diff --git a/Environments.md b/Environments.md
index 7799db1..70e8bcf 100644
--- a/Environments.md
+++ b/Environments.md
@@ -9,21 +9,39 @@
## FistOrderLagEnv
-System equations.
+### System equation.
You can set arbinatry time constant, tau. The default is 0.63 s
+### Cost.
+
+
+
+Q = diag[1., 1., 1., 1.],
+R = diag[1., 1.]
+
+X_g denote the goal states.
+
## TwoWheeledEnv
-System equations.
+### System equation.
+### Cost.
+
+
+
+Q = diag[5., 5., 1.],
+R = diag[0.1, 0.1]
+
+X_g denote the goal states.
+
## CatpoleEnv (Swing up)
-System equations.
+System equation.
@@ -31,4 +49,8 @@ You can set arbinatry parameters, mc, mp, l and g.
Default settings are as follows:
-mc = 1, mp = 0.2, l = 0.5, g = 9.8
\ No newline at end of file
+mc = 1, mp = 0.2, l = 0.5, g = 9.81
+
+### Cost.
+
+
\ No newline at end of file
diff --git a/PythonLinearNonlinearControl/configs/cartpole.py b/PythonLinearNonlinearControl/configs/cartpole.py
new file mode 100644
index 0000000..64a78db
--- /dev/null
+++ b/PythonLinearNonlinearControl/configs/cartpole.py
@@ -0,0 +1,218 @@
+import numpy as np
+
+class CartPoleConfigModule():
+ # parameters
+ ENV_NAME = "CartPole-v0"
+ TYPE = "Nonlinear"
+ TASK_HORIZON = 500
+ PRED_LEN = 50
+ STATE_SIZE = 4
+ INPUT_SIZE = 1
+ DT = 0.02
+ # cost parameters
+ R = np.diag([0.01])
+ # bounds
+ INPUT_LOWER_BOUND = np.array([-3.])
+ INPUT_UPPER_BOUND = np.array([3.])
+ # parameters
+ MP = 0.2
+ MC = 1.
+ L = 0.5
+ G = 9.81
+
+ def __init__(self):
+ """
+ """
+ # opt configs
+ self.opt_config = {
+ "Random": {
+ "popsize": 5000
+ },
+ "CEM": {
+ "popsize": 500,
+ "num_elites": 50,
+ "max_iters": 15,
+ "alpha": 0.3,
+ "init_var":9.,
+ "threshold":0.001
+ },
+ "MPPI":{
+ "beta" : 0.6,
+ "popsize": 5000,
+ "kappa": 0.9,
+ "noise_sigma": 0.5,
+ },
+ "MPPIWilliams":{
+ "popsize": 5000,
+ "lambda": 1.,
+ "noise_sigma": 0.9,
+ },
+ "iLQR":{
+ "max_iter": 500,
+ "init_mu": 1.,
+ "mu_min": 1e-6,
+ "mu_max": 1e10,
+ "init_delta": 2.,
+ "threshold": 1e-6,
+ },
+ "DDP":{
+ "max_iter": 500,
+ "init_mu": 1.,
+ "mu_min": 1e-6,
+ "mu_max": 1e10,
+ "init_delta": 2.,
+ "threshold": 1e-6,
+ },
+ "NMPC-CGMRES":{
+ },
+ "NMPC-Newton":{
+ },
+ }
+
+ @staticmethod
+ def input_cost_fn(u):
+ """ input cost functions
+ Args:
+ u (numpy.ndarray): input, shape(pred_len, input_size)
+ or shape(pop_size, pred_len, input_size)
+ Returns:
+ cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
+ shape(pop_size, pred_len, input_size)
+ """
+ return (u**2) * np.diag(CartPoleConfigModule.R)
+
+ @staticmethod
+ def state_cost_fn(x, g_x):
+ """ state cost function
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ or shape(pop_size, pred_len, state_size)
+ g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
+ or shape(pop_size, pred_len, state_size)
+ Returns:
+ cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
+ shape(pop_size, pred_len, 1)
+ """
+
+ if len(x.shape) > 2:
+ return (6. * (x[:, :, 0]**2) \
+ + 12. * ((np.cos(x[:, :, 2]) + 1.)**2) \
+ + 0.1 * (x[:, :, 1]**2) \
+ + 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
+
+ elif len(x.shape) > 1:
+ return (6. * (x[:, 0]**2) \
+ + 12. * ((np.cos(x[:, 2]) + 1.)**2) \
+ + 0.1 * (x[:, 1]**2) \
+ + 0.1 * (x[:, 3]**2))[:, np.newaxis]
+
+ return 6. * (x[0]**2) \
+ + 12. * ((np.cos(x[2]) + 1.)**2) \
+ + 0.1 * (x[1]**2) \
+ + 0.1 * (x[3]**2)
+
+ @staticmethod
+ def terminal_state_cost_fn(terminal_x, terminal_g_x):
+ """
