Merge branch 'develop' of github.com:Shunichi-03/PythonLinearNonlinearControl into develop
This commit is contained in:
commit
a3c3269c0f
|
@ -6,6 +6,8 @@
|
|||
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
|
||||
| Two wheeled System (Moving Goal) (Coming soon) | x | ✓ | 3 | 2 |
|
||||
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
|
||||
| Nonlinear Sample System Env | x | ✓ | 2 | 1 |
|
||||
|
||||
|
||||
## [FistOrderLagEnv](PythonLinearNonlinearControl/envs/first_order_lag.py)
|
||||
|
||||
|
@ -54,3 +56,13 @@ mc = 1, mp = 0.2, l = 0.5, g = 9.81
|
|||
### Cost.
|
||||
|
||||
<img src="assets/cartpole_score.png" width="300">
|
||||
|
||||
## [Nonlinear Sample System Env](PythonLinearNonlinearControl/envs/nonlinear_sample_system.py)
|
||||
|
||||
## System equation.
|
||||
|
||||
<img src="assets/nonlinear_sample_system.png" width="400">
|
||||
|
||||
### Cost.
|
||||
|
||||
<img src="assets/nonlinear_sample_system_score.png" width="400">
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def rotate_pos(pos, angle):
|
||||
""" Transformation the coordinate in the angle
|
||||
|
||||
|
@ -14,6 +15,7 @@ def rotate_pos(pos, angle):
|
|||
|
||||
return np.dot(pos, rot_mat.T)
|
||||
|
||||
|
||||
def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
|
||||
""" Check angle range and correct the range
|
||||
|
||||
|
@ -43,15 +45,17 @@ def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
|
|||
output = np.minimum(max_angle, np.maximum(min_angle, output))
|
||||
return output.reshape(output_shape)
|
||||
|
||||
def update_state_with_Runge_Kutta(state, u, functions, dt=0.01):
|
||||
|
||||
def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
|
||||
""" update state in Runge Kutta methods
|
||||
Args:
|
||||
state (array-like): state of system
|
||||
u (array-like): input of system
|
||||
functions (list): update function of each state,
|
||||
each function will be called like func(*state, *u)
|
||||
each function will be called like func(state, u)
|
||||
We expect that this function returns differential of each state
|
||||
dt (float): float in seconds
|
||||
batch (bool): state and u is given by batch or not
|
||||
|
||||
Returns:
|
||||
next_state (np.array): next state of system
|
||||
|
@ -65,6 +69,7 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01):
|
|||
|
||||
Note that the function return x_dot.
|
||||
"""
|
||||
if not batch:
|
||||
state_size = len(state)
|
||||
assert state_size == len(functions), \
|
||||
"Invalid functions length, You need to give the state size functions"
|
||||
|
@ -74,27 +79,69 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01):
|
|||
k2 = np.zeros(state_size)
|
||||
k3 = np.zeros(state_size)
|
||||
|
||||
inputs = np.concatenate([state, u])
|
||||
for i, func in enumerate(functions):
|
||||
k0[i] = dt * func(state, u)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k0[i] = dt * func(*inputs)
|
||||
|
||||
add_state = state + k0 / 2.
|
||||
inputs = np.concatenate([add_state, u])
|
||||
k1[i] = dt * func(state + k0 / 2., u)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k1[i] = dt * func(*inputs)
|
||||
|
||||
add_state = state + k1 / 2.
