add goal maker and dynamic main type
This commit is contained in:
parent
ce1f9f7973
commit
44da5d3515
|
@ -11,23 +11,33 @@ To solve the problem, we should apply the control methods which can treat the no
|
|||
|
||||
<a href="https://www.codecogs.com/eqnedit.php?latex=\frac{d}{dt}&space;\boldsymbol{X}=&space;\frac{d}{dt}&space;\begin{bmatrix}&space;x&space;\\&space;y&space;\\&space;\theta&space;\end{bmatrix}&space;=&space;\begin{bmatrix}&space;\cos(\theta)&space;&&space;0&space;\\&space;\sin(\theta)&space;&&space;0&space;\\&space;0&space;&&space;1&space;\\&space;\end{bmatrix}&space;\begin{bmatrix}&space;u_v&space;\\&space;u_\omega&space;\\&space;\end{bmatrix}&space;=&space;\boldsymbol{B}\boldsymbol{U}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\frac{d}{dt}&space;\boldsymbol{X}=&space;\frac{d}{dt}&space;\begin{bmatrix}&space;x&space;\\&space;y&space;\\&space;\theta&space;\end{bmatrix}&space;=&space;\begin{bmatrix}&space;\cos(\theta)&space;&&space;0&space;\\&space;\sin(\theta)&space;&&space;0&space;\\&space;0&space;&&space;1&space;\\&space;\end{bmatrix}&space;\begin{bmatrix}&space;u_v&space;\\&space;u_\omega&space;\\&space;\end{bmatrix}&space;=&space;\boldsymbol{B}\boldsymbol{U}" title="\frac{d}{dt} \boldsymbol{X}= \frac{d}{dt} \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} u_v \\ u_\omega \\ \end{bmatrix} = \boldsymbol{B}\boldsymbol{U}" /></a>
|
||||
|
||||
Nonliner Model Predictive Control is one of the famous methods, so I applied the method in the folder of this repository.
|
||||
(if you are interested, please look it)
|
||||
Nonliner Model Predictive Control is one of the famous methods, so I applied the method to two-wheeled robot which is included in the folder of this repository.
|
||||
(if you are interested, please go to nmpc/ folder of this repository)
|
||||
|
||||
NMPC is very effecitive method to solve nonlinear optimal control problem but it is a handcraft method.
|
||||
This program is about one more other methods to solve the nonlinear optimal control problem.
|
||||
|
||||
The method is iterative LQR.
|
||||
Iterative LQR is one of the DDP(differential dynamic programming) method.
|
||||
Recently, this method is used in IRL(inverse reinforcement learning), such as GPS(guided policy search)
|
||||
Iterative LQR is one of the DDP(differential dynamic programming) methods.
|
||||
Recently, this method is used in model-based RL(reinforcement learning).
|
||||
Although, this method cannot guarantee to obtain the global optimal answer, we could apply any model such as nonliner model or time-varing model even the model that expressed by NN.
|
||||
(Still we can only get approximate optimal anwser)
|
||||
|
||||
If you want to know more about the iLQR, please look the references.
|
||||
The paper and website is great.
|
||||
The paper and website are great.
|
||||
|
||||
# Usage
|
||||
|
||||
## static goal
|
||||
|
||||
```
|
||||
$ python3 main_static.py
|
||||
```
|
||||
|
||||
## dynamic goal
|
||||
|
||||
```
|
||||
$ python3 main_dynamic.py
|
||||
```
|
||||
|
||||
# Expected Results
|
||||
|
@ -35,10 +45,11 @@ The paper and website is great.
|
|||
- static goal
|
||||
|
||||
|
||||
|
||||
|
||||
- track the goal
|
||||
|
||||
|
||||
# Applied other model
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,70 @@
|
|||
import numpy as np
|
||||
import math
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def make_trajectory(goal_type, N):
|
||||
"""
|
||||
Parameters
|
||||
-------------
|
||||
goal_type : str
|
||||
goal type
|
||||
N : int
|
||||
length of reference trajectory
|
||||
Returns
|
||||
-----------
|
||||
ref_trajectory : numpy.ndarray, shape(N, STATE_SIZE)
|
||||
|
||||
Notes
|
||||
---------
|
||||
this function can only deal with the
|
||||
"""
|
||||
|
||||
if goal_type == "const":
|
||||
ref_trajectory = np.array([[5., 3., 0.]])
