This commit is contained in:
Shunichi09 2018-12-25 02:11:46 +09:00
parent 040f3a14e7
commit 20b9a9e7f4
4 changed files with 453 additions and 0 deletions

Binary file not shown.

63
mpc/main_example.py Normal file
View File

@ -0,0 +1,63 @@
import numpy as np
import matplotlib.pyplot as plt
import math
from mpc_func import MpcController
# from simulator_func import FirstOrderSystem
from control import matlab
def main():
dt = 0.01
simulation_time = 100 # in seconds
iteration_num = int(simulation_time / dt)
# you must be care about this matrix
# these A and B are for continuos system if you want to use discret system matrix please skip this step
tau = 0.53
A = np.array([[1./tau, 0., 0., 0.],
[0., 1./tau, 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.]])
B = np.array([[1./tau, 0.],
[0., 1./tau],
[0., 0.],
[0., 0.]])
C = np.eye(4)
D = np.zeros((4, 2))
# create system
sysc = matlab.ss(A, B, C, D)
# discrete system
sysd = matlab.c2d(sysc, dt)
Ad = sysd.A
Bd = sysd.B
Q = np.diag([1., 1., 1., 1.])
R = np.diag([1., 1.])
pre_step = 3
# make controller
controller = MpcController(Ad, Bd, Q, R, pre_step)
controller.initialize_controller()
# make simulator
# plant = FirstOrderSystem(tau)
"""
for i in range(iteration_num):
"""
# states = plant.states
# controller.calc_input
if __name__ == "__main__":
main()

126
mpc/mpc_func.py Normal file
View File

@ -0,0 +1,126 @@
import numpy as np
import matplotlib.pyplot as plt
import math
import copy
from scipy.optimize import minimize
class MpcController():
"""
Attributes
------------
"""
def __init__(self, A, B, Q, R, pre_step, input_upper=None, input_lower=None):
"""
"""
self.A = np.array(A)
self.B = np.array(B)
self.Q = np.array(Q)
self.R = np.array(R)
self.pre_step = pre_step
self.Qs = None
self.Rs = None
self.state_size = self.A.shape[0]
self.input_size = self.B.shape[1]
self.history_us = []
def initialize_controller(self):
"""
make matrix to calculate optimal controller
"""
A_factorials = [self.A]
self.phi_mat = copy.deepcopy(self.A)
for _ in range(self.pre_step - 1):
temp_mat = np.dot(A_factorials[-1], self.A)
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
A_factorials.append(temp_mat) # after we use this factorials
print("phi_mat = \n{0}".format(self.phi_mat))
self.gamma_mat = copy.deepcopy(self.B)
gammma_mat_temp = copy.deepcopy(self.B)
for i in range(self.pre_step - 1):
temp_1_mat = np.dot(A_factorials[i], self.B)
gammma_mat_temp = temp_1_mat + gammma_mat_temp
self.gamma_mat = np.vstack((self.gamma_mat, gammma_mat_temp))
print("gamma_mat = \n{0}".format(self.gamma_mat))
self.theta_mat = copy.deepcopy(self.gamma_mat)
for i in range(self.pre_step - 1):
temp_mat = np.zeros_like(self.gamma_mat)
temp_mat[int((i + 1)*self.state_size): , :] = self.gamma_mat[:-int((i + 1)*self.state_size) , :]
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
print("theta_mat = \n{0}".format(self.theta_mat))
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)])
self.Qs = np.diag(diag_Qs.flatten())
self.Rs = np.diag(diag_Rs.flatten())
print("Qs = {0}".format(self.Qs))
print("Rs = {0}".format(self.Rs))
def calc_input(self, states, references):
"""
Parameters
-----------
states : numpy.array
the size should have (state length * 1)
references :
the size should have (state length * pre_step)
"""
temp_1 = np.dot(self.phi_mat, states)
temp_2 = np.dot(self.gamma_mat, self.history_us[-1])
error = references - temp_1 - temp_2
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error) )
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
def optimized_func(dt_us):
"""
"""
return np.dot(dt_us.T, np.dot(H, dt_us)) - np.dot(G.T, dt_us)
init_dt_us = np.zeros(self.pre_step)
opt_result = minimize(optimized_func, init_dt_us)
opt_dt_us = opt_result
opt_us = opt_dt_us[0] + self.history_us[-1]
# save
self.history_us.append(opt_us)
return opt_us