+ Args:
+ terminal_x (numpy.ndarray): terminal state,
+ shape(state_size, ) or shape(pop_size, state_size)
+ terminal_g_x (numpy.ndarray): terminal goal state,
+ shape(state_size, ) or shape(pop_size, state_size)
+ Returns:
+ cost (numpy.ndarray): cost of state, shape(pred_len, ) or
+ shape(pop_size, pred_len)
+ """
+
+ if len(terminal_x.shape) > 1:
+ return (6. * (terminal_x[:, 0]**2) \
+ + 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2) \
+ + 0.1 * (terminal_x[:, 1]**2) \
+ + 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis]
+
+ return 6. * (terminal_x[0]**2) \
+ + 12. * ((np.cos(terminal_x[2]) + 1.)**2) \
+ + 0.1 * (terminal_x[1]**2) \
+ + 0.1 * (terminal_x[3]**2)
+
+ @staticmethod
+ def gradient_cost_fn_with_state(x, g_x, terminal=False):
+ """ gradient of costs with respect to the state
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
+
+ Returns:
+ l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
+ or shape(1, state_size)
+ """
+ if not terminal:
+ return None
+
+ return None
+
+ @staticmethod
+ def gradient_cost_fn_with_input(x, u):
+ """ gradient of costs with respect to the input
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ u (numpy.ndarray): goal state, shape(pred_len, input_size)
+
+ Returns:
+ l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
+ """
+ return None
+
+ @staticmethod
+ def hessian_cost_fn_with_state(x, g_x, terminal=False):
+ """ hessian costs with respect to the state
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
+
+ Returns:
+ l_xx (numpy.ndarray): gradient of cost,
+ shape(pred_len, state_size, state_size) or
+ shape(1, state_size, state_size) or
+ """
+ if not terminal:
+ (pred_len, _) = x.shape
+ return None
+
+ return None
+
+ @staticmethod
+ def hessian_cost_fn_with_input(x, u):
+ """ hessian costs with respect to the input
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ u (numpy.ndarray): goal state, shape(pred_len, input_size)
+
+ Returns:
+ l_uu (numpy.ndarray): gradient of cost,
+ shape(pred_len, input_size, input_size)
+ """
+ (pred_len, _) = u.shape
+
+ return None
+
+ @staticmethod
+ def hessian_cost_fn_with_input_state(x, u):
+ """ hessian costs with respect to the state and input
+
+ Args:
+ x (numpy.ndarray): state, shape(pred_len, state_size)
+ u (numpy.ndarray): goal state, shape(pred_len, input_size)
+
+ Returns:
+ l_ux (numpy.ndarray): gradient of cost ,
+ shape(pred_len, input_size, state_size)
+ """
+ (_, state_size) = x.shape
+ (pred_len, input_size) = u.shape
+
+ return np.zeros((pred_len, input_size, state_size))
\ No newline at end of file
diff --git a/PythonLinearNonlinearControl/configs/make_configs.py b/PythonLinearNonlinearControl/configs/make_configs.py
index 87e3709..984df94 100644
--- a/PythonLinearNonlinearControl/configs/make_configs.py
+++ b/PythonLinearNonlinearControl/configs/make_configs.py
@@ -1,5 +1,6 @@
from .first_order_lag import FirstOrderLagConfigModule
from .two_wheeled import TwoWheeledConfigModule
+from .cartpole import CartPoleConfigModule
def make_config(args):
"""
@@ -9,4 +10,6 @@ def make_config(args):
if args.env == "FirstOrderLag":
return FirstOrderLagConfigModule()
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeled":
- return TwoWheeledConfigModule()
\ No newline at end of file
+ return TwoWheeledConfigModule()
+ elif args.env == "CartPole":
+ return CartPoleConfigModule()
\ No newline at end of file
