Add nonlinear sample system
This commit is contained in:
parent
8f4ba9a12b
commit
8c28ff328a
|
@ -91,17 +91,17 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
|
|||
for i, func in enumerate(functions):
|
||||
k3[i] = dt * func(state + k2, u)
|
||||
|
||||
return (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
|
||||
else:
|
||||
batch_size, state_size = state.shape
|
||||
assert state_size == len(functions), \
|
||||
"Invalid functions length, You need to give the state size functions"
|
||||
|
||||
k0 = np.zeros(batch_size, state_size)
|
||||
k1 = np.zeros(batch_size, state_size)
|
||||
k2 = np.zeros(batch_size, state_size)
|
||||
k3 = np.zeros(batch_size, state_size)
|
||||
k0 = np.zeros((batch_size, state_size))
|
||||
k1 = np.zeros((batch_size, state_size))
|
||||
k2 = np.zeros((batch_size, state_size))
|
||||
k3 = np.zeros((batch_size, state_size))
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k0[:, i] = dt * func(state, u)
|
||||
|
@ -115,4 +115,4 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
|
|||
for i, func in enumerate(functions):
|
||||
k3[:, i] = dt * func(state + k2, u)
|
||||
|
||||
return (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from .first_order_lag import FirstOrderLagConfigModule
|
||||
from .two_wheeled import TwoWheeledConfigModule
|
||||
from .cartpole import CartPoleConfigModule
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemConfigModule
|
||||
|
||||
|
||||
def make_config(args):
|
||||
|
@ -14,3 +15,5 @@ def make_config(args):
|
|||
return TwoWheeledConfigModule()
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleConfigModule()
|
||||
elif args.env == "NonlinearSample":
|
||||
return NonlinearSampleSystemConfigModule()
|
||||
|
|
|
@ -0,0 +1,219 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class NonlinearSampleSystemConfigModule():
|
||||
# parameters
|
||||
ENV_NAME = "NonlinearSampleSystem-v0"
|
||||
PLANNER_TYPE = "Const"
|
||||
TYPE = "Nonlinear"
|
||||
TASK_HORIZON = 2500
|
||||
PRED_LEN = 10
|
||||
STATE_SIZE = 2
|
||||
INPUT_SIZE = 1
|
||||
DT = 0.01
|
||||
R = np.diag([0.01])
|
||||
Q = None
|
||||
Sf = None
|
||||
# bounds
|
||||
INPUT_LOWER_BOUND = np.array([-0.5])
|
||||
INPUT_UPPER_BOUND = np.array([0.5])
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
# opt configs
|
||||
self.opt_config = {
|
||||
"Random": {
|
||||
"popsize": 5000
|
||||
},
|
||||
"CEM": {
|
||||
"popsize": 500,
|
||||
"num_elites": 50,
|
||||
"max_iters": 15,
|
||||
"alpha": 0.3,
|
||||
"init_var": 9.,
|
||||
"threshold": 0.001
|
||||
},
|
||||
"MPPI": {
|
||||
"beta": 0.6,
|
||||
"popsize": 5000,
|
||||
"kappa": 0.9,
|
||||
"noise_sigma": 0.5,
|
||||
},
|
||||
"MPPIWilliams": {
|
||||
"popsize": 5000,
|
||||
"lambda": 1.,
|
||||
"noise_sigma": 0.9,
|
||||
},
|
||||
"iLQR": {
|
||||
"max_iter": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"DDP": {
|
||||
"max_iter": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC-CGMRES": {
|
||||
},
|
||||
"NMPC-Newton": {
|
||||
},
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def input_cost_fn(u):
