Add nonlinear sample system

This commit is contained in:
Shunichi09 2021-02-13 21:19:49 +09:00
parent 8f4ba9a12b
commit 8c28ff328a
13 changed files with 434 additions and 35 deletions

View File

@ -91,17 +91,17 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
for i, func in enumerate(functions): for i, func in enumerate(functions):
k3[i] = dt * func(state + k2, u) k3[i] = dt * func(state + k2, u)
return (k0 + 2. * k1 + 2. * k2 + k3) / 6. return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
else: else:
batch_size, state_size = state.shape batch_size, state_size = state.shape
assert state_size == len(functions), \ assert state_size == len(functions), \
"Invalid functions length, You need to give the state size functions" "Invalid functions length, You need to give the state size functions"
k0 = np.zeros(batch_size, state_size) k0 = np.zeros((batch_size, state_size))
k1 = np.zeros(batch_size, state_size) k1 = np.zeros((batch_size, state_size))
k2 = np.zeros(batch_size, state_size) k2 = np.zeros((batch_size, state_size))
k3 = np.zeros(batch_size, state_size) k3 = np.zeros((batch_size, state_size))
for i, func in enumerate(functions): for i, func in enumerate(functions):
k0[:, i] = dt * func(state, u) k0[:, i] = dt * func(state, u)
@ -115,4 +115,4 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
for i, func in enumerate(functions): for i, func in enumerate(functions):
k3[:, i] = dt * func(state + k2, u) k3[:, i] = dt * func(state + k2, u)
return (k0 + 2. * k1 + 2. * k2 + k3) / 6. return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.

View File

@ -1,6 +1,7 @@
from .first_order_lag import FirstOrderLagConfigModule from .first_order_lag import FirstOrderLagConfigModule
from .two_wheeled import TwoWheeledConfigModule from .two_wheeled import TwoWheeledConfigModule
from .cartpole import CartPoleConfigModule from .cartpole import CartPoleConfigModule
from .nonlinear_sample_system import NonlinearSampleSystemConfigModule
def make_config(args): def make_config(args):
@ -14,3 +15,5 @@ def make_config(args):
return TwoWheeledConfigModule() return TwoWheeledConfigModule()
elif args.env == "CartPole": elif args.env == "CartPole":
return CartPoleConfigModule() return CartPoleConfigModule()
elif args.env == "NonlinearSample":
return NonlinearSampleSystemConfigModule()