|
||||
inputs = np.concatenate([add_state, u])
|
||||
k2[i] = dt * func(state + k1 / 2., u)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k2[i] = dt * func(*inputs)
|
||||
k3[i] = dt * func(state + k2, u)
|
||||
|
||||
add_state = state + k2
|
||||
inputs = np.concatenate([add_state, u])
|
||||
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
|
||||
else:
|
||||
batch_size, state_size = state.shape
|
||||
assert state_size == len(functions), \
|
||||
"Invalid functions length, You need to give the state size functions"
|
||||
|
||||
k0 = np.zeros((batch_size, state_size))
|
||||
k1 = np.zeros((batch_size, state_size))
|
||||
k2 = np.zeros((batch_size, state_size))
|
||||
k3 = np.zeros((batch_size, state_size))
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k3[i] = dt * func(*inputs)
|
||||
k0[:, i] = dt * func(state, u)
|
||||
|
||||
return (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
for i, func in enumerate(functions):
|
||||
k1[:, i] = dt * func(state + k0 / 2., u)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k2[:, i] = dt * func(state + k1 / 2., u)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k3[:, i] = dt * func(state + k2, u)
|
||||
|
||||
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
|
||||
|
||||
def line_search(grad, sol, compute_eval_val,
|
||||
init_alpha=0.001, max_iter=100, update_ratio=1.):
|
||||
""" line search
|
||||
Args:
|
||||
grad (numpy.ndarray): gradient
|
||||
sol (numpy.ndarray): sol
|
||||
compute_eval_val (numpy.ndarray): function to compute evaluation value
|
||||
|
||||
Returns:
|
||||
alpha (float): result of line search
|
||||
"""
|
||||
assert grad.shape == sol.shape
|
||||
base_val = np.inf
|
||||
alpha = init_alpha
|
||||
original_sol = sol.copy()
|
||||
|
||||
for _ in range(max_iter):
|
||||
updated_sol = original_sol - alpha * grad
|
||||
eval_val = compute_eval_val(updated_sol)
|
||||
|
||||
if eval_val < base_val:
|
||||
alpha += init_alpha * update_ratio
|
||||
base_val = eval_val
|
||||
else:
|
||||
break
|
||||
|
||||
return alpha
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class CartPoleConfigModule():
|
||||
# parameters
|
||||
ENV_NAME = "CartPole-v0"
|
||||
|
@ -39,21 +40,21 @@ class CartPoleConfigModule():
|
|||
"num_elites": 50,
|
||||
"max_iters": 15,
|
||||
"alpha": 0.3,
|
||||
"init_var":9.,
|
||||
"threshold":0.001
|
||||
"init_var": 9.,
|
||||
"threshold": 0.001
|
||||
},
|
||||
"MPPI":{
|
||||
"beta" : 0.6,
|
||||
"MPPI": {
|
||||
"beta": 0.6,
|
||||
"popsize": 5000,
|
||||
"kappa": 0.9,
|
||||
"noise_sigma": 0.5,
|
||||
},
|
||||
"MPPIWilliams":{
|
||||
"MPPIWilliams": {
|
||||
"popsize": 5000,
|
||||
"lambda": 1.,
|
||||
"noise_sigma": 0.9,
|
||||
},
|
||||
"iLQR":{
|
||||
"iLQR": {
|
||||
"max_iter": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
|
@ -61,7 +62,7 @@ class CartPoleConfigModule():
|
|||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"DDP":{
|
||||
"DDP": {
|
||||
"max_iter": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
|
@ -69,9 +70,9 @@ class CartPoleConfigModule():