diff --git a/PythonLinearNonlinearControl/envs/cartpole.py b/PythonLinearNonlinearControl/envs/cartpole.py
index cd84313..de9becb 100644
--- a/PythonLinearNonlinearControl/envs/cartpole.py
+++ b/PythonLinearNonlinearControl/envs/cartpole.py
@@ -14,12 +14,16 @@ class CartPoleEnv(Env):
def __init__(self):
"""
"""
- self.config = {"state_size" : 4,\
- "input_size" : 1,\
- "dt" : 0.02,\
- "max_step" : 1000,\
- "input_lower_bound": None,\
- "input_upper_bound": None,
+ self.config = {"state_size" : 4,
+ "input_size" : 1,
+ "dt" : 0.02,
+ "max_step" : 500,
+ "input_lower_bound": [-3.],
+ "input_upper_bound": [3.],
+ "mp": 0.2,
+ "mc": 1.,
+ "l": 0.5,
+ "g": 9.81,
}
super(CartPoleEnv, self).__init__(self.config)
@@ -33,13 +37,13 @@ class CartPoleEnv(Env):
"""
self.step_count = 0
- self.curr_x = np.zeros(self.config["state_size"])
+ self.curr_x = np.array([0., 0., 0., 0.])
if init_x is not None:
self.curr_x = init_x
# goal
- self.g_x = np.array([0., 0., np.pi, 0.])
+ self.g_x = np.array([0., 0., -np.pi, 0.])
# clear memory
self.history_x = []
@@ -65,20 +69,43 @@ class CartPoleEnv(Env):
self.config["input_upper_bound"])
# step
- next_x = np.zeros(self.config["state_size"])
+ # x
+ d_x0 = self.curr_x[1]
+ # v_x
+ d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2]) \
+ * (self.config["l"] * (self.curr_x[3]**2) \
+ + self.config["g"] * np.cos(self.curr_x[2]))) \
+ / (self.config["mc"] + self.config["mp"] \
+ * (np.sin(self.curr_x[2])**2))
+ # theta
+ d_x2 = self.curr_x[3]
+
+ # v_theta
+ d_x3 = (-u[0] * np.cos(self.curr_x[2]) \
+ - self.config["mp"] * self.config["l"] * (self.curr_x[3]**2) \
+ * np.cos(self.curr_x[2]) * np.sin(self.curr_x[2]) \
+ - (self.config["mc"] + self.config["mp"]) * self.config["g"] \
+ * np.sin(self.curr_x[2])) \
+ / (self.config["l"] * (self.config["mc"] + self.config["mp"] \
+ * (np.sin(self.curr_x[2])**2)))
+
+ next_x = self.curr_x +\
+ np.array([d_x0, d_x1, d_x2, d_x3]) * self.config["dt"]
# TODO: costs
costs = 0.
costs += 0.1 * np.sum(u**2)
- costs += np.sum((self.curr_x - self.g_x)**2)
-
+ costs += 6. * self.curr_x[0]**2 \
+ + 12. * (np.cos(self.curr_x[2]) + 1.)**2 \
+ + 0.1 * self.curr_x[1]**2 \
+ + 0.1 * self.curr_x[3]**2
# save history
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
# update
- self.curr_x = next_x.flatten()
+ self.curr_x = next_x.flatten().copy()
# update costs
self.step_count += 1
diff --git a/PythonLinearNonlinearControl/envs/make_envs.py b/PythonLinearNonlinearControl/envs/make_envs.py
index fd3ea09..4b1adf7 100644
--- a/PythonLinearNonlinearControl/envs/make_envs.py
+++ b/PythonLinearNonlinearControl/envs/make_envs.py
@@ -1,6 +1,6 @@
from .first_order_lag import FirstOrderLagEnv
from .two_wheeled import TwoWheeledConstEnv
-from .cartpole import CartpoleEnv
+from .cartpole import CartPoleEnv
def make_env(args):
@@ -9,6 +9,6 @@ def make_env(args):
elif args.env == "TwoWheeledConst":
return TwoWheeledConstEnv()
elif args.env == "CartPole":
- return CartpoleEnv()
+ return CartPoleEnv()
raise NotImplementedError("There is not {} Env".format(args.env))
\ No newline at end of file
diff --git a/PythonLinearNonlinearControl/envs/two_wheeled.py b/PythonLinearNonlinearControl/envs/two_wheeled.py
index c5194cd..8be0d36 100644
--- a/PythonLinearNonlinearControl/envs/two_wheeled.py
+++ b/PythonLinearNonlinearControl/envs/two_wheeled.py
@@ -86,7 +86,7 @@ class TwoWheeledConstEnv(Env):
# TODO: costs
costs = 0.