|
||||
|
||||
return ref_trajectory
|
||||
|
||||
if goal_type == "sin":
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class GoalMaker():
|
||||
"""
|
||||
Attributes
|
||||
-----------
|
||||
|
||||
"""
|
||||
|
||||
def __init_(self, goal_type="const", N=500, dt=0.01):
|
||||
"""
|
||||
"""
|
||||
self.N = N
|
||||
self.goal_type = goal_type
|
||||
self.dt = dt
|
||||
|
||||
self.ref_traj = None
|
||||
|
||||
def preprocess(self):
|
||||
"""preprocess of make goal
|
||||
|
||||
"""
|
||||
goal_type_list = ["const", "sin"]
|
||||
|
||||
if self.goal_type not in goal_type_list:
|
||||
raise ValueError("{0} is not in implemented goal type. please implement that!!".format(self.goal_type))
|
||||
|
||||
self.ref_traj = make_trajectory(self.goal_type)
|
||||
|
||||
def calc_goal(self, x):
|
||||
"""
|
||||
"""
|
||||
|
||||
|
||||
|
||||
return goal
|
||||
|
||||
|
230
iLQR/ilqr.py
230
iLQR/ilqr.py
|
@ -10,17 +10,36 @@ class iLQRController():
|
|||
|
||||
Attributes:
|
||||
------------
|
||||
|
||||
tN : int
|
||||
number of time step
|
||||
STATE_SIZE : int
|
||||
system state size
|
||||
INPUT_SIZE : int
|
||||
system input size
|
||||
dt : float
|
||||
sampling time
|
||||
max_iter : int
|
||||
number of max iteration
|
||||
lamb_factor : int
|
||||
lambda factor is that the adding value to make the matrix of Q _uu be positive
|
||||
lamb_max : float
|
||||
maximum lambda value to make the matrix of Q _uu be positive
|
||||
eps_converge : float
|
||||
threshold value of the iteration
|
||||
"""
|
||||
|
||||
def __init__(self, N=100, max_iter=400, dt=0.016):
|
||||
'''
|
||||
n int: length of the control sequence
|
||||
max_iter int: limit on number of optimization iterations
|
||||
'''
|
||||
self.old_target = [None, None]
|
||||
|
||||
self.tN = N # number of timesteps
|
||||
def __init__(self, N=100, max_iter=400, dt=0.01):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
N : int, optional
|
||||
number of time step, default is 100
|
||||
max_iter : int, optional
|
||||
number of max iteration, default is 400
|
||||
dt : float, optional
|
||||
sampling time, default is 0.01
|
||||
"""
|
||||
self.tN = N
|
||||
self.STATE_SIZE = 3
|
||||
self.INPUT_SIZE = 2
|
||||
self.dt = dt
|
||||
|
@ -28,52 +47,55 @@ class iLQRController():
|
|||
self.max_iter = max_iter
|
||||
self.lamb_factor = 10
|
||||
self.lamb_max = 1e4
|
||||
self.eps_converge = 0.001 # exit if relative improvement below threshold
|
||||
self.eps_converge = 0.001
|
||||
|
||||
def calc_input(self, car, x_target, changed=False):
|
||||
"""Generates a control signal to move the
|
||||
arm to the specified target.
|
||||
def calc_input(self, car, x_target):
|
||||
"""main loop of iterative LQR
|
||||
|
||||
car : the arm model being controlled NOTE:これが実際にコントロールされるやつ
|
||||
des list : the desired system position
|
||||
x_des np.array: desired task-space force,
|
||||
irrelevant here.