View File

@ -0,0 +1,219 @@
import numpy as np
class NonlinearSampleSystemConfigModule():
# parameters
ENV_NAME = "NonlinearSampleSystem-v0"
PLANNER_TYPE = "Const"
TYPE = "Nonlinear"
TASK_HORIZON = 2500
PRED_LEN = 10
STATE_SIZE = 2
INPUT_SIZE = 1
DT = 0.01
R = np.diag([0.01])
Q = None
Sf = None
# bounds
INPUT_LOWER_BOUND = np.array([-0.5])
INPUT_UPPER_BOUND = np.array([0.5])
def __init__(self):
"""
"""
# opt configs
self.opt_config = {
"Random": {
"popsize": 5000
},
"CEM": {
"popsize": 500,
"num_elites": 50,
"max_iters": 15,
"alpha": 0.3,
"init_var": 9.,
"threshold": 0.001
},
"MPPI": {
"beta": 0.6,
"popsize": 5000,
"kappa": 0.9,
"noise_sigma": 0.5,
},
"MPPIWilliams": {
"popsize": 5000,
"lambda": 1.,
"noise_sigma": 0.9,
},
"iLQR": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
},
"DDP": {
"max_iter": 500,
"init_mu": 1.,
"mu_min": 1e-6,
"mu_max": 1e10,
"init_delta": 2.,
"threshold": 1e-6,
},
"NMPC-CGMRES": {
},
"NMPC-Newton": {
},
}
@staticmethod
def input_cost_fn(u):
""" input cost functions
Args:
u (numpy.ndarray): input, shape(pred_len, input_size)
or shape(pop_size, pred_len, input_size)
Returns:
cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
shape(pop_size, pred_len, input_size)
"""
return (u**2) * np.diag(NonlinearSampleSystemConfigModule.R)
@staticmethod
def state_cost_fn(x, g_x):
""" state cost function
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
or shape(pop_size, pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
or shape(pop_size, pred_len, state_size)
Returns:
cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
shape(pop_size, pred_len, 1)
"""
if len(x.shape) > 2:
return (0.5 * (x[:, :, 0]**2) +
0.5 * (x[:, :, 1]**2))[:, :, np.newaxis]
elif len(x.shape) > 1:
return (0.5 * (x[:, 0]**2) + 0.5 * (x[:, 1]**2))[:, np.newaxis]
return 0.5 * (x[0]**2) + 0.5 * (x[1]**2)
@ staticmethod
def terminal_state_cost_fn(terminal_x, terminal_g_x):
"""
Args:
terminal_x (numpy.ndarray): terminal state,
shape(state_size, ) or shape(pop_size, state_size)
terminal_g_x (numpy.ndarray): terminal goal state,
shape(state_size, ) or shape(pop_size, state_size)
Returns:
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
shape(pop_size, pred_len)
"""
if len(terminal_x.shape) > 1:
return (0.5 * (terminal_x[:, 0]**2) +
0.5 * (terminal_x[:, 1]**2))[:, np.newaxis]
return 0.5 * (terminal_x[0]**2) + 0.5 * (terminal_x[1]**2)
@ staticmethod
def gradient_cost_fn_with_state(x, g_x, terminal=False):
""" gradient of costs with respect to the state
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
Returns:
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
or shape(1, state_size)
"""
if not terminal:
cost_dx0 = x[:, 0]
cost_dx1 = x[:, 1]
cost_dx = np.stack((cost_dx0, cost_dx1), axis=1)
return cost_dx
cost_dx0 = x[0]
cost_dx1 = x[1]
cost_dx = np.array([[cost_dx0, cost_dx1]])
return cost_dx
@ staticmethod
def gradient_cost_fn_with_input(x, u):
""" gradient of costs with respect to the input
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
Returns:
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
"""
return 2. * u * np.diag(NonlinearSampleSystemConfigModule.R)
@ staticmethod
def hessian_cost_fn_with_state(x, g_x, terminal=False):
""" hessian costs with respect to the state
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
Returns:
l_xx (numpy.ndarray): gradient of cost,
shape(pred_len, state_size, state_size) or
shape(1, state_size, state_size) or
"""
if not terminal:
(pred_len, state_size) = x.shape
hessian = np.eye(state_size)
hessian = np.tile(hessian, (pred_len, 1, 1))
hessian[:, 0, 0] = 1.
hessian[:, 1, 1] = 1.
return hessian
state_size = len(x)
hessian = np.eye(state_size)
hessian[0, 0] = 1.
hessian[1, 1] = 1.
return hessian[np.newaxis, :, :]
@ staticmethod
def hessian_cost_fn_with_input(x, u):
""" hessian costs with respect to the input
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
Returns:
l_uu (numpy.ndarray): gradient of cost,
shape(pred_len, input_size, input_size)
"""
(pred_len, _) = u.shape
return np.tile(NonlinearSampleSystemConfigModule.R, (pred_len, 1, 1))
@ staticmethod
def hessian_cost_fn_with_input_state(x, u):
""" hessian costs with respect to the state and input
Args:
x (numpy.ndarray): state, shape(pred_len, state_size)
u (numpy.ndarray): goal state, shape(pred_len, input_size)
Returns:
l_ux (numpy.ndarray): gradient of cost ,
shape(pred_len, input_size, state_size)
"""
(_, state_size) = x.shape
(pred_len, input_size) = u.shape
return np.zeros((pred_len, input_size, state_size))

View File

@ -2,6 +2,7 @@ from .first_order_lag import FirstOrderLagEnv
from .two_wheeled import TwoWheeledConstEnv from .two_wheeled import TwoWheeledConstEnv
from .two_wheeled import TwoWheeledTrackEnv from .two_wheeled import TwoWheeledTrackEnv
from .cartpole import CartPoleEnv from .cartpole import CartPoleEnv
from .nonlinear_sample_system import NonlinearSampleSystemEnv
def make_env(args): def make_env(args):
@ -14,5 +15,7 @@ def make_env(args):
return TwoWheeledTrackEnv() return TwoWheeledTrackEnv()
elif args.env == "CartPole": elif args.env == "CartPole":
return CartPoleEnv() return CartPoleEnv()
elif args.env == "NonlinearSample":
return NonlinearSampleSystemEnv()
raise NotImplementedError("There is not {} Env".format(args.env)) raise NotImplementedError("There is not {} Env".format(args.env))