costs += 0.1 * np.sum(u**2)
- costs += np.sum((self.curr_x - self.g_x)**2)
+ costs += np.sum(((self.curr_x - self.g_x)**2) * np.array([5., 5., 1.]))
# save history
self.history_x.append(next_x.flatten())
diff --git a/PythonLinearNonlinearControl/models/cartpole.py b/PythonLinearNonlinearControl/models/cartpole.py
new file mode 100644
index 0000000..42c6616
--- /dev/null
+++ b/PythonLinearNonlinearControl/models/cartpole.py
@@ -0,0 +1,186 @@
+import numpy as np
+
+from .model import Model
+
+class CartPoleModel(Model):
+ """ cartpole model
+ """
+ def __init__(self, config):
+ """
+ """
+ super(CartPoleModel, self).__init__()
+ self.dt = config.DT
+ self.mc = config.MC
+ self.mp = config.MP
+ self.l = config.L
+ self.g = config.G
+
+ def predict_next_state(self, curr_x, u):
+ """ predict next state
+
+ Args:
+ curr_x (numpy.ndarray): current state, shape(state_size, ) or
+ shape(pop_size, state_size)
+ u (numpy.ndarray): input, shape(input_size, ) or
+ shape(pop_size, input_size)
+ Returns:
+ next_x (numpy.ndarray): next state, shape(state_size, ) or
+ shape(pop_size, state_size)
+ """
+ if len(u.shape) == 1:
+ # x
+ d_x0 = curr_x[1]
+ # v_x
+ d_x1 = (u[0] + self.mp * np.sin(curr_x[2]) \
+ * (self.l * (curr_x[3]**2) \
+ + self.g * np.cos(curr_x[2]))) \
+ / (self.mc + self.mp * (np.sin(curr_x[2])**2))
+ # theta
+ d_x2 = curr_x[3]
+ # v_theta
+ d_x3 = (-u[0] * np.cos(curr_x[2]) \
+ - self.mp * self.l * (curr_x[3]**2) \
+ * np.cos(curr_x[2]) * np.sin(curr_x[2]) \
+ - (self.mc + self.mp) * self.g * np.sin(curr_x[2])) \
+ / (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
+
+ next_x = curr_x +\
+ np.array([d_x0, d_x1, d_x2, d_x3]) * self.dt
+
+ return next_x
+
+ elif len(u.shape) == 2:
+ # x
+ d_x0 = curr_x[:, 1]
+ # v_x
+ d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2]) \
+ * (self.l * (curr_x[:, 3]**2) \
+ + self.g * np.cos(curr_x[:, 2]))) \
+ / (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
+ # theta
+ d_x2 = curr_x[:, 3]
+ # v_theta
+ d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2]) \
+ - self.mp * self.l * (curr_x[:, 3]**2) \
+ * np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2]) \
+ - (self.mc + self.mp) * self.g * np.sin(curr_x[:, 2])) \
+ / (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
+
+ next_x = curr_x +\
+ np.stack((d_x0, d_x1, d_x2, d_x3), axis=1) * self.dt
+
+ return next_x
+
+ def calc_f_x(self, xs, us, dt):
+ """ gradient of model with respect to the state in batch form
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_x (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, state_size)
+
+ Notes:
+ This should be discrete form !!