|
||||
Parameters
|
||||
-------------
|
||||
car : model class
|
||||
should have initialize state and update state
|
||||
x_target : numpy.ndarray, shape(STATE_SIZE, )
|
||||
target state
|
||||
|
||||
Returns
|
||||
-----------
|
||||
u : numpy.ndarray, shape(INPUT_SIZE, )
|
||||
|
||||
See also
|
||||
----------
|
||||
model.py
|
||||
"""
|
||||
|
||||
# if the target has changed, reset things and re-optimize
|
||||
# for this movement、目標が変わっている場合があるので確認
|
||||
if changed:
|
||||
self.reset(x_target)
|
||||
|
||||
# Reset k if at the end of the sequence
|
||||
if self.t >= self.tN - 1: # 最初のSTEPのみ計算
|
||||
self.t = 0
|
||||
# initialize
|
||||
self.reset(x_target)
|
||||
|
||||
# Compute the optimization
|
||||
"""
|
||||
NOTE : ここに条件を追加してもいいかもしれない、何サイクルも回す必要ないし、理想軌道とずれたらとか
|
||||
"""
|
||||
if self.t % 1 == 0:
|
||||
x0 = np.zeros(self.STATE_SIZE) # 初期化、速度は0
|
||||
x0 = np.zeros(self.STATE_SIZE)
|
||||
self.simulator, x0 = self.initialize_simulator(car)
|
||||
U = np.copy(self.U)
|
||||
self.X, self.U, cost = self.ilqr(x0, U)
|
||||
|
||||
self.simulator, x0 = self.initialize_simulator(car) # 前の時刻のものを確保
|
||||
|
||||
U = np.copy(self.U[self.t:]) # 初期入力かなこれ
|
||||
|
||||
self.X, self.U[self.t:], cost = self.ilqr(x0, U) # 入力列が入ってくる
|
||||
|
||||
self.u = self.U[self.t]
|
||||
|
||||
# move us a step forward in our control sequence
|
||||
self.t += 1
|
||||
self.u = self.U[self.t] # use only one time step (like MPC)
|
||||
|
||||
return self.u
|
||||
|
||||
def initialize_simulator(self, car):
|
||||
""" make a copy of the car model, to make sure that the
|
||||
actual car model isn't affected during the iLQR process
|
||||
""" make copy for controller
|
||||
Parameters
|
||||
-------------
|
||||
car : model class
|
||||
should have initialize state and update state
|
||||
|
||||
Returns
|
||||
----------
|
||||
simulator : model class
|
||||
should have initialize state and update state
|
||||
x0 : numpy.ndarray, shape(STATE_SIZE)
|
||||
initial state of the simulator
|
||||
"""
|
||||
# need to make a copy the real car
|
||||
# copy
|
||||
simulator = TwoWheeledCar(deepcopy(car.xs))
|
||||
|
||||
return simulator, deepcopy(simulator.xs)
|
||||
|
@ -84,16 +106,29 @@ class iLQRController():
|
|||
Parameters
|
||||
------------
|
||||
xs : shape(STATE_SIZE, tN + 1)
|
||||
predict state of the system
|
||||
us : shape(STATE_SIZE, tN)
|
||||
predict input of the system
|
||||
|
||||
Returns
|
||||
----------
|
||||
l : float
|
||||
stage cost
|
||||
l_x : numpy.ndarray, shape(STATE_SIZE, )
|
||||
differential of stage cost by x
|
||||
l_xx : numpy.ndarray, shape(STATE_SIZE, STATE_SIZE)
|
||||
second order differential of stage cost by x
|
||||
l_u : numpy.ndarray, shape(INPUT_SIZE, )
|
||||
differential of stage cost by u
|
||||
l_uu : numpy.ndarray, shape(INPUT_SIZE, INPUT_SIZE)
|
||||
second order differential of stage cost by uu
|
||||
l_ux numpy.ndarray, shape(INPUT_SIZE, STATE_SIZE)
|
||||
second order differential of stage cost by ux
|
||||
"""
|
||||
|
||||
"""
|
||||
NOTE : 拡張する説ありますがとりあえず飛ばします
|
||||
"""
|
||||
# total cost
|
||||