View File

@ -5,7 +5,7 @@ from .env import Env
from ..common.utils import update_state_with_Runge_Kutta from ..common.utils import update_state_with_Runge_Kutta
class NonlinearSampleEnv(Env): class NonlinearSampleSystemEnv(Env):
""" Nonlinear Sample Env """ Nonlinear Sample Env
""" """
@ -15,12 +15,12 @@ class NonlinearSampleEnv(Env):
self.config = {"state_size": 2, self.config = {"state_size": 2,
"input_size": 1, "input_size": 1,
"dt": 0.01, "dt": 0.01,
"max_step": 250, "max_step": 2000,
"input_lower_bound": [-0.5], "input_lower_bound": [-0.5],
"input_upper_bound": [0.5], "input_upper_bound": [0.5],
} }
super(NonlinearSampleEnv, self).__init__(self.config) super(NonlinearSampleSystemEnv, self).__init__(self.config)
def reset(self, init_x=np.array([2., 0.])): def reset(self, init_x=np.array([2., 0.])):
""" reset state """ reset state
@ -62,7 +62,8 @@ class NonlinearSampleEnv(Env):
functions = [self._func_x_1, self._func_x_2] functions = [self._func_x_1, self._func_x_2]
next_x = update_state_with_Runge_Kutta(self.curr_x, u, next_x = update_state_with_Runge_Kutta(self.curr_x, u,
functions, self.config["dt"]) functions, self.config["dt"],
batch=False)
# cost # cost
cost = 0 cost = 0
@ -83,18 +84,14 @@ class NonlinearSampleEnv(Env):
{"goal_state": self.g_x} {"goal_state": self.g_x}
def _func_x_1(self, x, u): def _func_x_1(self, x, u):
"""
"""
x_dot = x[1] x_dot = x[1]
return x_dot return x_dot
def _func_x_2(self, x, u): def _func_x_2(self, x, u):
""" x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
"""
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u
return x_dot return x_dot
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None): def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
""" """
""" """
raise ValueError("NonlinearSampleEnv does not have animation") raise ValueError("NonlinearSampleSystemEnv does not have animation")

View File

@ -1,6 +1,7 @@
from .first_order_lag import FirstOrderLagModel from .first_order_lag import FirstOrderLagModel
from .two_wheeled import TwoWheeledModel from .two_wheeled import TwoWheeledModel
from .cartpole import CartPoleModel from .cartpole import CartPoleModel
from .nonlinear_sample_system import NonlinearSampleSystemModel
def make_model(args, config): def make_model(args, config):
@ -11,5 +12,7 @@ def make_model(args, config):
return TwoWheeledModel(config) return TwoWheeledModel(config)
elif args.env == "CartPole": elif args.env == "CartPole":
return CartPoleModel(config) return CartPoleModel(config)
elif args.env == "NonlinearSample":
return NonlinearSampleSystemModel(config)
raise NotImplementedError("There is not {} Model".format(args.env)) raise NotImplementedError("There is not {} Model".format(args.env))

View File

@ -0,0 +1,164 @@
import numpy as np
from .model import Model
from ..common.utils import update_state_with_Runge_Kutta
class NonlinearSampleSystemModel(Model):
""" nonlinear sample system model
"""
def __init__(self, config):
"""
"""
super(NonlinearSampleSystemModel, self).__init__()
self.dt = config.DT
def predict_next_state(self, curr_x, u):
""" predict next state
Args:
curr_x (numpy.ndarray): current state, shape(state_size, ) or
shape(pop_size, state_size)
u (numpy.ndarray): input, shape(input_size, ) or
shape(pop_size, input_size)
Returns:
next_x (numpy.ndarray): next state, shape(state_size, ) or
shape(pop_size, state_size)
"""
if len(u.shape) == 1:
func_1 = self._func_x_1
func_2 = self._func_x_2
functions = [func_1, func_2]
next_x = update_state_with_Runge_Kutta(
curr_x, u, functions, batch=False)
return next_x
elif len(u.shape) == 2:
def func_1(xs, us): return self._func_x_1(xs, us, batch=True)
def func_2(xs, us): return self._func_x_2(xs, us, batch=True)
functions = [func_1, func_2]
next_x = update_state_with_Runge_Kutta(
curr_x, u, functions, batch=True)
return next_x
def _func_x_1(self, x, u, batch=False):
if not batch:
x_dot = x[1]
else:
x_dot = x[:, 1]
return x_dot
def _func_x_2(self, x, u, batch=False):
if not batch:
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
else:
x_dot = (1. - x[:, 0]**2 - x[:, 1]**2) * \
x[:, 1] - x[:, 0] + u[:, 0]
return x_dot
def calc_f_x(self, xs, us, dt):
""" gradient of model with respect to the state in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_x (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size)
Notes:
This should be discrete form !!
"""
# get size
(_, state_size) = xs.shape
(pred_len, _) = us.shape
f_x = np.zeros((pred_len, state_size, state_size))
f_x[:, 0, 1] = 1.
f_x[:, 1, 0] = 2. * xs[:, 0] * xs[:, 1] - 1.
f_x[:, 1, 1] = - 2. * xs[:, 1] * xs[:, 1] + \
(1. - xs[:, 0]**2 - xs[:, 1]**2)
return f_x * dt + np.eye(state_size) # to discrete form
def calc_f_u(self, xs, us, dt):
""" gradient of model with respect to the input in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_u (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size)
Notes:
This should be discrete form !!
"""
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_u = np.zeros((pred_len, state_size, input_size))
f_u[:, 1, 0] = 1.
return f_u * dt # to discrete form
def calc_f_xx(self, xs, us, dt):
""" hessian of model with respect to the state in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_xx (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size, state_size)
"""
# get size
(_, state_size) = xs.shape
(pred_len, _) = us.shape
f_xx = np.zeros((pred_len, state_size, state_size, state_size))
raise NotImplementedError
def calc_f_ux(self, xs, us, dt):
""" hessian of model with respect to state and input in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_ux (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, state_size)
"""
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
raise NotImplementedError
def calc_f_uu(self, xs, us, dt):
""" hessian of model with respect to input in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_uu (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, input_size)
"""
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
raise NotImplementedError

View File

@ -1,6 +1,7 @@
from .const_planner import ConstantPlanner from .const_planner import ConstantPlanner
from .closest_point_planner import ClosestPointPlanner from .closest_point_planner import ClosestPointPlanner
def make_planner(args, config): def make_planner(args, config):
if args.env == "FirstOrderLag": if args.env == "FirstOrderLag":
@ -11,5 +12,8 @@ def make_planner(args, config):
return ClosestPointPlanner(config) return ClosestPointPlanner(config)
elif args.env == "CartPole": elif args.env == "CartPole":
return ConstantPlanner(config) return ConstantPlanner(config)
elif args.env == "NonlinearSample":
return ConstantPlanner(config)
raise NotImplementedError("There is not {} Planner".format(args.planner_type)) raise NotImplementedError(
"There is not {} Planner".format(args.planner_type))

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

View File

@ -8,6 +8,7 @@ import matplotlib.pyplot as plt
from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \ from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \
plot_multi_result plot_multi_result
def run(args): def run(args):
controllers = ["iLQR", "DDP", "CEM", "MPPI"] controllers = ["iLQR", "DDP", "CEM", "MPPI"]
@ -41,6 +42,7 @@ def run(args):
plot_multi_result(history_us, histories_g=np.zeros_like(history_us), plot_multi_result(history_us, histories_g=np.zeros_like(history_us),
labels=controllers, ylabel="u", name="input_history") labels=controllers, ylabel="u", name="input_history")
def main(): def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
@ -51,5 +53,6 @@ def main():
run(args) run(args)
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -11,6 +11,7 @@ from PythonLinearNonlinearControl.plotters.plot_func import plot_results, \
save_plot_data save_plot_data
from PythonLinearNonlinearControl.plotters.animator import Animator from PythonLinearNonlinearControl.plotters.animator import Animator
def run(args): def run(args):
# logger # logger
make_logger(args.result_dir) make_logger(args.result_dir)
@ -44,17 +45,19 @@ def run(args):
animator = Animator(env, args=args) animator = Animator(env, args=args)
animator.draw(history_x, history_g) animator.draw(history_x, history_g)
def main(): def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument("--controller_type", type=str, default="CEM") parser.add_argument("--controller_type", type=str, default="DDP")
parser.add_argument("--env", type=str, default="TwoWheeledTrack") parser.add_argument("--env", type=str, default="NonlinearSample")
parser.add_argument("--save_anim", type=bool_flag, default=1) parser.add_argument("--save_anim", type=bool_flag, default=0)
parser.add_argument("--result_dir", type=str, default="./result") parser.add_argument("--result_dir", type=str, default="./result")
args = parser.parse_args() args = parser.parse_args()
run(args) run(args)
if __name__ == "__main__": if __name__ == "__main__":
main() main()