Merge branch 'master' of github.com:Shunichi09/linear_nonlinear_control
This commit is contained in:
commit
93ffb33055
|
@ -0,0 +1,112 @@
|
|||
import math
|
||||
import numpy as np
|
||||
import copy
|
||||
|
||||
def coordinate_transformation_in_angle(positions, base_angle):
|
||||
'''
|
||||
Transformation the coordinate in the angle
|
||||
|
||||
Parameters
|
||||
-------
|
||||
positions : numpy.ndarray
|
||||
this parameter is composed of xs, ys
|
||||
should have (2, N) shape
|
||||
base_angle : float [rad]
|
||||
|
||||
Returns
|
||||
-------
|
||||
traslated_positions : numpy.ndarray
|
||||
the shape is (2, N)
|
||||
|
||||
'''
|
||||
if positions.shape[0] != 2:
|
||||
raise ValueError('the input data should have (2, N)')
|
||||
|
||||
positions = np.array(positions)
|
||||
positions = positions.reshape(2, -1)
|
||||
|
||||
rot_matrix = [[np.cos(base_angle), np.sin(base_angle)],
|
||||
[-1*np.sin(base_angle), np.cos(base_angle)]]
|
||||
|
||||
rot_matrix = np.array(rot_matrix)
|
||||
|
||||
translated_positions = np.dot(rot_matrix, positions)
|
||||
|
||||
return translated_positions
|
||||
|
||||
def coordinate_transformation_in_position(positions, base_positions):
|
||||
'''
|
||||
Transformation the coordinate in the positions
|
||||
|
||||
Parameters
|
||||
-------
|
||||
positions : numpy.ndarray
|
||||
this parameter is composed of xs, ys
|
||||
should have (2, N) shape
|
||||
base_positions : numpy.ndarray
|
||||
this parameter is composed of x, y
|
||||
shoulg have (2, 1) shape
|
||||
|
||||
Returns
|
||||
-------
|
||||
traslated_positions : numpy.ndarray
|
||||
|
||||
'''
|
||||
|
||||
if positions.shape[0] != 2:
|
||||
raise ValueError('the input data should have (2, N)')
|
||||
|
||||
positions = np.array(positions)
|
||||
positions = positions.reshape(2, -1)
|
||||
base_positions = np.array(base_positions)
|
||||
base_positions = base_positions.reshape(2, 1)
|
||||
|
||||
translated_positions = positions - base_positions
|
||||
|
||||
return translated_positions
|
||||
|
||||
|
||||
def coordinate_transformation_in_matrix_angles(positions, base_angles):
|
||||
'''
|
||||
Transformation the coordinate in the matrix angle
|
||||
|
||||
Parameters
|
||||
-------
|
||||
positions : numpy.ndarray
|
||||
this parameter is composed of xs, ys
|
||||
should have (2, N) shape
|
||||
base_angle : float [rad]
|
||||
|
||||
Returns
|
||||
-------
|
||||
traslated_positions : numpy.ndarray
|
||||
the shape is (2, N)
|
||||
|
||||
'''
|
||||
if positions.shape[0] != 2:
|
||||
raise ValueError('the input data should have (2, N)')
|
||||
|
||||
positions = np.array(positions)
|
||||
positions = positions.reshape(2, -1)
|
||||
translated_positions = np.zeros_like(positions)
|
||||
|
||||
for i in range(len(base_angles)):
|
||||
rot_matrix = [[np.cos(base_angles[i]), np.sin(base_angles[i])],
|
||||
[-1*np.sin(base_angles[i]), np.cos(base_angles[i])]]
|
||||
|
||||
rot_matrix = np.array(rot_matrix)
|
||||
|
||||
translated_position = np.dot(rot_matrix, positions[:, i].reshape(2, 1))
|
||||
|
||||
translated_positions[:, i] = translated_position.flatten()
|
||||
|
||||
return translated_positions.reshape(2, -1)
|
||||
|
||||
# def coordinate_inv_transformation
|
||||
if __name__ == '__main__':
|
||||
positions_1 = np.array([[1.0], [2.0]])
|
||||
base_angle = 1.25
|
||||
|
||||
translated_positions_1 = coordinate_transformation_in_angle(positions_1, base_angle)
|
||||
print(translated_positions_1)
|
||||
|
|
@ -6,6 +6,7 @@ import copy
|
|||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
from animation import AnimDrawer
|
||||
from control import matlab
|
||||
from coordinate_trans import coordinate_transformation_in_angle, coordinate_transformation_in_position
|
||||
|
||||
class WheeledSystem():
|
||||
"""SampleSystem, this is the simulator
|
||||
|
@ -124,7 +125,7 @@ class WheeledSystem():
|
|||
def _func_x_4(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||
"""
|
||||
"""
|
||||
y_dot = math.atan2(self.REAR_WHEELE_BASE / (self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE) * math.tan(u_2))
|
||||
y_dot = math.atan2(self.REAR_WHEELE_BASE * math.tan(u_2) ,self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE)
|
||||
|
||||
return y_dot
|
||||
|
||||
|
@ -136,15 +137,26 @@ def main():
|
|||
# you must be care about this matrix
|
||||
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||
# lineared car system
|
||||
V = 5.0
|
||||
Ad = np.array([[1., 0., 0., 0.],
|
||||
[0., 1, V, 0.],
|
||||
[0., 0., 1., 0.],
|
||||
[0., 0., 1., 0.]]) * dt
|
||||
WHEEL_BASE = 2.2
|
||||
tau = 0.01
|
||||
|
||||
Bd = np.array([[0.], [0.], [0.], [0.3]]) * dt
|
||||
V = 5.0 # initialize
|
||||
|
||||
W_D = np.array([[V], [0.], [0.], [0.]]) * dt
|
||||
|
||||
delta_r = 0.