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, _) = us.shape
+
+ f_x = np.zeros((pred_len, state_size, state_size))
+
+ f_x[:, 0, 2] = -np.sin(xs[:, 2]) * us[:, 0]
+ f_x[:, 1, 2] = np.cos(xs[:, 2]) * us[:, 0]
+
+ return f_x * dt + np.eye(state_size) # to discrete form
+
+ def calc_f_u(self, xs, us, dt):
+ """ gradient of model with respect to the input in batch form
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_u (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, input_size)
+
+ Notes:
+ This should be discrete form !!
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, input_size) = us.shape
+
+ f_u = np.zeros((pred_len, state_size, input_size))
+
+ f_u[:, 1, 0] = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
+
+ f_u[:, 3, 0] = -np.cos(xs[:, 2]) \
+ / (self.l * (self.mc \
+ + self.mp * (np.sin(xs[:, 2])**2)))
+
+ return f_u * dt # to discrete form
+
+ def calc_f_xx(self, xs, us, dt):
+ """ hessian of model with respect to the state in batch form
+
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_xx (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, state_size, state_size)
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, _) = us.shape
+
+ f_xx = np.zeros((pred_len, state_size, state_size, state_size))
+
+ f_xx[:, 0, 2, 2] = -np.cos(xs[:, 2]) * us[:, 0]
+ f_xx[:, 1, 2, 2] = -np.sin(xs[:, 2]) * us[:, 0]
+
+ return f_xx * dt
+
+ def calc_f_ux(self, xs, us, dt):
+ """ hessian of model with respect to state and input in batch form
+
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_ux (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, input_size, state_size)
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, input_size) = us.shape
+
+ f_ux = np.zeros((pred_len, state_size, input_size, state_size))
+
+ f_ux[:, 0, 0, 2] = -np.sin(xs[:, 2])
+ f_ux[:, 1, 0, 2] = np.cos(xs[:, 2])
+
+ return f_ux * dt
+
+ def calc_f_uu(self, xs, us, dt):
+ """ hessian of model with respect to input in batch form
+
+ Args:
+ xs (numpy.ndarray): state, shape(pred_len+1, state_size)
+ us (numpy.ndarray): input, shape(pred_len, input_size,)
+
+ Return:
+ f_uu (numpy.ndarray): gradient of model with respect to x,
+ shape(pred_len, state_size, input_size, input_size)
+ """
+ # get size
+ (_, state_size) = xs.shape
+ (pred_len, input_size) = us.shape
+
+ f_uu = np.zeros((pred_len, state_size, input_size, input_size))
+
+ return f_uu * dt
\ No newline at end of file
diff --git a/PythonLinearNonlinearControl/models/make_models.py b/PythonLinearNonlinearControl/models/make_models.py
index 7688f93..fcb29ae 100644
--- a/PythonLinearNonlinearControl/models/make_models.py
+++ b/PythonLinearNonlinearControl/models/make_models.py
@@ -1,5 +1,6 @@
from .first_order_lag import FirstOrderLagModel
from .two_wheeled import TwoWheeledModel
+from .cartpole import CartPoleModel
def make_model(args, config):
@@ -7,5 +8,7 @@ def make_model(args, config):
return FirstOrderLagModel(config)
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeled":
return TwoWheeledModel(config)
+ elif args.env == "CartPole":
+ return CartPoleModel(config)
- raise NotImplementedError("There is not {} Model".format(args.env))
+ raise NotImplementedError("There is not {} Model".format(args.env))
\ No newline at end of file
diff --git a/README.md b/README.md
index 7c1e73d..b177720 100644
--- a/README.md
+++ b/README.md
@@ -15,7 +15,7 @@ PythonLinearNonLinearControl is a library implementing the linear and nonlinear
| Linear Model Predictive Control (MPC) | ✓ | x | x | x | x |
| Cross Entropy Method (CEM) | ✓ | ✓ | x | x | x |
| Model Preidictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x |
-| Model Preidictive Path Integral Control of Williams (MPPIWilliams) | ✓ | ✓ | x | x | x |
+| Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x |
| Random Shooting Method (Random) | ✓ | ✓ | x | x | x |
| Iterative LQR (iLQR) | x | ✓ | x | ✓ | x |
| Differential Dynamic Programming (DDP) | x | ✓ | x | ✓ | ✓ |
@@ -34,7 +34,7 @@ Following algorithms are implemented in PythonLinearNonlinearControl
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
- [script](PythonLinearNonlinearControl/controllers/cem.py)
-- [Model Preidictive Path Integral Control Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
+- [Model Preidictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
- [script](PythonLinearNonlinearControl/controllers/mppi.py)
- [Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
@@ -71,7 +71,7 @@ Following algorithms are implemented in PythonLinearNonlinearControl
All states and inputs of environments are continuous.