264
mpc/simulator_func.py Normal file
View File

@ -0,0 +1,264 @@
import numpy as np
import matplotlib.pyplot as plt
import math
class FirstOrderSystem():
"""FirstOrderSystem
Attributes
-----------
state : float
system state, this system should have one input - one output
a : float
parameter of the system
b : float
parameter of the system
history_state : list
time history of state
"""
def __init__(self, a, b, init_state=0.0):
"""
Parameters
-----------
a : float
parameter of the system
b : float
parameter of the system
init_state : float, optional
initial state of system default is 0.0
"""
self.state = init_state
self.a = a
self.b = b
self.history_state = [init_state]
def update_state(self, u, dt=0.01):
"""calculating input
Parameters
------------
u : float
input of system in some cases this means the reference
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
# solve Runge-Kutta
k0 = dt * self._func(self.state, u)
k1 = dt * self._func(self.state + k0/2.0, u)
k2 = dt * self._func(self.state + k1/2.0, u)
k3 = dt * self._func(self.state + k2, u)
self.state += (k0 + 2 * k1 + 2 * k2 + k3) / 6.0
# for oylar
# self.state += k0
# save
self.history_state.append(self.state)
def _func(self, y, u):
"""
Parameters
------------
y : float
state of system
u : float
input of system in some cases this means the reference
"""
y_dot = -self.a * y + self.b * u
return y_dot
class LyapunovMRAC():
"""LyapunovMRAC
Attributes
-----------
input : float
system state, this system should have one input - one output
a : float
parameter of reference model
alpha_1 : float
parameter of the controller
alpha_2 : float
parameter of the controller
theta_1 : float
state of the controller
theta_2 : float
state of the controller
history_input : list
time history of input
"""
def __init__(self, g_1, g_2, init_theta_1=0.0, init_theta_2=0.0, init_input=0.0):
"""
Parameters
-----------
g_1 : float
parameter of the controller
g_2 : float
parameter of the controller
theta_1 : float, optional
state of the controller default is 0.0
theta_2 : float, optional
state of the controller default is 0.0
init_input : float, optional
initial input of controller default is 0.0
"""
self.input = init_input
# parameters
self.g_1 = g_1
self.g_2 = g_2
# states
self.theta_1 = init_theta_1
self.theta_2 = init_theta_2
self.history_input = [init_input]
def update_input(self, e, r, y, dt=0.01):
"""
Parameters
------------
e : float
error value of system
r : float
reference value
y : float
output the model value
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
# for theta 1, theta 1 dot, theta 2, theta 2 dot
k0 = [0.0 for _ in range(4)]
k1 = [0.0 for _ in range(4)]
k2 = [0.0 for _ in range(4)]
k3 = [0.0 for _ in range(4)]
functions = [self._func_theta_1, self._func_theta_2]
# solve Runge-Kutta
for i, func in enumerate(functions):
k0[i] = dt * func(self.theta_1, self.theta_2, e, r, y)
for i, func in enumerate(functions):
k1[i] = dt * func(self.theta_1 + k0[0]/2.0, self.theta_2 + k0[1]/2.0, e, r, y)
for i, func in enumerate(functions):
k2[i] = dt * func(self.theta_1 + k1[0]/2.0, self.theta_2 + k1[1]/2.0, e, r, y)
for i, func in enumerate(functions):
k3[i] = dt * func(self.theta_1 + k2[0], self.theta_2 + k2[1], e, r, y)
self.theta_1 += (k0[0] + 2 * k1[0] + 2 * k2[0] + k3[0]) / 6.0
self.theta_2 += (k0[1] + 2 * k1[1] + 2 * k2[1] + k3[1]) / 6.0
# for oylar
"""
self.theta_1 += k0[0]
self.u_1 += k0[1]
self.theta_2 += k0[2]
self.u_2 += k0[3]
"""
# calc input
self.input = self.theta_1 * r + self.theta_2 * y
# save
self.history_input.append(self.input)
def _func_theta_1(self, theta_1, theta_2, e, r, y):
"""
Parameters
------------
theta_1 : float
state of the controller
theta_2 : float
state of the controller
e : float
error
r : float
reference
y : float
output of system
"""
y_dot = self.g_1 * r * e
return y_dot
def _func_theta_2(self, theta_1, theta_2, e, r, y):
"""
Parameters
------------
Parameters
------------
theta_1 : float
state of the controller
theta_2 : float
state of the controller
e : float
error
r : float
reference
y : float
output of system
"""
y_dot = self.g_2 * y * e
return y_dot
def main():
# control plant
a = -0.5
b = 0.5
plant = FirstOrderSystem(a, b)
# reference model
a = 1.
b = 1.
reference_model = FirstOrderSystem(a, b)
# controller
g_1 = 5.
g_2 = 5.
controller = LyapunovMRAC(g_1, g_2)
simulation_time = 50 # in second
dt = 0.01
simulation_iterations = int(simulation_time / dt) # dt is 0.01
history_error = [0.0]
history_r = [0.0]
for i in range(1, simulation_iterations): # skip the first
# reference input
r = math.sin(dt * i)
# update reference
reference_model.update_state(r, dt=dt)
# update plant
plant.update_state(controller.input, dt=dt)
# calc error
e = reference_model.state - plant.state
y = plant.state
history_error.append(e)
history_r.append(r)
# make the gradient
controller.update_input(e, r, y, dt=dt)
# fig
plt.plot(np.arange(simulation_iterations)*dt, plant.history_state, label="plant y", linestyle="dashed")
plt.plot(np.arange(simulation_iterations)*dt, reference_model.history_state, label="model reference")
plt.plot(np.arange(simulation_iterations)*dt, history_error, label="error", linestyle="dashdot")
# plt.plot(range(simulation_iterations), history_r, label="error")
plt.xlabel("time [s]")
plt.ylabel("y")
plt.legend()
plt.show()
# input
# plt.plot(np.arange(simulation_iterations)*dt, controller.history_input)
# plt.show()
if __name__ == "__main__":
main()