|
||||
""" input cost functions
|
||||
|
||||
Args:
|
||||
u (numpy.ndarray): input, shape(pred_len, input_size)
|
||||
or shape(pop_size, pred_len, input_size)
|
||||
Returns:
|
||||
cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
|
||||
shape(pop_size, pred_len, input_size)
|
||||
"""
|
||||
return (u**2) * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def state_cost_fn(x, g_x):
|
||||
""" state cost function
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
or shape(pop_size, pred_len, state_size)
|
||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||
or shape(pop_size, pred_len, state_size)
|
||||
Returns:
|
||||
cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
|
||||
shape(pop_size, pred_len, 1)
|
||||
"""
|
||||
|
||||
if len(x.shape) > 2:
|
||||
return (0.5 * (x[:, :, 0]**2) +
|
||||
0.5 * (x[:, :, 1]**2))[:, :, np.newaxis]
|
||||
|
||||
elif len(x.shape) > 1:
|
||||
return (0.5 * (x[:, 0]**2) + 0.5 * (x[:, 1]**2))[:, np.newaxis]
|
||||
|
||||
return 0.5 * (x[0]**2) + 0.5 * (x[1]**2)
|
||||
|
||||
@ staticmethod
|
||||
def terminal_state_cost_fn(terminal_x, terminal_g_x):
|
||||
"""
|
||||
|
||||
Args:
|
||||
terminal_x (numpy.ndarray): terminal state,
|
||||
shape(state_size, ) or shape(pop_size, state_size)
|
||||
terminal_g_x (numpy.ndarray): terminal goal state,
|
||||
shape(state_size, ) or shape(pop_size, state_size)
|
||||
Returns:
|
||||
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
|
||||
shape(pop_size, pred_len)
|
||||
"""
|
||||
|
||||
if len(terminal_x.shape) > 1:
|
||||
return (0.5 * (terminal_x[:, 0]**2) +
|
||||
0.5 * (terminal_x[:, 1]**2))[:, np.newaxis]
|
||||
|
||||
return 0.5 * (terminal_x[0]**2) + 0.5 * (terminal_x[1]**2)
|
||||
|
||||
@ staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||
|
||||
Returns:
|
||||
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
||||
or shape(1, state_size)
|
||||
"""
|
||||
if not terminal:
|
||||
cost_dx0 = x[:, 0]
|
||||
cost_dx1 = x[:, 1]
|
||||
cost_dx = np.stack((cost_dx0, cost_dx1), axis=1)
|
||||
return cost_dx
|
||||
|
||||
cost_dx0 = x[0]
|
||||
cost_dx1 = x[1]
|
||||
cost_dx = np.array([[cost_dx0, cost_dx1]])
|
||||
|
||||
return cost_dx
|
||||
|
||||
@ staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||
Returns:
|
||||
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
||||
"""
|
||||
return 2. * u * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||
|
||||
@ staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||
Returns:
|
||||
l_xx (numpy.ndarray): gradient of cost,
|
||||
shape(pred_len, state_size, state_size) or
|
||||
shape(1, state_size, state_size) or
|
||||
"""
|
||||
if not terminal:
|
||||
(pred_len, state_size) = x.shape
|
||||
hessian = np.eye(state_size)
|
||||
hessian = np.tile(hessian, (pred_len, 1, 1))
|
||||
hessian[:, 0, 0] = 1.
|
||||
hessian[:, 1, 1] = 1.
|
||||
|
||||
return hessian
|
||||
|
||||
state_size = len(x)
|
||||
hessian = np.eye(state_size)
|
||||
hessian[0, 0] = 1.
|
||||
hessian[1, 1] = 1.
