From 17250480d7b299ffaa68ff7baa8a6ff7a5b67657 Mon Sep 17 00:00:00 2001 From: Shunichi09 Date: Fri, 17 May 2019 21:03:09 +0900 Subject: [PATCH] add nmpc newton --- nmpc/newton/README.md | 79 +++++ nmpc/newton/main_example.py | 647 ++++++++++++++++++++++++++++++++++++ 2 files changed, 726 insertions(+) create mode 100644 nmpc/newton/README.md create mode 100644 nmpc/newton/main_example.py diff --git a/nmpc/newton/README.md b/nmpc/newton/README.md new file mode 100644 index 0000000..a46901c --- /dev/null +++ b/nmpc/newton/README.md @@ -0,0 +1,79 @@ +# CGMRES method of Nonlinear Model Predictive Control +This program is about Continuous gmres method for NMPC +Although usually we have to calculate the partial differential of optimal matrix, it could be really complicated. +By using CGMRES, we can pass the calculating step and get the optimal input quickly. + +# Problem Formulation + +- **example** + +- model + + + +- evaluation function + + + + +- **two wheeled model** + +- model + + + +- evaluation function + + + + +if you want to see more detail about this methods, you should go https://qiita.com/MENDY/items/4108190a579395053924. +However, it is written in Japanese + +# Expected Results + +- example + +![Figure_1.png](https://qiita-image-store.s3.amazonaws.com/0/261584/3347fb3c-3fce-63fe-36d5-8a7bb053531a.png) + +- two wheeled model + +- trajectory + +![image.png](https://qiita-image-store.s3.amazonaws.com/0/261584/8e39150d-24ed-af13-51f0-0ca97cb5f5ec.png) + +- time history + +![Figure_1.png](https://qiita-image-store.s3.amazonaws.com/0/261584/e67794f3-e8ef-5162-ea84-eb6adefd4241.png) +![Figure_2.png](https://qiita-image-store.s3.amazonaws.com/0/261584/d74fa06d-2eae-5aea-4a33-6c63e284341e.png) + +# Usage + +- for example + +``` +$ python main_example.py +``` + +- for two wheeled + +``` +$ python main_two_wheeled.py +``` + +# Requirement + +- python3.5 or more +- numpy +- matplotlib + +# Reference +I`m sorry that main references are written in Japanese + +- main (commentary article) (Japanse) https://qiita.com/MENDY/items/4108190a579395053924 + +- Ohtsuka, T., & Fujii, H. A. (1997). Real-time Optimization Algorithm for Nonlinear Receding-horizon Control. Automatica, 33(6), 1147–1154. https://doi.org/10.1016/S0005-1098(97)00005-8 + +- 非線形最適制御入門(コロナ社) + +- 実時間最適化による制御の実応用(コロナ社) \ No newline at end of file diff --git a/nmpc/newton/main_example.py b/nmpc/newton/main_example.py new file mode 100644 index 0000000..06d8c17 --- /dev/null +++ b/nmpc/newton/main_example.py @@ -0,0 +1,647 @@ +import numpy as np +import matplotlib.pyplot as plt +import math + +class SampleSystem(): + """SampleSystem, this is the simulator + Attributes + ----------- + x_1 : float + system state 1 + x_2 : float + system state 2 + history_x_1 : list + time history of system state 1 (x_1) + history_x_2 : list + time history of system state 2 (x_2) + """ + def __init__(self, init_x_1=0., init_x_2=0.): + """ + Palameters + ----------- + init_x_1 : float, optional + initial value of x_1, default is 0. + init_x_2 : float, optional + initial value of x_2, default is 0. + """ + self.x_1 = init_x_1 + self.x_2 = init_x_2 + self.history_x_1 = [init_x_1] + self.history_x_2 = [init_x_2] + + def update_state(self, u, dt=0.01): + """ + Palameters + ------------ + u : float + input of system in some cases this means the reference + dt : float in seconds, optional + sampling time of simulation, default is 0.01 [s] + """ + # for theta 1, theta 1 dot, theta 2, theta 2 dot + k0 = [0.0 for _ in range(2)] + k1 = [0.0 for _ in range(2)] + k2 = [0.0 for _ in range(2)] + k3 = [0.0 for _ in range(2)] + + functions = [self._func_x_1, self._func_x_2] + + # solve Runge-Kutta + for i, func in enumerate(functions): + k0[i] = dt * func(self.x_1, self.x_2, u) + + for i, func in enumerate(functions): + k1[i] = dt * func(self.x_1 + k0[0]/2., self.x_2 + k0[1]/2., u) + + for i, func in enumerate(functions): + k2[i] = dt * func(self.x_1 + k1[0]/2., self.x_2 + k1[1]/2., u) + + for i, func in enumerate(functions): + k3[i] = dt * func(self.x_1 + k2[0], self.x_2 + k2[1], u) + + self.x_1 += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6. + self.x_2 += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6. + + # save + self.history_x_1.append(self.x_1) + self.history_x_2.append(self.x_2) + + def _func_x_1(self, y_1, y_2, u): + """ + Parameters + ------------ + y_1 : float + y_2 : float + u : float + system input + """ + y_dot = y_2 + return y_dot + + def _func_x_2(self, y_1, y_2, u): + """ + Parameters + ------------ + y_1 : float + y_2 : float + u : float + system input + """ + y_dot = (1. - y_1**2 - y_2**2) * y_2 - y_1 + u + return y_dot + + +class NMPCSimulatorSystem(): + """SimulatorSystem for nmpc, this is the simulator of nmpc + the reason why I seperate the real simulator and nmpc's simulator is sometimes the modeling error, disturbance can include in real simulator + Attributes + ----------- + + """ + def __init__(self): + """ + Parameters + ----------- + None + """ + pass + + def calc_predict_and_adjoint_state(self, x_1, x_2, us, N, dt): + """main + Parameters + ------------ + x_1 : float + current state + x_2 : float + current state + us : list of float + estimated optimal input Us for N steps + N : int + predict step + dt : float + sampling time + + Returns + -------- + x_1s : list of float + predicted x_1s for N steps + x_2s : list of float + predicted x_2s for N steps + lam_1s : list of float + adjoint state of x_1s, lam_1s for N steps + lam_2s : list of float + adjoint state of x_2s, lam_2s for N steps + """ + + x_1s, x_2s = self._calc_predict_states(x_1, x_2, us, N, dt) # by usin state equation + lam_1s, lam_2s = self._calc_adjoint_states(x_1s, x_2s, us, N, dt) # by using adjoint equation + + return x_1s, x_2s, lam_1s, lam_2s + + def _calc_predict_states(self, x_1, x_2, us, N, dt): + """ + Parameters + ------------ + x_1 : float + current state + x_2 : float + current state + us : list of float + estimated optimal input Us for N steps + N : int + predict step + dt : float + sampling time + + Returns + -------- + x_1s : list of float + predicted x_1s for N steps + x_2s : list of float + predicted x_2s for N steps + """ + # initial state + x_1s = [x_1] + x_2s = [x_2] + + for i in range(N): + temp_x_1, temp_x_2 = self._predict_state_with_oylar(x_1s[i], x_2s[i], us[i], dt) + x_1s.append(temp_x_1) + x_2s.append(temp_x_2) + + return x_1s, x_2s + + def _calc_adjoint_states(self, x_1s, x_2s, us, N, dt): + """ + Parameters + ------------ + x_1s : list of float + predicted x_1s for N steps + x_2s : list of float + predicted x_2s for N steps + us : list of float + estimated optimal input Us for N steps + N : int + predict step + dt : float + sampling time + + Returns + -------- + lam_1s : list of float + adjoint state of x_1s, lam_1s for N steps + lam_2s : list of float + adjoint state of x_2s, lam_2s for N steps + """ + # final state + # final_state_func + lam_1s = [x_1s[-1]] + lam_2s = [x_2s[-1]] + + for i in range(N-1, 0, -1): + temp_lam_1, temp_lam_2 = self._adjoint_state_with_oylar(x_1s[i], x_2s[i], lam_1s[0] ,lam_2s[0], us[i], dt) + lam_1s.insert(0, temp_lam_1) + lam_2s.insert(0, temp_lam_2) + + return lam_1s, lam_2s + + def final_state_func(self): + """this func usually need + """ + pass + + def _predict_state_with_oylar(self, x_1, x_2, u, dt): + """in this case this function is the same as simulator + Parameters + ------------ + x_1 : float + system state + x_2 : float + system state + u : float + system input + dt : float in seconds + sampling time + Returns + -------- + next_x_1 : float + next state, x_1 calculated by using state equation + next_x_2 : float + next state, x_2 calculated by using state equation + """ + k0 = [0. for _ in range(2)] + + functions = [self.func_x_1, self.func_x_2] + + for i, func in enumerate(functions): + k0[i] = dt * func(x_1, x_2, u) + + next_x_1 = x_1 + k0[0] + next_x_2 = x_2 + k0[1] + + return next_x_1, next_x_2 + + def func_x_1(self, y_1, y_2, u): + """calculating \dot{x_1} + Parameters + ------------ + y_1 : float + means x_1 + y_2 : float + means x_2 + u : float + means system input + Returns + --------- + y_dot : float + means \dot{x_1} + """ + y_dot = y_2 + return y_dot + + def func_x_2(self, y_1, y_2, u): + """calculating \dot{x_2} + Parameters + ------------ + y_1 : float + means x_1 + y_2 : float + means x_2 + u : float + means system input + Returns + --------- + y_dot : float + means \dot{x_2} + """ + y_dot = (1. - y_1**2 - y_2**2) * y_2 - y_1 + u + return y_dot + + def _adjoint_state_with_oylar(self, x_1, x_2, lam_1, lam_2, u, dt): + """ + Parameters + ------------ + x_1 : float + system state + x_2 : float + system state + lam_1 : float + adjoint state + lam_2 : float + adjoint state + u : float + system input + dt : float in seconds + sampling time + Returns + -------- + pre_lam_1 : float + pre, 1 step before lam_1 calculated by using adjoint equation + pre_lam_2 : float + pre, 1 step before lam_2 calculated by using adjoint equation + """ + k0 = [0. for _ in range(2)] + + functions = [self._func_lam_1, self._func_lam_2] + + for i, func in enumerate(functions): + k0[i] = dt * func(x_1, x_2, lam_1, lam_2, u) + + pre_lam_1 = lam_1 + k0[0] + pre_lam_2 = lam_2 + k0[1] + + return pre_lam_1, pre_lam_2 + + def _func_lam_1(self, y_1, y_2, y_3, y_4, u): + """calculating -\dot{lam_1} + Parameters + ------------ + y_1 : float + means x_1 + y_2 : float + means x_2 + y_3 : float + means lam_1 + y_4 : float + means lam_2 + u : float + means system input + Returns + --------- + y_dot : float + means -\dot{lam_1} + """ + y_dot = y_1 - (2. * y_1 * y_2 + 1.) * y_4 + return y_dot + + def _func_lam_2(self, y_1, y_2, y_3, y_4, u): + """calculating -\dot{lam_2} + Parameters + ------------ + y_1 : float + means x_1 + y_2 : float + means x_2 + y_3 : float + means lam_1 + y_4 : float + means lam_2 + u : float + means system input + Returns + --------- + y_dot : float + means -\dot{lam_2} + """ + y_dot = y_2 + y_3 + (-3. * (y_2**2) - y_1**2 + 1. ) * y_4 + return y_dot + + +def calc_numerical_gradient(f, x, shape): + """ + Parameters + ------------ + f : function + forward function of NN + x : numpy.ndarray + input + shape : tuple + jacobian shape + + Returns + --------- + grad : numpy.ndarray, shape is the same as shape + results of numercial gradient of the input + References + ----------- + - oreilly japan 0 から作るdeeplearning + https://github.com/oreilly-japan/deep-learning-from-scratch/blob/master/common/gradient.py + """ + # check condition + if not callable(f): + raise TypeError("f should be callable") + + if not (isinstance(x, list) or isinstance(x, np.ndarray)): + raise TypeError("x should be array-like") + + h = 1e-3 # 0.01 + grad = np.zeros(shape) + + for idx in range(x.size): + # save + tmp_val = x[idx] + + x[idx] = float(tmp_val) + h + fxh1 = f(x) # f(x+h) + + x[idx] = float(tmp_val) - h + fxh2 = f(x) # f(x-h) + + grad[:, idx] = (fxh1 - fxh2) / (2*h) + + x[idx] = tmp_val + + return np.array(grad) + +class NMPCControllerWithNewton(): + """ + Attributes + ------------ + zeta : float + gain of optimal answer stability + tf : float + predict time + alpha : float + gain of predict time + N : int + predicte step, discritize value + threshold : float + cgmres's threshold value + input_num : int + system input length, this should include dummy u and constraint variables + max_iteration : int + decide by the solved matrix size + simulator : NMPCSimulatorSystem class + us : list of float + estimated optimal system input + dummy_us : list of float + estimated dummy input + raws : list of float + estimated constraint variable + history_u : list of float + time history of actual system input + history_dummy_u : list of float + time history of actual dummy u + history_raw : list of float + time history of actual raw + history_f : list of float + time history of error of optimal + """ + def __init__(self): + """ + Parameters + ----------- + None + """ + # parameters + self.tf = 1. # 最終時間 + self.N = 10 # 分割数 + self.threshold = 0.0001 # break値 + + self.NUM_INPUT = 3 # dummy, 制約条件に対するrawにも合わせた入力の数 + self.Jacobian_size = self.NUM_INPUT * self.N + + # newton parameters + self.MAX_ITERATION = 100 + + # simulator + self.simulator = NMPCSimulatorSystem() + + # initial + self.us = np.zeros(self.N) + self.dummy_us = np.ones(self.N) * 0.25 + self.raws = np.ones(self.N) * 0.01 + + # for fig + self.history_u = [] + self.history_dummy_u = [] + self.history_raw = [] + self.history_f = [] + + def calc_input(self, x_1, x_2, time): + """ + Parameters + ------------ + x_1 : float + current state + x_2 : float + current state + time : float in seconds + now time + Returns + -------- + us : list