**It should be noted that the algorithms for linear model could be applied to nonlinear enviroments if you have linealized the model of nonlinear environments.**
-You could know abount out environmets more in [Environments.md](Environments.md)
+You could know abount our environmets more in [Environments.md](Environments.md)
# Usage
diff --git a/assets/cartpole_score.png b/assets/cartpole_score.png
new file mode 100644
index 0000000..ef4d286
Binary files /dev/null and b/assets/cartpole_score.png differ
diff --git a/assets/quadratic_score.png b/assets/quadratic_score.png
new file mode 100644
index 0000000..7202879
Binary files /dev/null and b/assets/quadratic_score.png differ
diff --git a/scripts/simple_run.py b/scripts/simple_run.py
index b5af782..25f828c 100644
--- a/scripts/simple_run.py
+++ b/scripts/simple_run.py
@@ -42,9 +42,9 @@ def run(args):
def main():
parser = argparse.ArgumentParser()
- parser.add_argument("--controller_type", type=str, default="MPPIWilliams")
+ parser.add_argument("--controller_type", type=str, default="CEM")
parser.add_argument("--planner_type", type=str, default="const")
- parser.add_argument("--env", type=str, default="FirstOrderLag")
+ parser.add_argument("--env", type=str, default="TwoWheeledConst")
parser.add_argument("--result_dir", type=str, default="./result")
args = parser.parse_args()
diff --git a/tests/configs/test_cartpole.py b/tests/configs/test_cartpole.py
new file mode 100644
index 0000000..6f74321
--- /dev/null
+++ b/tests/configs/test_cartpole.py
@@ -0,0 +1,31 @@
+import pytest
+import numpy as np
+
+from PythonLinearNonlinearControl.configs.cartpole \
+ import CartPoleConfigModule
+
+class TestCalcCost():
+ def test_calc_costs(self):
+ # make config
+ config = CartPoleConfigModule()
+ # set
+ pred_len = 5
+ state_size = 4
+ input_size = 1
+ pop_size = 2
+ pred_xs = np.ones((pop_size, pred_len, state_size))
+ g_xs = np.ones((pop_size, pred_len, state_size)) * 0.5
+ input_samples = np.ones((pop_size, pred_len, input_size)) * 0.5
+
+ costs = config.input_cost_fn(input_samples)
+
+ assert costs.shape == (pop_size, pred_len, input_size)
+
+ costs = config.state_cost_fn(pred_xs, g_xs)
+
+ assert costs.shape == (pop_size, pred_len, 1)
+
+ costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
+ g_xs[:, -1, :])
+
+ assert costs.shape == (pop_size, 1)
\ No newline at end of file
diff --git a/tests/configs/test_two_wheeled.py b/tests/configs/test_two_wheeled.py
new file mode 100644
index 0000000..fb9cb7c
--- /dev/null
+++ b/tests/configs/test_two_wheeled.py
@@ -0,0 +1,34 @@
+import pytest
+import numpy as np
+
+from PythonLinearNonlinearControl.configs.two_wheeled \
+ import TwoWheeledConfigModule
+
+class TestCalcCost():
+ def test_calc_costs(self):
+ # make config
+ config = TwoWheeledConfigModule()
+ # set
+ pred_len = 5
+ state_size = 3
+ input_size = 2
+ pop_size = 2
+ pred_xs = np.ones((pop_size, pred_len, state_size))
+ g_xs = np.ones((pop_size, pred_len, state_size)) * 0.5
+ input_samples = np.ones((pop_size, pred_len, input_size)) * 0.5
+
+ costs = config.input_cost_fn(input_samples)
+ expected_costs = np.ones((pop_size, pred_len, input_size))*0.5
+
+ assert costs == pytest.approx(expected_costs**2 * np.diag(config.R))
+
+ costs = config.state_cost_fn(pred_xs, g_xs)
+ expected_costs = np.ones((pop_size, pred_len, state_size))*0.5
+
+ assert costs == pytest.approx(expected_costs**2 * np.diag(config.Q))
+
+ costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
+ g_xs[:, -1, :])
+ expected_costs = np.ones((pop_size, state_size))*0.5
+
+ assert costs == pytest.approx(expected_costs**2 * np.diag(config.Sf))
\ No newline at end of file
diff --git a/tests/env/test_cartpole.py b/tests/env/test_cartpole.py
new file mode 100644
index 0000000..7b726bc
--- /dev/null
+++ b/tests/env/test_cartpole.py
@@ -0,0 +1,73 @@
+import pytest
+import numpy as np
+
+from PythonLinearNonlinearControl.envs.cartpole import CartPoleEnv
+
+class TestCartPoleEnv():
+ """
+ """
+ def test_step(self):
+ env = CartPoleEnv()
+
+ curr_x = np.ones(4)
+ curr_x[2] = np.pi / 6.