|
||||
|
||||
return hessian[np.newaxis, :, :]
|
||||
|
||||
@ staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||
Returns:
|
||||
l_uu (numpy.ndarray): gradient of cost,
|
||||
shape(pred_len, input_size, input_size)
|
||||
"""
|
||||
(pred_len, _) = u.shape
|
||||
|
||||
return np.tile(NonlinearSampleSystemConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@ staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||
Returns:
|
||||
l_ux (numpy.ndarray): gradient of cost ,
|
||||
shape(pred_len, input_size, state_size)
|
||||
"""
|
||||
(_, state_size) = x.shape
|
||||
(pred_len, input_size) = u.shape
|
||||
|
||||
return np.zeros((pred_len, input_size, state_size))
|
|
@ -2,6 +2,7 @@ from .first_order_lag import FirstOrderLagEnv
|
|||
from .two_wheeled import TwoWheeledConstEnv
|
||||
from .two_wheeled import TwoWheeledTrackEnv
|
||||
from .cartpole import CartPoleEnv
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemEnv
|
||||
|
||||
|
||||
def make_env(args):
|
||||
|
@ -14,5 +15,7 @@ def make_env(args):
|
|||
return TwoWheeledTrackEnv()
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleEnv()
|
||||
elif args.env == "NonlinearSample":
|
||||
return NonlinearSampleSystemEnv()
|
||||
|
||||
raise NotImplementedError("There is not {} Env".format(args.env))
|
||||
|
|
|
@ -5,7 +5,7 @@ from .env import Env
|
|||
from ..common.utils import update_state_with_Runge_Kutta
|
||||
|
||||
|
||||
class NonlinearSampleEnv(Env):
|
||||
class NonlinearSampleSystemEnv(Env):
|
||||
""" Nonlinear Sample Env
|
||||
"""
|
||||
|
||||
|
@ -15,12 +15,12 @@ class NonlinearSampleEnv(Env):
|
|||
self.config = {"state_size": 2,
|
||||
"input_size": 1,
|
||||
"dt": 0.01,
|
||||
"max_step": 250,
|
||||
"max_step": 2000,
|
||||
"input_lower_bound": [-0.5],
|
||||
"input_upper_bound": [0.5],
|
||||
}
|
||||
|
||||
super(NonlinearSampleEnv, self).__init__(self.config)
|
||||
super(NonlinearSampleSystemEnv, self).__init__(self.config)
|
||||
|
||||
def reset(self, init_x=np.array([2., 0.])):
|
||||
""" reset state
|
||||
|
@ -62,7 +62,8 @@ class NonlinearSampleEnv(Env):
|
|||
functions = [self._func_x_1, self._func_x_2]
|
||||
|
||||
next_x = update_state_with_Runge_Kutta(self.curr_x, u,
|
||||
functions, self.config["dt"])
|
||||
functions, self.config["dt"],
|
||||
batch=False)
|
||||
|
||||
# cost
|
||||
cost = 0
|
||||
|
@ -83,18 +84,14 @@ class NonlinearSampleEnv(Env):
|
|||
{"goal_state": self.g_x}
|
||||
|
||||
def _func_x_1(self, x, u):
|
||||
"""
|
||||
"""
|
||||
x_dot = x[1]
|
||||
return x_dot
|
||||
|
||||
def _func_x_2(self, x, u):
|
||||
"""
|
||||
"""
|
||||
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u
|
||||
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
|
||||
return x_dot
|
||||
|
||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||
"""
|
||||
"""
|
||||
raise ValueError("NonlinearSampleEnv does not have animation")
|
||||
raise ValueError("NonlinearSampleSystemEnv does not have animation")
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from .first_order_lag import FirstOrderLagModel
|
||||
from .two_wheeled import TwoWheeledModel
|
||||
from .cartpole import CartPoleModel
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemModel
|
||||
|
||||
|
||||
def make_model(args, config):
|
||||
|
@ -11,5 +12,7 @@ def make_model(args, config):
|
|||
return TwoWheeledModel(config)
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleModel(config)
|
||||
elif args.env == "NonlinearSample":
|
||||
return NonlinearSampleSystemModel(config)
|
||||
|
||||
raise NotImplementedError("There is not {} Model".format(args.env))
|
||||
|
|
|
@ -0,0 +1,164 @@
|
|||
import numpy as np
|
||||
|
||||
from .model import Model
|
||||
from ..common.utils import update_state_with_Runge_Kutta
|
||||
|
||||
|
||||
class NonlinearSampleSystemModel(Model):
|
||||
""" nonlinear sample system model
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
super(NonlinearSampleSystemModel, self).__init__()
|
||||
self.dt = config.DT
|
||||
|
||||
def predict_next_state(self, curr_x, u):