|
|||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC-CGMRES":{
|
||||
"NMPC-CGMRES": {
|
||||
},
|
||||
"NMPC-Newton":{
|
||||
"NMPC-Newton": {
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -103,15 +104,15 @@ class CartPoleConfigModule():
|
|||
"""
|
||||
|
||||
if len(x.shape) > 2:
|
||||
return (6. * (x[:, :, 0]**2) \
|
||||
+ 12. * ((np.cos(x[:, :, 2]) + 1.)**2) \
|
||||
+ 0.1 * (x[:, :, 1]**2) \
|
||||
return (6. * (x[:, :, 0]**2)
|
||||
+ 12. * ((np.cos(x[:, :, 2]) + 1.)**2)
|
||||
+ 0.1 * (x[:, :, 1]**2)
|
||||
+ 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
|
||||
|
||||
elif len(x.shape) > 1:
|
||||
return (6. * (x[:, 0]**2) \
|
||||
+ 12. * ((np.cos(x[:, 2]) + 1.)**2) \
|
||||
+ 0.1 * (x[:, 1]**2) \
|
||||
return (6. * (x[:, 0]**2)
|
||||
+ 12. * ((np.cos(x[:, 2]) + 1.)**2)
|
||||
+ 0.1 * (x[:, 1]**2)
|
||||
+ 0.1 * (x[:, 3]**2))[:, np.newaxis]
|
||||
|
||||
return 6. * (x[0]**2) \
|
||||
|
@ -134,20 +135,20 @@ class CartPoleConfigModule():
|
|||
"""
|
||||
|
||||
if len(terminal_x.shape) > 1:
|
||||
return (6. * (terminal_x[:, 0]**2) \
|
||||
+ 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2) \
|
||||
+ 0.1 * (terminal_x[:, 1]**2) \
|
||||
return (6. * (terminal_x[:, 0]**2)
|
||||
+ 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2)
|
||||
+ 0.1 * (terminal_x[:, 1]**2)
|
||||
+ 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis] \
|
||||
* CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
return (6. * (terminal_x[0]**2) \
|
||||
+ 12. * ((np.cos(terminal_x[2]) + 1.)**2) \
|
||||
+ 0.1 * (terminal_x[1]**2) \
|
||||
return (6. * (terminal_x[0]**2)
|
||||
+ 12. * ((np.cos(terminal_x[2]) + 1.)**2)
|
||||
+ 0.1 * (terminal_x[1]**2)
|
||||
+ 0.1 * (terminal_x[3]**2)) \
|
||||
* CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -163,7 +164,7 @@ class CartPoleConfigModule():
|
|||
cost_dx1 = 0.2 * x[:, 1]
|
||||
cost_dx2 = 24. * (1 + np.cos(x[:, 2])) * -np.sin(x[:, 2])
|
||||
cost_dx3 = 0.2 * x[:, 3]
|
||||
cost_dx = np.stack((cost_dx0, cost_dx1,\
|
||||
cost_dx = np.stack((cost_dx0, cost_dx1,
|
||||
cost_dx2, cost_dx3), axis=1)
|
||||
return cost_dx
|
||||
|
||||
|
@ -176,7 +177,7 @@ class CartPoleConfigModule():
|
|||
return cost_dx * CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -188,7 +189,7 @@ class CartPoleConfigModule():
|
|||
return 2. * u * np.diag(CartPoleConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -226,7 +227,7 @@ class CartPoleConfigModule():
|
|||
return hessian[np.newaxis, :, :] * CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -241,7 +242,7 @@ class CartPoleConfigModule():
|
|||
return np.tile(2.*CartPoleConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class FirstOrderLagConfigModule():
|
||||
# parameters
|
||||
ENV_NAME = "FirstOrderLag-v0"
|
||||
|
@ -34,41 +35,41 @@ class FirstOrderLagConfigModule():
|
|||
"num_elites": 50,
|
||||
"max_iters": 15,
|
||||
"alpha": 0.3,
|
||||
"init_var":1.,
|
||||
"threshold":0.001
|
||||
"init_var": 1.,
|
||||
"threshold": 0.001
|
||||
},
|
||||
"MPPI":{
|
||||
"beta" : 0.6,
|
||||
"MPPI": {
|
||||
"beta": 0.6,
|
||||
"popsize": 5000,
|
||||
"kappa": 0.9,
|
||||
"noise_sigma": 0.5,
|
||||
},
|
||||
"MPPIWilliams":{
|
||||
"MPPIWilliams": {
|
||||
"popsize": 5000,
|
||||
"lambda": 1.,
|
||||
"noise_sigma": 0.9,
|
||||
},
|
||||
"MPC":{
|
||||
"MPC": {
|
||||
},
|
||||
"iLQR":{
|
||||
"max_iter": 500,
|
||||
"iLQR": {
|
||||
"max_iters": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"DDP":{
|
||||
"max_iter": 500,
|
||||
"DDP": {
|
||||
"max_iters": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC-CGMRES":{
|
||||
"NMPC-CGMRES": {
|
||||
},
|
||||
"NMPC-Newton":{
|
||||
"NMPC-Newton": {
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -114,7 +115,7 @@ class FirstOrderLagConfigModule():
|
|||
* np.diag(FirstOrderLagConfigModule.Sf)
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -128,11 +129,11 @@ class FirstOrderLagConfigModule():
|
|||
if not terminal:
|
||||
return 2. * (x - g_x) * np.diag(FirstOrderLagConfigModule.Q)
|
||||
|
||||
return (2. * (x - g_x) \
|
||||
return (2. * (x - g_x)
|
||||
* np.diag(FirstOrderLagConfigModule.Sf))[np.newaxis, :]
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -145,7 +146,7 @@ class FirstOrderLagConfigModule():
|
|||
return 2. * u * np.diag(FirstOrderLagConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -164,7 +165,7 @@ class FirstOrderLagConfigModule():
|
|||
return np.tile(2.*FirstOrderLagConfigModule.Sf, (1, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -180,7 +181,7 @@ class FirstOrderLagConfigModule():
|
|||
return np.tile(2.*FirstOrderLagConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
from .first_order_lag import FirstOrderLagConfigModule
|
||||
from .two_wheeled import TwoWheeledConfigModule
|
||||
from .two_wheeled import TwoWheeledConfigModule, TwoWheeledExtendConfigModule
|
||||
from .cartpole import CartPoleConfigModule
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemConfigModule, NonlinearSampleSystemExtendConfigModule
|
||||
|
||||
|
||||
def make_config(args):
|
||||
"""
|
||||
|
@ -10,6 +12,12 @@ def make_config(args):
|
|||
if args.env == "FirstOrderLag":
|
||||
return FirstOrderLagConfigModule()
|
||||
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
|
||||
if args.controller_type == "NMPCCGMRES":
|
||||
return TwoWheeledExtendConfigModule()
|
||||
return TwoWheeledConfigModule()
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleConfigModule()
|
||||
elif args.env == "NonlinearSample":
|
||||
if args.controller_type == "NMPCCGMRES":
|
||||
return NonlinearSampleSystemExtendConfigModule()
|
||||
return NonlinearSampleSystemConfigModule()
|
||||
|
|
|
@ -0,0 +1,353 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class NonlinearSampleSystemConfigModule():
|
||||
# parameters
|
||||
ENV_NAME = "NonlinearSampleSystem-v0"
|
||||
PLANNER_TYPE = "Const"
|
||||
TYPE = "Nonlinear"
|
||||
TASK_HORIZON = 2000
|
||||
PRED_LEN = 10
|
||||
STATE_SIZE = 2
|
||||
INPUT_SIZE = 1
|
||||
DT = 0.01
|
||||
R = np.diag([1.])
|
||||
Q = None
|
||||
Sf = None
|
||||
# bounds
|
||||
INPUT_LOWER_BOUND = np.array([-0.5])
|
||||
INPUT_UPPER_BOUND = np.array([0.5])
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
# opt configs
|
||||
self.opt_config = {
|
||||
"Random": {
|
||||
"popsize": 5000
|
||||
},
|
||||
"CEM": {
|
||||
"popsize": 500,
|
||||
"num_elites": 50,
|
||||
"max_iters": 15,
|
||||
"alpha": 0.3,
|
||||
"init_var": 9.,
|
||||
"threshold": 0.001
|
||||
},
|
||||
"MPPI": {
|
||||
"beta": 0.6,
|
||||
"popsize": 5000,
|
||||
"kappa": 0.9,
|
||||
"noise_sigma": 0.5,
|
||||
},
|
||||
"MPPIWilliams": {
|
||||
"popsize": 5000,
|
||||
"lambda": 1.,
|
||||
"noise_sigma": 0.9,
|
||||
},
|
||||
"iLQR": {
|
||||
"max_iters": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"DDP": {
|
||||
"max_iters": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC": {
|
||||
"threshold": 0.01,
|
||||
"max_iters": 5000,
|
||||
"learning_rate": 0.01,
|
||||
"optimizer_mode": "conjugate"
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def input_cost_fn(u):
|
||||
""" input cost functions
|
||||
|
||||
Args:
|
||||
u (numpy.ndarray): input, shape(pred_len, input_size)
|
||||
or shape(pop_size, pred_len, input_size)
|
||||
Returns:
|
||||
cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
|
||||
shape(pop_size, pred_len, input_size)
|
||||
"""
|
||||
return (u**2) * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def state_cost_fn(x, g_x):
|
||||
""" state cost function
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
or shape(pop_size, pred_len, state_size)
|
||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||
or shape(pop_size, pred_len, state_size)
|
||||
Returns:
|
||||
cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
|
||||
shape(pop_size, pred_len, 1)
|
||||
"""
|
||||
|
||||
if len(x.shape) > 2:
|
||||
return (0.5 * (x[:, :, 0]**2) +
|
||||
0.5 * (x[:, :, 1]**2))[:, :, np.newaxis]
|
||||
|
||||
elif len(x.shape) > 1:
|
||||
return (0.5 * (x[:, 0]**2) + 0.5 * (x[:, 1]**2))[:, np.newaxis]
|
||||
|
||||
return 0.5 * (x[0]**2) + 0.5 * (x[1]**2)
|
||||
|
||||
@staticmethod
|
||||
def terminal_state_cost_fn(terminal_x, terminal_g_x):
|
||||
"""
|
||||
|
||||
Args:
|
||||
terminal_x (numpy.ndarray): terminal state,
|
||||
shape(state_size, ) or shape(pop_size, state_size)
|
||||
terminal_g_x (numpy.ndarray): terminal goal state,
|
||||
shape(state_size, ) or shape(pop_size, state_size)
|
||||
Returns:
|
||||
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
|
||||
shape(pop_size, pred_len)
|
||||
"""
|
||||
|
||||
if len(terminal_x.shape) > 1:
|
||||
return (0.5 * (terminal_x[:, 0]**2) +
|
||||
0.5 * (terminal_x[:, 1]**2))[:, np.newaxis]
|
||||
|
||||
return 0.5 * (terminal_x[0]**2) + 0.5 * (terminal_x[1]**2)
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||
|
||||
Returns:
|
||||
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
||||
or shape(1, state_size)
|
||||
"""
|
||||
if not terminal:
|
||||
cost_dx0 = x[:, 0]
|
||||
cost_dx1 = x[:, 1]
|
||||
cost_dx = np.stack((cost_dx0, cost_dx1), axis=1)
|
||||
return cost_dx
|
||||
|
||||
cost_dx0 = x[0]
|
||||
cost_dx1 = x[1]
|
||||
cost_dx = np.array([[cost_dx0, cost_dx1]])
|
||||
|
||||
return cost_dx
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||
Returns:
|
||||
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
||||
"""
|
||||
return 2. * u * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||
Returns:
|
||||
l_xx (numpy.ndarray): gradient of cost,
|
||||
shape(pred_len, state_size, state_size) or
|
||||
shape(1, state_size, state_size) or
|
||||
"""
|
||||
if not terminal:
|
||||
(pred_len, state_size) = x.shape
|
||||
hessian = np.eye(state_size)
|
||||
hessian = np.tile(hessian, (pred_len, 1, 1))
|
||||
hessian[:, 0, 0] = 1.
|
||||
hessian[:, 1, 1] = 1.
|
||||
|
||||
return hessian
|
||||
|
||||
state_size = len(x)
|
||||
hessian = np.eye(state_size)
|
||||
hessian[0, 0] = 1.
|
||||
hessian[1, 1] = 1.
|
||||
|
||||
return hessian[np.newaxis, :, :]
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||
Returns:
|
||||
l_uu (numpy.ndarray): gradient of cost,
|
||||
shape(pred_len, input_size, input_size)
|
||||
"""
|
||||
(pred_len, _) = u.shape
|
||||
|
||||
return np.tile(NonlinearSampleSystemConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||
Returns:
|
||||
l_ux (numpy.ndarray): gradient of cost ,
|
||||
shape(pred_len, input_size, state_size)
|
||||
"""
|
||||
(_, state_size) = x.shape
|
||||
(pred_len, input_size) = u.shape
|
||||
|
||||
return np.zeros((pred_len, input_size, state_size))
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_input(x, lam, u, g_x):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
|
||||
Returns:
|
||||
F (numpy.ndarray), shape(pred_len, input_size)
|
||||
"""
|
||||
if len(x.shape) == 1:
|
||||
input_size = u.shape[0]
|
||||
F = np.zeros(input_size)
|
||||
F[0] = u[0] + lam[1]
|
||||
|
||||
return F
|
||||
|
||||
elif len(x.shape) == 2:
|
||||
pred_len, input_size = u.shape
|
||||
F = np.zeros((pred_len, input_size))
|
||||
|
||||
for i in range(pred_len):
|
||||
F[i, 0] = u[i, 0] + lam[i, 1]
|
||||
|
||||
return F
|
||||
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_state(x, lam, u, g_x):
|
||||
"""
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
|
||||
Returns:
|
||||
lam_dot (numpy.ndarray), shape(state_size, )
|
||||
"""
|
||||
if len(lam.shape) == 1:
|
||||
state_size = lam.shape[0]
|
||||
lam_dot = np.zeros(state_size)
|
||||
lam_dot[0] = x[0] - (2. * x[0] * x[1] + 1.) * lam[1]
|
||||
lam_dot[1] = x[1] + lam[0] + \
|
||||
(-3. * (x[1]**2) - x[0]**2 + 1.) * lam[1]
|
||||
|
||||
return lam_dot
|
||||
|
||||
elif len(lam.shape) == 2:
|
||||
pred_len, state_size = lam.shape
|
||||
lam_dot = np.zeros((pred_len, state_size))
|
||||
|
||||
for i in range(pred_len):
|
||||
lam_dot[i, 0] = x[i, 0] - \
|
||||
(2. * x[i, 0] * x[i, 1] + 1.) * lam[i, 1]
|
||||
lam_dot[i, 1] = x[i, 1] + lam[i, 0] + \
|
||||
(-3. * (x[i, 1]**2) - x[i, 0]**2 + 1.) * lam[i, 1]
|
||||
|
||||
return lam_dot
|
||||
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class NonlinearSampleSystemExtendConfigModule(NonlinearSampleSystemConfigModule):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.opt_config = {
|
||||
"NMPCCGMRES": {
|
||||
"threshold": 1e-3,
|
||||
"zeta": 100.,
|
||||
"delta": 0.01,
|
||||
"alpha": 0.5,
|
||||
"tf": 1.,
|
||||
"constraint": True
|
||||
},
|
||||
"NMPCNewton": {
|
||||
"threshold": 1e-3,
|
||||
"max_iteration": 500,
|
||||
"learning_rate": 1e-3
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_input_with_constraint(x, lam, u, g_x, dummy_u, raw):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
dummy_u (numpy.ndarray): shape(pred_len, input_size)
|
||||
raw (numpy.ndarray): shape(pred_len, input_size), Lagrangian for constraints
|
||||
|
||||
Returns:
|
||||
F (numpy.ndarray), shape(pred_len, 3)