+
+ env.reset(init_x=curr_x)
+
+ u = np.ones(1)
+
+ next_x, _, _, _ = env.step(u)
+
+ d_x0 = curr_x[1]
+ d_x1 = (1. + env.config["mp"] * np.sin(np.pi / 6.) \
+ * (env.config["l"] * (1.**2) \
+ + env.config["g"] * np.cos(np.pi / 6.))) \
+ / (env.config["mc"] + env.config["mp"] * np.sin(np.pi / 6.)**2)
+ d_x2 = curr_x[3]
+ d_x3 = (-1. * np.cos(np.pi / 6.) \
+ - env.config["mp"] * env.config["l"] * (1.**2) \
+ * np.cos(np.pi / 6.) * np.sin(np.pi / 6.) \
+ - (env.config["mp"] + env.config["mc"]) * env.config["g"] \
+ * np.sin(np.pi / 6.)) \
+ / (env.config["l"] \
+ * (env.config["mc"] \
+ + env.config["mp"] * np.sin(np.pi / 6.)**2))
+
+ expected = np.array([d_x0, d_x1, d_x2, d_x3]) * env.config["dt"] \
+ + curr_x
+
+ assert next_x == pytest.approx(expected, abs=1e-5)
+
+ def test_bound_step(self):
+ env = CartPoleEnv()
+
+ curr_x = np.ones(4)
+ curr_x[2] = np.pi / 6.
+
+ env.reset(init_x=curr_x)
+
+ u = np.ones(1) * 1e3
+
+ next_x, _, _, _ = env.step(u)
+
+ u = env.config["input_upper_bound"][0]
+
+ d_x0 = curr_x[1]
+ d_x1 = (u + env.config["mp"] * np.sin(np.pi / 6.) \
+ * (env.config["l"] * (1.**2) \
+ + env.config["g"] * np.cos(np.pi / 6.))) \
+ / (env.config["mc"] + env.config["mp"] * np.sin(np.pi / 6.)**2)
+ d_x2 = curr_x[3]
+ d_x3 = (-u * np.cos(np.pi / 6.) \
+ - env.config["mp"] * env.config["l"] * (1.**2) \
+ * np.cos(np.pi / 6.) * np.sin(np.pi / 6.) \
+ - (env.config["mp"] + env.config["mc"]) * env.config["g"] \
+ * np.sin(np.pi / 6.)) \
+ / (env.config["l"] \
+ * (env.config["mc"] \
+ + env.config["mp"] * np.sin(np.pi / 6.)**2))
+
+ expected = np.array([d_x0, d_x1, d_x2, d_x3]) * env.config["dt"] \
+ + curr_x
+
+ assert next_x == pytest.approx(expected, abs=1e-5)
\ No newline at end of file
diff --git a/tests/models/test_cartpole.py b/tests/models/test_cartpole.py
new file mode 100644
index 0000000..f7241b8
--- /dev/null
+++ b/tests/models/test_cartpole.py
@@ -0,0 +1,57 @@
+import pytest
+import numpy as np
+
+from PythonLinearNonlinearControl.models.cartpole import CartPoleModel
+from PythonLinearNonlinearControl.configs.cartpole \
+ import CartPoleConfigModule
+
+class TestCartPoleModel():
+ """
+ """
+ def test_step(self):
+ config = CartPoleConfigModule()
+ cartpole_model = CartPoleModel(config)
+
+ curr_x = np.ones(4)
+ curr_x[2] = np.pi / 6.