|
||||
""" predict next state
|
||||
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
||||
shape(pop_size, state_size)
|
||||
u (numpy.ndarray): input, shape(input_size, ) or
|
||||
shape(pop_size, input_size)
|
||||
Returns:
|
||||
next_x (numpy.ndarray): next state, shape(state_size, ) or
|
||||
shape(pop_size, state_size)
|
||||
"""
|
||||
if len(u.shape) == 1:
|
||||
func_1 = self._func_x_1
|
||||
func_2 = self._func_x_2
|
||||
functions = [func_1, func_2]
|
||||
next_x = update_state_with_Runge_Kutta(
|
||||
curr_x, u, functions, batch=False)
|
||||
return next_x
|
||||
|
||||
elif len(u.shape) == 2:
|
||||
def func_1(xs, us): return self._func_x_1(xs, us, batch=True)
|
||||
def func_2(xs, us): return self._func_x_2(xs, us, batch=True)
|
||||
functions = [func_1, func_2]
|
||||
next_x = update_state_with_Runge_Kutta(
|
||||
curr_x, u, functions, batch=True)
|
||||
|
||||
return next_x
|
||||
|
||||
def _func_x_1(self, x, u, batch=False):
|
||||
if not batch:
|
||||
x_dot = x[1]
|
||||
else:
|
||||
x_dot = x[:, 1]
|
||||
return x_dot
|
||||
|
||||
def _func_x_2(self, x, u, batch=False):
|
||||
if not batch:
|
||||
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
|
||||
else:
|
||||
x_dot = (1. - x[:, 0]**2 - x[:, 1]**2) * \
|
||||
x[:, 1] - x[:, 0] + u[:, 0]
|
||||
return x_dot
|
||||
|
||||
def calc_f_x(self, xs, us, dt):
|
||||
""" gradient of model with respect to the state in batch form
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_x (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, state_size)
|
||||
|
||||
Notes:
|
||||
This should be discrete form !!
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, _) = us.shape
|
||||
|
||||
f_x = np.zeros((pred_len, state_size, state_size))
|
||||
f_x[:, 0, 1] = 1.
|
||||
f_x[:, 1, 0] = 2. * xs[:, 0] * xs[:, 1] - 1.
|
||||
f_x[:, 1, 1] = - 2. * xs[:, 1] * xs[:, 1] + \
|
||||
(1. - xs[:, 0]**2 - xs[:, 1]**2)
|
||||
|
||||
return f_x * dt + np.eye(state_size) # to discrete form
|
||||
|
||||
def calc_f_u(self, xs, us, dt):
|
||||
""" gradient of model with respect to the input in batch form
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_u (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, input_size)
|
||||
|
||||
Notes:
|
||||
This should be discrete form !!
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, input_size) = us.shape
|
||||
|
||||
f_u = np.zeros((pred_len, state_size, input_size))
|
||||
|
||||
f_u[:, 1, 0] = 1.
|
||||
|
||||
return f_u * dt # to discrete form
|
||||
|
||||
def calc_f_xx(self, xs, us, dt):
|
||||
""" hessian of model with respect to the state in batch form
|
||||
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_xx (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, state_size, state_size)
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, _) = us.shape
|
||||
|
||||
f_xx = np.zeros((pred_len, state_size, state_size, state_size))
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
def calc_f_ux(self, xs, us, dt):
|
||||
""" hessian of model with respect to state and input in batch form
|
||||
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_ux (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, input_size, state_size)
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, input_size) = us.shape
|
||||
|
||||
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
def calc_f_uu(self, xs, us, dt):
|
||||
""" hessian of model with respect to input in batch form
|
||||
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_uu (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, input_size, input_size)
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, input_size) = us.shape
|
||||
|
||||
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
||||
|
||||
raise NotImplementedError
|
|
@ -1,8 +1,9 @@
|
|||
from .const_planner import ConstantPlanner
|
||||
from .closest_point_planner import ClosestPointPlanner
|
||||
|
||||
|
||||
def make_planner(args, config):
|
||||
|
||||
|
||||
if args.env == "FirstOrderLag":
|
||||
return ConstantPlanner(config)