of float + estimated optimal system input + """ + # calculating sampling time + dt = 0.01 + + # concat all us, shape (NUM_INPUT, N) + all_us = np.stack((self.us, self.dummy_us, self.raws)) + all_us = all_us.T.flatten() + + # Newton method + for i in range(self.MAX_ITERATION): + # check + # print("all_us = {}".format(all_us)) + # print("newton iteration in {}".format(i)) + # input() + + # calc all state + x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, self.us, self.N, dt) + + # F + F_hat = self._calc_f(x_1s, x_2s, lam_1s, lam_2s, all_us, self.N, dt) + + # judge + # print("F_hat = {}".format(F_hat)) + # print(np.linalg.norm(F_hat)) + if np.linalg.norm(F_hat) < self.threshold: + # print("break!!") + break + + grad_f = lambda all_us : self._calc_f(x_1s, x_2s, lam_1s, lam_2s, all_us, self.N, dt) + grads = calc_numerical_gradient(grad_f, all_us, (self.Jacobian_size, self.Jacobian_size)) + + # make jacobian and calc inverse of it + # all us + all_us = all_us - np.dot(np.linalg.inv(grads), F_hat) + + # update + self.us = all_us[::self.NUM_INPUT] + self.dummy_us = all_us[1::self.NUM_INPUT] + self.raws = all_us[2::self.NUM_INPUT] + + # final insert + self.us = all_us[::self.NUM_INPUT] + self.dummy_us = all_us[1::self.NUM_INPUT] + self.raws = all_us[2::self.NUM_INPUT] + + x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, self.us, self.N, dt) + + F = self._calc_f(x_1s, x_2s, lam_1s, lam_2s, all_us, self.N, dt) + + # print("check val of F = {0}".format(np.linalg.norm(F))) + # input() + + # for save + self.history_f.append(np.linalg.norm(F)) + self.history_u.append(self.us[0]) + self.history_dummy_u.append(self.dummy_us[0]) + self.history_raw.append(self.raws[0]) + + return self.us + + def _calc_f(self, x_1s, x_2s, lam_1s, lam_2s, all_us, N, dt): + """ + Parameters + ------------ + x_1s : list of float + predicted x_1s for N steps + x_2s : list of float + predicted x_2s for N steps + lam_1s : list of float + adjoint state of x_1s, lam_1s for N steps + lam_2s : list of float + adjoint state of x_2s, lam_2s for N steps + us : list of float + estimated optimal system input + dummy_us : list of float + estimated dummy input + raws : list of float + estimated constraint variable + N : int + predict time step + dt : float + sampling time of system + """ + F = [] + + us = all_us[::self.NUM_INPUT] + dummy_us = all_us[1::self.NUM_INPUT] + raws = all_us[2::self.NUM_INPUT] + + for i in range(N): + F.append(0.5 * us[i] + lam_2s[i] + 2. * raws[i] * us[i]) + F.append(-0.01 + 2. * raws[i] * dummy_us[i]) + F.append(us[i]**2 + dummy_us[i]**2 - 0.5**2) + + return np.array(F) + +def main(): + # simulation time + dt = 0.01 + iteration_time = 20. + iteration_num = int(iteration_time/dt) + + # plant + plant_system = SampleSystem(init_x_1=2., init_x_2=0.) + + # controller + controller = NMPCControllerWithNewton() + + # for i in range(iteration_num) + for i in range(1, iteration_num): + print("iteration = {}".format(i)) + time = float(i) * dt + x_1 = plant_system.x_1 + x_2 = plant_system.x_2 + # make input + us = controller.calc_input(x_1, x_2, time) + # update state + plant_system.update_state(us[0]) + + # figure + fig = plt.figure() + + x_1_fig = fig.add_subplot(321) + x_2_fig = fig.add_subplot(322) + u_fig = fig.add_subplot(323) + dummy_fig = fig.add_subplot(324) + raw_fig = fig.add_subplot(325) + f_fig = fig.add_subplot(326) + + x_1_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_1) + x_1_fig.set_xlabel("time [s]") + x_1_fig.set_ylabel("x_1") + + x_2_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_2) + x_2_fig.set_xlabel("time [s]") + x_2_fig.set_ylabel("x_2") + + u_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_u) + u_fig.set_xlabel("time [s]") + u_fig.set_ylabel("u") + + dummy_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_dummy_u) + dummy_fig.set_xlabel("time [s]") + dummy_fig.set_ylabel("dummy u") + + raw_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_raw) + raw_fig.set_xlabel("time [s]") + raw_fig.set_ylabel("raw") + + f_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_f) + f_fig.set_xlabel("time [s]") + f_fig.set_ylabel("optimal error") + + fig.tight_layout() + + plt.show() + + +if __name__ == "__main__": + main() + + +