|
||||
|
||||
A12 = (V / WHEEL_BASE) / (math.cos(delta_r)**2)
|
||||
A22 = (1. - 1. / tau)
|
||||
|
||||
Ad = np.array([[1., V, 0.],
|
||||
[0., 1., A12],
|
||||
[0., 0., A22]]) * dt
|
||||
|
||||
Bd = np.array([[0.], [0.], [1. / tau]]) * dt
|
||||
|
||||
W_D_0 = - (V / WHEEL_BASE) * delta_r / (math.cos(delta_r)**2)
|
||||
|
||||
W_D = np.array([[0.], [W_D_0], [0.]]) * dt
|
||||
|
||||
# make simulator with coninuous matrix
|
||||
init_xs_lead = np.array([5., 0., 0. ,0.])
|
||||
|
@ -153,9 +165,9 @@ def main():
|
|||
follow_car = WheeledSystem(init_states=init_xs_follow)
|
||||
|
||||
# evaluation function weight
|
||||
Q = np.diag([1., 1., 1., 1.])
|
||||
Q = np.diag([1., 1., 1.])
|
||||
R = np.diag([5.])
|
||||
pre_step = 2
|
||||
pre_step = 15
|
||||
|
||||
# make controller with discreted matrix
|
||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||
|
@ -171,18 +183,57 @@ def main():
|
|||
follow_controller.initialize_controller()
|
||||
|
||||
# reference
|
||||
lead_reference = np.array([[0., 0.] for _ in range(pre_step)]).flatten()
|
||||
lead_reference = np.array([[0., 0., 0.] for _ in range(pre_step)]).flatten()
|
||||
ref = np.array([[0.], [0.]])
|
||||
|
||||
for i in range(iteration_num):
|
||||
print("simulation time = {0}".format(i))
|
||||
|
||||
# make lead car's move
|
||||
if i > int(iteration_num / 3):
|
||||
lead_reference = np.array([[4., 0.] for _ in range(pre_step)]).flatten()
|
||||
ref = np.array([[0.], [4.]])
|
||||
|
||||
## lead
|
||||
# world traj
|
||||
lead_states = lead_car.xs
|
||||
lead_opt_u = lead_controller.calc_input(lead_states[1:], lead_reference)
|
||||
|
||||
# transformation
|
||||
relative_ref = coordinate_transformation_in_position(ref, lead_states[:2])
|
||||
relative_ref = coordinate_transformation_in_angle(relative_ref, lead_states[2])
|
||||
|
||||
# make ref
|
||||
lead_reference = np.array([[ref[1, 0], 0., 0.] for _ in range(pre_step)]).flatten()
|
||||
|
||||
alpha = math.atan2(relative_ref[1], relative_ref[0])
|
||||
R = np.linalg.norm(relative_ref) / 2 * math.sin(alpha)
|
||||
|
||||
print(R)
|
||||
input()
|
||||
|
||||
V = 7.0
|
||||
delta_r = math.atan2(WHEEL_BASE, R)
|
||||
|
||||
A12 = (V / WHEEL_BASE) / (math.cos(delta_r)**2)
|
||||
A22 = (1. - 1. / tau)
|
||||
|
||||
Ad = np.array([[1., V, 0.],
|
||||
[0., 1., A12],
|
||||
[0., 0., A22]]) * dt
|
||||
|
||||
Bd = np.array([[0.], [0.], [1. / tau]]) * dt
|
||||
|
||||
W_D_0 = - (V / WHEEL_BASE) * delta_r / (math.cos(delta_r)**2)
|
||||
|
||||
W_D = np.array([[0.], [W_D_0], [0.]]) * dt
|
||||
|
||||
# update system matrix
|
||||
lead_controller.update_system_model(Ad, Bd, W_D)
|
||||
|
||||
lead_opt_u = lead_controller.calc_input(np.zeros(3), lead_reference)
|
||||
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
|
||||
|
||||
|
||||
## follow
|
||||
# make follow car
|
||||
follow_reference = np.array([lead_states[1:] for _ in range(pre_step)]).flatten()
|
||||
follow_states = follow_car.xs
|
||||
|
|
|
@ -151,6 +151,15 @@ class MpcController():
|
|||
|
||||
print("dist_mat = \n{0}".format(self.dist_mat))
|
||||
|
||||
W_Ds = copy.deepcopy(self.W_D)
|
||||
|
||||
for _ in range(self.pre_step - 1):
|
||||
W_Ds = np.vstack((W_Ds, self.W_D))
|
||||
|
||||
self.dist_mat = np.dot(self.dist_mat, W_Ds)
|
||||
|
||||
print("dist_mat = \n{0}".format(self.dist_mat))
|
||||
|
||||
# evaluation function weight
|
||||
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
|
||||
diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)])
|
||||
|
@ -217,7 +226,7 @@ class MpcController():
|
|||
|
||||
# about state
|
||||
print("check the matrix!! if you think rite, plese push enter")
|
||||
input()
|
||||
# input()
|
||||
|
||||
def calc_input(self, states, references):
|
||||
"""calculate optimal input
|
||||
|
|
Loading…
Reference in New Issue