# quadratic のもののみ計算
|
||||
R_11 = 0.01 # terminal u thorottle cost weight
|
||||
R_22 = 0.01 # terminal u steering cost weight
|
||||
R_11 = 0.01 # terminal u_v cost weight
|
||||
R_22 = 0.01 # terminal u_th cost weight
|
||||
|
||||
l = np.dot(us.T, np.dot(np.diag([R_11, R_22]), us))
|
||||
|
||||
|
@ -110,7 +145,6 @@ class iLQRController():
|
|||
|
||||
l_ux = np.zeros((self.INPUT_SIZE, self.STATE_SIZE))
|
||||
|
||||
# returned in an array for easy multiplication by time step
|
||||
return l, l_x, l_xx, l_u, l_uu, l_ux
|
||||
|
||||
def cost_final(self, x):
|
||||
|
@ -118,12 +152,17 @@ class iLQRController():
|
|||
|
||||
Parameters
|
||||
-------------
|
||||
xs : numpy.ndarray, shape(STATE_SIZE,)
|
||||
x : numpy.ndarray, shape(STATE_SIZE,)
|
||||
predict state of the system
|
||||
|
||||
Notes :
|
||||
Returns
|
||||
---------
|
||||
l_x = np.zeros((self.STATE_SIZE))
|
||||
l_xx = np.zeros((self.STATE_SIZE, self.STATE_SIZE))
|
||||
l : float
|
||||
terminal cost
|
||||
l_x : numpy.ndarray, shape(STATE_SIZE, )
|
||||
differential of stage cost by x
|
||||
l_xx : numpy.ndarray, shape(STATE_SIZE, STATE_SIZE)
|
||||
second order differential of stage cost by x
|
||||
"""
|
||||
Q_11 = 1. # terminal x cost weight
|
||||
Q_22 = 1. # terminal y cost weight
|
||||
|
@ -161,6 +200,12 @@ class iLQRController():
|
|||
differential of the model /alpha X
|
||||
B : numpy.ndarray, shape(STATE_SIZE, INPUT_SIZE)
|
||||
differential of the model /alpha U
|
||||
|
||||
Notes
|
||||
-------
|
||||
in this case, I pre-calculated the differential of the model because the tow-wheeled model is not difficult to calculate the gradient.
|
||||
If you dont or cannot do that, you can use the numerical differentiation.
|
||||
However, sometimes the the numerical differentiation affect the accuracy of calculations.
|
||||
"""
|
||||
|
||||
A = np.zeros((self.STATE_SIZE, self.STATE_SIZE))
|
||||
|
@ -169,6 +214,8 @@ class iLQRController():
|
|||
B = np.zeros((self.STATE_SIZE, self.INPUT_SIZE))
|
||||
B_ideal = np.zeros((self.STATE_SIZE, self.INPUT_SIZE))
|
||||
|
||||
# if you want to use the numerical differentiation, please comment out this code
|
||||
"""
|
||||
eps = 1e-4 # finite differences epsilon
|
||||
|
||||
for ii in range(self.STATE_SIZE):
|
||||
|
@ -180,10 +227,13 @@ class iLQRController():
|
|||
dec_x[ii] -= eps
|
||||
state_dec,_ = self.plant_dynamics(dec_x, u.copy())
|
||||
A[:, ii] = (state_inc - state_dec) / (2 * eps)
|
||||
"""
|
||||
|
||||
A_ideal[0, 2] = -np.sin(x[2]) * u[0]
|
||||
A_ideal[1, 2] = np.cos(x[2]) * u[0]
|
||||
|
||||
# if you want to use the numerical differentiation, please comment out this code
|
||||
"""
|
||||
for ii in range(self.INPUT_SIZE):
|
||||
# calculate partial differential w.r.t. u
|
||||
inc_u = u.copy()
|
||||
|
@ -193,8 +243,8 @@ class iLQRController():
|
|||
dec_u[ii] -= eps
|
||||
state_dec,_ = self.plant_dynamics(x.copy(), dec_u)
|
||||
B[:, ii] = (state_inc - state_dec) / (2 * eps)
|
||||
"""
|
||||
|
||||
# calc by hand
|
||||
B_ideal[0, 0] = np.cos(x[2])
|
||||
B_ideal[1, 0] = np.sin(x[2])
|
||||
B_ideal[2, 1] = 1.
|
||||
|
@ -259,72 +309,43 @@ class iLQRController():
|
|||
|
||||
sim_new_trajectory = False
|
||||
|
||||
# optimize things!
|
||||
# initialize Vs with final state cost and set up k, K
|
||||
V = l[-1].copy() # value function
|
||||
V_x = l_x[-1].copy() # dV / dx
|
||||
V_xx = l_xx[-1].copy() # d^2 V / dx^2
|
||||
k = np.zeros((tN, self.INPUT_SIZE)) # feedforward modification
|
||||
K = np.zeros((tN, self.INPUT_SIZE, self.STATE_SIZE)) # feedback gain
|
||||
|
||||
# NOTE: they use V' to denote the value at the next timestep,
|
||||
# they have this redundant in their notation making it a
|
||||
# function of f(x + dx, u + du) and using the ', but it makes for
|
||||
# convenient shorthand when you drop function dependencies
|
||||
|
||||
# work backwards to solve for V, Q, k, and K
|
||||
for t in range(self.tN-2, -1, -1):
|
||||
|
||||
# NOTE: we're working backwards, so V_x = V_x[t+1] = V'_x
|
||||
|
||||
# 4a) Q_x = l_x + np.dot(f_x^T, V'_x)
|
||||
Q_x = l_x[t] + np.dot(f_x[t].T, V_x)
|
||||
# 4b) Q_u = l_u + np.dot(f_u^T, V'_x)
|
||||
Q_u = l_u[t] + np.dot(f_u[t].T, V_x)
|
||||
|
||||
# NOTE: last term for Q_xx, Q_uu, and Q_ux is vector / tensor product
|
||||
# but also note f_xx = f_uu = f_ux = 0 so they're all 0 anyways.
|
||||
|
||||
# 4c) Q_xx = l_xx + np.dot(f_x^T, np.dot(V'_xx, f_x)) + np.einsum(V'_x, f_xx)
|
||||
Q_xx = l_xx[t] + np.dot(f_x[t].T, np.dot(V_xx, f_x[t]))
|
||||
# 4d) Q_ux = l_ux + np.dot(f_u^T, np.dot(V'_xx, f_x)) + np.einsum(V'_x, f_ux)
|
||||
Q_ux = l_ux[t] + np.dot(f_u[t].T, np.dot(V_xx, f_x[t]))
|
||||
# 4e) Q_uu = l_uu + np.dot(f_u^T, np.dot(V'_xx, f_u)) + np.einsum(V'_x, f_uu)
|
||||
Q_uu = l_uu[t] + np.dot(f_u[t].T, np.dot(V_xx, f_u[t]))
|
||||
|
||||
# Calculate Q_uu^-1 with regularization term set by
|
||||
# Levenberg-Marquardt heuristic (at end of this loop)
|
||||
Q_uu_evals, Q_uu_evecs = np.linalg.eig(Q_uu)
|
||||
Q_uu_evals[Q_uu_evals < 0] = 0.0
|
||||
Q_uu_evals += lamb
|
||||
Q_uu_inv = np.dot(Q_uu_evecs, np.dot(np.diag(1.0/Q_uu_evals), Q_uu_evecs.T))
|
||||
|
||||
# 5b) k = -np.dot(Q_uu^-1, Q_u)
|
||||
k[t] = -np.dot(Q_uu_inv, Q_u)
|
||||
# 5b) K = -np.dot(Q_uu^-1, Q_ux)
|
||||
K[t] = -np.dot(Q_uu_inv, Q_ux)
|
||||
|
||||
# 6a) DV = -.5 np.dot(k^T, np.dot(Q_uu, k))
|
||||
# 6b) V_x = Q_x - np.dot(K^T, np.dot(Q_uu, k))
|
||||
V_x = Q_x - np.dot(K[t].T, np.dot(Q_uu, k[t]))
|
||||
# 6c) V_xx = Q_xx - np.dot(-K^T, np.dot(Q_uu, K))
|
||||
V_xx = Q_xx - np.dot(K[t].T, np.dot(Q_uu, K[t]))
|
||||
|
||||
U_new = np.zeros((tN, self.INPUT_SIZE))
|
||||
# calculate the optimal change to the control trajectory
|
||||
x_new = x0.copy() # 7a)
|
||||
x_new = x0.copy()
|
||||
for t in range(tN - 1):
|
||||
# use feedforward (k) and feedback (K) gain matrices
|
||||
# calculated from our value function approximation
|
||||
# to take a stab at the optimal control signal
|
||||
U_new[t] = U[t] + k[t] + np.dot(K[t], x_new - X[t]) # 7b)
|
||||
# given this u, find our next state
|
||||
_,x_new = self.plant_dynamics(x_new, U_new[t]) # 7c)
|
||||
U_new[t] = U[t] + k[t] + np.dot(K[t], x_new - X[t])
|
||||
_,x_new = self.plant_dynamics(x_new, U_new[t])
|
||||
|
||||
# evaluate the new trajectory
|
||||
X_new, cost_new = self.simulate(x0, U_new)
|
||||
|
||||
# Levenberg-Marquardt heuristic
|
||||
if cost_new < cost:
|
||||
# decrease lambda (get closer to Newton's method)
|
||||
lamb /= self.lamb_factor
|
||||
|
@ -336,8 +357,6 @@ class iLQRController():
|
|||
|
||||
sim_new_trajectory = True # do another rollout
|
||||
|
||||
# print("iteration = %d; Cost = %.4f;"%(ii, costnew) +
|
||||
# " logLambda = %.1f"%np.log(lamb))
|
||||
# check to see if update is small enough to exit
|
||||
if ii > 0 and ((abs(oldcost-cost)/cost) < self.eps_converge):
|
||||
print("Converged at iteration = %d; Cost = %.4f;"%(ii,cost_new) +
|
||||
|
@ -360,11 +379,20 @@ class iLQRController():
|
|||
""" simulate a single time step of the plant, from
|
||||
initial state x and applying control signal u
|
||||
|
||||
x np.array: the state of the system
|
||||
u np.array: the control signal
|
||||
"""
|
||||
Parameters
|
||||
--------------
|
||||
x : numpy.ndarray, shape(STATE_SIZE, )
|
||||
the state of the system
|
||||
u : numpy.ndarray, shape(INPUT_SIZE, )
|
||||
the control signal
|
||||
|
||||
# set the arm position to x
|
||||
Returns
|
||||
-----------
|
||||
xdot : numpy.ndarray, shape(STATE_SIZE, )
|
||||
the gradient of x
|
||||
x_next : numpy.ndarray, shape(STATE_SIZE, )
|
||||
next state of x
|
||||
"""
|
||||
self.simulator.initialize_state(x)
|
||||
|
||||
# apply the control signal
|
||||
|
@ -387,9 +415,21 @@ class iLQRController():
|
|||
""" do a rollout of the system, starting at x0 and
|
||||
applying the control sequence U
|
||||
|
||||
x0 np.array: the initial state of the system
|
||||
U np.array: the control sequence to apply
|
||||
Parameters
|
||||
----------
|
||||
x0 : numpy.ndarray, shape(STATE_SIZE, )
|
||||
the initial state of the system
|
||||
U : numpy.ndarray, shape(tN, INPUT_SIZE)
|
||||
the control sequence to apply
|
||||
|
||||
Returns
|
||||
---------
|
||||
X : numpy.ndarray, shape(tN, STATE_SIZE)
|
||||
the state sequence
|
||||
cost : float
|
||||
cost
|
||||
"""
|
||||
|
||||
tN = U.shape[0]
|
||||
X = np.zeros((tN, self.STATE_SIZE))
|
||||
X[0] = x0
|
||||
|
|
|
@ -0,0 +1,56 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
|
||||
from model import TwoWheeledCar
|
||||
from ilqr import iLQRController
|
||||
from animation import AnimDrawer
|
||||
|
||||
|
||||
def main():
|
||||
"""
|
||||
"""
|
||||
# iteration parameters
|
||||
NUM_ITERATIONS = 500
|
||||
dt = 0.01
|
||||
|
||||
# make plant
|
||||
init_x = np.array([0., 0., 0.5*math.pi])
|
||||
car = TwoWheeledCar(init_x)
|
||||
|
||||
# make goal
|
||||
goal_maker =
|
||||
|
||||
# controller
|
||||
controller = iLQRController()
|
||||
|
||||
|
||||
for iteration in range(NUM_ITERATIONS):
|
||||
print("iteration num = {} / {}".format(iteration, NUM_ITERATIONS))
|
||||
|
||||
u = controller.calc_input(car, target)
|
||||
car.update_state(u, dt) # update state
|
||||
|
||||
# figures and animation
|
||||
history_states = np.array(car.history_xs)
|
||||
|
||||
time_fig = plt.figure(figsize=(3, 4))
|
||||
|
||||
x_fig = time_fig.add_subplot(311)
|
||||
y_fig = time_fig.add_subplot(312)
|
||||
th_fig = time_fig.add_subplot(313)
|
||||
|
||||
time = len(history_states)
|
||||
x_fig.plot(np.arange(time), history_states[:, 0])
|
||||