|
||||
elif args.env == "TwoWheeledConst":
|
||||
|
@ -11,5 +12,8 @@ def make_planner(args, config):
|
|||
return ClosestPointPlanner(config)
|
||||
elif args.env == "CartPole":
|
||||
return ConstantPlanner(config)
|
||||
|
||||
raise NotImplementedError("There is not {} Planner".format(args.planner_type))
|
||||
elif args.env == "NonlinearSample":
|
||||
return ConstantPlanner(config)
|
||||
|
||||
raise NotImplementedError(
|
||||
"There is not {} Planner".format(args.planner_type))
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
|
@ -6,7 +6,8 @@ import numpy as np
|
|||
import matplotlib.pyplot as plt
|
||||
|
||||
from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \
|
||||
plot_multi_result
|
||||
plot_multi_result
|
||||
|
||||
|
||||
def run(args):
|
||||
|
||||
|
@ -17,7 +18,7 @@ def run(args):
|
|||
history_gs = None
|
||||
|
||||
# load data
|
||||
for controller in controllers:
|
||||
for controller in controllers:
|
||||
history_x, history_u, history_g = \
|
||||
load_plot_data(args.env, controller,
|
||||
result_dir=args.result_dir)
|
||||
|
@ -27,19 +28,20 @@ def run(args):
|
|||
history_us = history_u[np.newaxis, :]
|
||||
history_gs = history_g[np.newaxis, :]
|
||||
continue
|
||||
|
||||
|
||||
history_xs = np.concatenate((history_xs,
|
||||
history_x[np.newaxis, :]), axis=0)
|
||||
history_us = np.concatenate((history_us,
|
||||
history_u[np.newaxis, :]), axis=0)
|
||||
history_gs = np.concatenate((history_gs,
|
||||
history_g[np.newaxis, :]), axis=0)
|
||||
|
||||
|
||||
plot_multi_result(history_xs, histories_g=history_gs, labels=controllers,
|
||||
ylabel="x")
|
||||
|
||||
plot_multi_result(history_us, histories_g=np.zeros_like(history_us),
|
||||
labels=controllers, ylabel="u", name="input_history")
|
||||
labels=controllers, ylabel="u", name="input_history")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
@ -51,5 +53,6 @@ def main():
|
|||
|
||||
run(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
|
|
@ -8,9 +8,10 @@ from PythonLinearNonlinearControl.models.make_models import make_model
|
|||
from PythonLinearNonlinearControl.envs.make_envs import make_env
|
||||
from PythonLinearNonlinearControl.runners.make_runners import make_runner
|
||||
from PythonLinearNonlinearControl.plotters.plot_func import plot_results, \
|
||||
save_plot_data
|
||||
save_plot_data
|
||||
from PythonLinearNonlinearControl.plotters.animator import Animator
|
||||
|
||||
|
||||
def run(args):
|
||||
# logger
|
||||
make_logger(args.result_dir)
|
||||
|
@ -18,23 +19,23 @@ def run(args):
|
|||
# make envs
|
||||
env = make_env(args)
|
||||
|
||||
# make config
|
||||
# make config
|
||||
config = make_config(args)
|
||||
|
||||
# make planner
|
||||
planner = make_planner(args, config)
|
||||
|
||||
|
||||
# make model
|
||||
model = make_model(args, config)
|
||||
|
||||
|
||||
# make controller
|
||||
controller = make_controller(args, config, model)
|
||||
|
||||
|
||||
# make simulator
|
||||
runner = make_runner(args)
|
||||
|
||||
# run experiment
|
||||
history_x, history_u, history_g = runner.run(env, controller, planner)
|
||||
history_x, history_u, history_g = runner.run(env, controller, planner)
|
||||
|
||||
# plot results
|
||||
plot_results(history_x, history_u, history_g=history_g, args=args)
|
||||
|
@ -44,17 +45,19 @@ def run(args):
|
|||
animator = Animator(env, args=args)
|
||||
animator.draw(history_x, history_g)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--controller_type", type=str, default="CEM")
|
||||
parser.add_argument("--env", type=str, default="TwoWheeledTrack")
|
||||
parser.add_argument("--save_anim", type=bool_flag, default=1)
|
||||
parser.add_argument("--controller_type", type=str, default="DDP")
|
||||
parser.add_argument("--env", type=str, default="NonlinearSample")
|
||||
parser.add_argument("--save_anim", type=bool_flag, default=0)
|
||||
parser.add_argument("--result_dir", type=str, default="./result")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
run(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue