearNonlinearControl/runners/__init__.py
+++ b/PythonLinearNonlinearControl/runners/__init__.py
@@ -1,2 +1,2 @@
from PythonLinearNonlinearControl.runners.runner \
- import ExpRunner # NOQA
\ No newline at end of file
+ import ExpRunner # NOQA
diff --git a/PythonLinearNonlinearControl/runners/make_runners.py b/PythonLinearNonlinearControl/runners/make_runners.py
index be08186..133ae06 100644
--- a/PythonLinearNonlinearControl/runners/make_runners.py
+++ b/PythonLinearNonlinearControl/runners/make_runners.py
@@ -1,4 +1,5 @@
from .runner import ExpRunner
+
def make_runner(args):
- return ExpRunner()
\ No newline at end of file
+ return ExpRunner()
diff --git a/PythonLinearNonlinearControl/runners/runner.py b/PythonLinearNonlinearControl/runners/runner.py
index 4ef0c6b..b83789d 100644
--- a/PythonLinearNonlinearControl/runners/runner.py
+++ b/PythonLinearNonlinearControl/runners/runner.py
@@ -4,9 +4,11 @@ import numpy as np
logger = getLogger(__name__)
+
class ExpRunner():
""" experiment runner
"""
+
def __init__(self):
"""
"""
@@ -46,6 +48,6 @@ class ExpRunner():
score += cost
step_count += 1
- logger.debug("Controller type = {}, Score = {}"\
+ logger.debug("Controller type = {}, Score = {}"
.format(controller, score))
- return np.array(history_x), np.array(history_u), np.array(history_g)
\ No newline at end of file
+ return np.array(history_x), np.array(history_u), np.array(history_g)
diff --git a/README.md b/README.md
index d03d02b..8016bdc 100644
--- a/README.md
+++ b/README.md
@@ -71,6 +71,7 @@ There are 4 example environments, "FirstOrderLag", "TwoWheeledConst", "TwoWheele
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
| Two wheeled System (Moving Goal) | x | ✓ | 3 | 2 |
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
+| Nonlinear Sample System Env | x | ✓ | 2 | 1 |
All states and inputs of environments are continuous.
**It should be noted that the algorithms for linear model could be applied to nonlinear enviroments if you have linealized the model of nonlinear environments.**
diff --git a/assets/nonlinear_sample_system.png b/assets/nonlinear_sample_system.png
new file mode 100644
index 0000000..95e0eb6
Binary files /dev/null and b/assets/nonlinear_sample_system.png differ
diff --git a/assets/nonlinear_sample_system_score.png b/assets/nonlinear_sample_system_score.png
new file mode 100644
index 0000000..26e8310
Binary files /dev/null and b/assets/nonlinear_sample_system_score.png differ
diff --git a/scripts/show_result.py b/scripts/show_result.py
index e54b9dc..f1fd300 100644
--- a/scripts/show_result.py
+++ b/scripts/show_result.py
@@ -6,7 +6,8 @@ import numpy as np
import matplotlib.pyplot as plt
from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \
- plot_multi_result
+ plot_multi_result
+
def run(args):
@@ -17,7 +18,7 @@ def run(args):
history_gs = None
# load data
- for controller in controllers:
+ for controller in controllers:
history_x, history_u, history_g = \
load_plot_data(args.env, controller,
result_dir=args.result_dir)
@@ -27,19 +28,20 @@ def run(args):
history_us = history_u[np.newaxis, :]
history_gs = history_g[np.newaxis, :]
continue
-
+
history_xs = np.concatenate((history_xs,
history_x[np.newaxis, :]), axis=0)
history_us = np.concatenate((history_us,
history_u[np.newaxis, :]), axis=0)
history_gs = np.concatenate((history_gs,
history_g[np.newaxis, :]), axis=0)
-
+
plot_multi_result(history_xs, histories_g=history_gs, labels=controllers,
ylabel="x")
plot_multi_result(history_us, histories_g=np.zeros_like(history_us),
- labels=controllers, ylabel="u", name="input_history")
+ labels=controllers, ylabel="u", name="input_history")
+
def main():
parser = argparse.ArgumentParser()
@@ -51,5 +53,6 @@ def main():
run(args)
+
if __name__ == "__main__":
- main()
\ No newline at end of file
+ main()
diff --git a/scripts/simple_run.py b/scripts/simple_run.py
index 2ef1fd8..d3dbffb 100644
--- a/scripts/simple_run.py
+++ b/scripts/simple_run.py
@@ -8,9 +8,10 @@ from PythonLinearNonlinearControl.models.make_models import make_model
from PythonLinearNonlinearControl.envs.make_envs import make_env
from PythonLinearNonlinearControl.runners.make_runners import make_runner
from PythonLinearNonlinearControl.plotters.plot_func import plot_results, \
- save_plot_data
+ save_plot_data
from PythonLinearNonlinearControl.plotters.animator import Animator
+
def run(args):
# logger
make_logger(args.result_dir)
@@ -18,23 +19,23 @@ def run(args):
# make envs
env = make_env(args)
- # make config
+ # make config
config = make_config(args)
# make planner
planner = make_planner(args, config)
-
+
# make model
model = make_model(args, config)
-
+
# make controller
controller = make_controller(args, config, model)
-
+
# make simulator
runner = make_runner(args)
# run experiment
- history_x, history_u, history_g = runner.run(env, controller, planner)
+ history_x, history_u, history_g = runner.run(env, controller, planner)
# plot results
plot_results(history_x, history_u, history_g=history_g, args=args)
@@ -44,17 +45,19 @@ def run(args):
animator = Animator(env, args=args)
animator.draw(history_x, history_g)
+
def main():
parser = argparse.ArgumentParser()
- parser.add_argument("--controller_type", type=str, default="CEM")
- parser.add_argument("--env", type=str, default="TwoWheeledTrack")
- parser.add_argument("--save_anim", type=bool_flag, default=1)
+ parser.add_argument("--controller_type", type=str, default="DDP")
+ parser.add_argument("--env", type=str, default="NonlinearSample")
+ parser.add_argument("--save_anim", type=bool_flag, default=0)
parser.add_argument("--result_dir", type=str, default="./result")
args = parser.parse_args()
run(args)
+
if __name__ == "__main__":
- main()
\ No newline at end of file
+ main()