y_fig.plot(np.arange(time), history_states[:, 1])
|
||||
th_fig.plot(np.arange(time), history_states[:, 2])
|
||||
|
||||
plt.show()
|
||||
|
||||
history_states = np.array(car.history_xs)
|
||||
|
||||
animdrawer = AnimDrawer([history_states, target])
|
||||
animdrawer.draw_anim()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -10,7 +10,7 @@ def main():
|
|||
"""
|
||||
"""
|
||||
# iteration parameters
|
||||
NUM_ITERARIONS = 500
|
||||
NUM_ITERATIONS = 500
|
||||
dt = 0.01
|
||||
|
||||
# make plant
|
||||
|
@ -24,20 +24,16 @@ def main():
|
|||
controller = iLQRController()
|
||||
|
||||
|
||||
for iteration in range(NUM_ITERARIONS):
|
||||
print("iteration num = {} / {}".format(iteration, NUM_ITERARIONS))
|
||||
for iteration in range(NUM_ITERATIONS):
|
||||
print("iteration num = {} / {}".format(iteration, NUM_ITERATIONS))
|
||||
|
||||
if iteration == 0:
|
||||
changed = True
|
||||
|
||||
u = controller.calc_input(car, target, changed=changed)
|
||||
|
||||
car.update_state(u, dt)
|
||||
u = controller.calc_input(car, target)
|
||||
car.update_state(u, dt) # update state
|
||||
|
||||
# figures and animation
|
||||
history_states = np.array(car.history_xs)
|
||||
|
||||
time_fig = plt.figure()
|
||||
time_fig = plt.figure(figsize=(3, 4))
|
||||
|
||||
x_fig = time_fig.add_subplot(311)
|
||||
y_fig = time_fig.add_subplot(312)
|
|
@ -75,52 +75,6 @@ class TwoWheeledCar():
|
|||
|
||||
return self.xs.copy()
|
||||
|
||||
def predict_state(self, init_xs, us, dt=0.01):
|
||||
"""make predict state by using optimal input made by MPC
|
||||
Paramaters
|
||||
-----------
|
||||
us : array-like, shape(2, N)
|
||||
optimal input made by MPC
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
## test
|
||||
# assert us.shape[0] == 2 and us.shape[1] == 15, "wrong shape"
|
||||
|
||||
xs = copy.deepcopy(init_xs)
|
||||
predict_xs = [copy.deepcopy(xs)]
|
||||
|
||||
for i in range(us.shape[1]):
|
||||
k0 = [0.0 for _ in range(self.NUM_STATE)]
|
||||
k1 = [0.0 for _ in range(self.NUM_STATE)]
|
||||
k2 = [0.0 for _ in range(self.NUM_STATE)]
|
||||
k3 = [0.0 for _ in range(self.NUM_STATE)]
|
||||
|
||||
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
|
||||
|
||||
# solve Runge-Kutta
|
||||
for i, func in enumerate(functions):
|
||||
k0[i] = dt * func(xs[0], xs[1], xs[2], us[0, i], us[1, i])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k1[i] = dt * func(xs[0] + k0[0]/2., xs[1] + k0[1]/2., xs[2] + k0[2]/2., us[0, i], us[1, i])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k2[i] = dt * func(xs[0] + k1[0]/2., xs[1] + k1[1]/2., xs[2] + k1[2]/2., us[0, i], us[1, i])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k3[i] = dt * func(xs[0] + k2[0], xs[1] + k2[1], xs[2] + k2[2], us[0, i], us[1, i])
|
||||
|
||||
xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
||||
xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
||||
xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
||||
|
||||
predict_xs.append(copy.deepcopy(xs))
|
||||
|
||||
self.history_predict_xs.append(np.array(predict_xs))
|
||||
|
||||
return np.array(predict_xs)
|
||||
|
||||
def initialize_state(self, init_xs):
|
||||
"""
|
||||
initialize the state
|
||||
|
|
Loading…
Reference in New Issue