+
+ us = np.ones((1, 1))
+
+ next_x = cartpole_model.predict_traj(curr_x, us)
+
+ d_x0 = curr_x[1]
+ d_x1 = (1. + config.MP * np.sin(np.pi / 6.) \
+ * (config.L * (1.**2) \
+ + config.G * np.cos(np.pi / 6.))) \
+ / (config.MC + config.MP * np.sin(np.pi / 6.)**2)
+ d_x2 = curr_x[3]
+ d_x3 = (-1. * np.cos(np.pi / 6.) \
+ - config.MP * config.L * (1.**2) \
+ * np.cos(np.pi / 6.) * np.sin(np.pi / 6.) \
+ - (config.MP + config.MC) * config.G \
+ * np.sin(np.pi / 6.)) \
+ / (config.L \
+ * (config.MC \
+ + config.MP * np.sin(np.pi / 6.)**2))
+
+ expected = np.array([d_x0, d_x1, d_x2, d_x3]) * config.DT \
+ + curr_x
+
+ expected = np.stack((curr_x, expected), axis=0)
+
+ assert next_x == pytest.approx(expected, abs=1e-5)
+
+ def test_predict_traj(self):
+ config = CartPoleConfigModule()
+ cartpole_model = CartPoleModel(config)
+
+ curr_x = np.ones(config.STATE_SIZE)
+ curr_x[-1] = np.pi / 6.
+ u = np.ones((1, config.INPUT_SIZE))
+
+ pred_xs = cartpole_model.predict_traj(curr_x, u)
+
+ u = np.tile(u, (2, 1, 1))
+ pred_xs_alltogether = cartpole_model.predict_traj(curr_x, u)[0]
+
+ assert pred_xs_alltogether == pytest.approx(pred_xs)
\ No newline at end of file
diff --git a/tests/models/test_first_order_lag.py b/tests/models/test_first_order_lag.py
new file mode 100644
index 0000000..3f1790c
--- /dev/null
+++ b/tests/models/test_first_order_lag.py
@@ -0,0 +1,43 @@
+import pytest
+import numpy as np
+
+from PythonLinearNonlinearControl.models.model \
+ import LinearModel
+from PythonLinearNonlinearControl.models.first_order_lag \
+ import FirstOrderLagModel
+from PythonLinearNonlinearControl.configs.first_order_lag \
+ import FirstOrderLagConfigModule
+
+from unittest.mock import patch
+from unittest.mock import Mock
+
+class TestFirstOrderLagModel():
+ """
+ """
+ def test_step(self):
+ config = FirstOrderLagConfigModule()
+ firstorderlag_model = FirstOrderLagModel(config)
+
+ curr_x = np.ones(config.STATE_SIZE)
+ u = np.ones((1, config.INPUT_SIZE))
+
+ with patch.object(LinearModel, "predict_traj") as mock_predict_traj:
+ firstorderlag_model.predict_traj(curr_x, u)
+
+ mock_predict_traj.assert_called_once_with(curr_x, u)
+
+ def test_predict_traj(self):
+
+ config = FirstOrderLagConfigModule()
+ firstorderlag_model = FirstOrderLagModel(config)
+
+ curr_x = np.ones(config.STATE_SIZE)
+ curr_x[-1] = np.pi / 6.
+ u = np.ones((1, config.INPUT_SIZE))
+
+ pred_xs = firstorderlag_model.predict_traj(curr_x, u)
+
+ u = np.tile(u, (1, 1, 1))
+ pred_xs_alltogether = firstorderlag_model.predict_traj(curr_x, u)[0]
+
+ assert pred_xs_alltogether == pytest.approx(pred_xs)
\ No newline at end of file