|
||||
"""
|
||||
if len(x.shape) == 1:
|
||||
vanilla_F = np.zeros(1)
|
||||
extend_F = np.zeros(1) # 1 is the same as input size
|
||||
extend_C = np.zeros(1)
|
||||
|
||||
vanilla_F[0] = u[0] + lam[1] + 2. * raw[0] * u[0]
|
||||
extend_F[0] = -0.01 + 2. * raw[0] * dummy_u[0]
|
||||
extend_C[0] = u[0]**2 + dummy_u[0]**2 - \
|
||||
NonlinearSampleSystemConfigModule.INPUT_LOWER_BOUND**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C])
|
||||
|
||||
elif len(x.shape) == 2:
|
||||
pred_len, _ = u.shape
|
||||
vanilla_F = np.zeros((pred_len, 1))
|
||||
extend_F = np.zeros((pred_len, 1)) # 1 is the same as input size
|
||||
extend_C = np.zeros((pred_len, 1))
|
||||
|
||||
for i in range(pred_len):
|
||||
vanilla_F[i, 0] = \
|
||||
u[i, 0] + lam[i, 1] + 2. * raw[i, 0] * u[i, 0]
|
||||
extend_F[i, 0] = -0.01 + 2. * raw[i, 0] * dummy_u[i, 0]
|
||||
extend_C[i, 0] = u[i, 0]**2 + dummy_u[i, 0]**2 - \
|
||||
NonlinearSampleSystemConfigModule.INPUT_LOWER_BOUND**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C], axis=1)
|
||||
|
||||
return F
|
|
@ -4,6 +4,7 @@ from matplotlib.axes import Axes
|
|||
from ..plotters.plot_objs import square_with_angle, square
|
||||
from ..common.utils import fit_angle_in_range
|
||||
|
||||
|
||||
class TwoWheeledConfigModule():
|
||||
# parameters
|
||||
ENV_NAME = "TwoWheeled-v0"
|
||||
|
@ -22,10 +23,15 @@ class TwoWheeledConfigModule():
|
|||
Sf = np.diag([5., 5., 1.])
|
||||
"""
|
||||
# for track goal
|
||||
"""
|
||||
R = np.diag([0.01, 0.01])
|
||||
Q = np.diag([2.5, 2.5, 0.01])
|
||||
Sf = np.diag([2.5, 2.5, 0.01])
|
||||
|
||||
"""
|
||||
# for track goal to NMPC
|
||||
R = np.diag([1., 1.])
|
||||
Q = np.diag([0.001, 0.001, 0.001])
|
||||
Sf = np.diag([1., 1., 0.001])
|
||||
# bounds
|
||||
INPUT_LOWER_BOUND = np.array([-1.5, -3.14])
|
||||
INPUT_UPPER_BOUND = np.array([1.5, 3.14])
|
||||
|
@ -46,39 +52,45 @@ class TwoWheeledConfigModule():
|
|||
"num_elites": 50,
|
||||
"max_iters": 15,
|
||||
"alpha": 0.3,
|
||||
"init_var":1.,
|
||||
"threshold":0.001
|
||||
"init_var": 1.,
|
||||
"threshold": 0.001
|
||||
},
|
||||
"MPPI":{
|
||||
"beta" : 0.6,
|
||||
"MPPI": {
|
||||
"beta": 0.6,
|
||||
"popsize": 5000,
|
||||
"kappa": 0.9,
|
||||
"noise_sigma": 0.5,
|
||||
},
|
||||
"MPPIWilliams":{
|
||||
"MPPIWilliams": {
|
||||
"popsize": 5000,
|
||||
"lambda": 1,
|
||||
"noise_sigma": 1.,
|
||||
},
|
||||
"iLQR":{
|
||||
"max_iter": 500,
|
||||
"iLQR": {
|
||||
"max_iters": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"DDP":{
|
||||
"max_iter": 500,
|
||||
"DDP": {
|
||||
"max_iters": 500,
|
||||
"init_mu": 1.,
|
||||
"mu_min": 1e-6,
|
||||
"mu_max": 1e10,
|
||||
"init_delta": 2.,
|
||||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC-CGMRES":{
|
||||
"NMPC": {
|
||||
"threshold": 0.01,
|
||||
"max_iters": 5000,
|
||||
"learning_rate": 0.01,
|
||||
"optimizer_mode": "conjugate"
|
||||
},
|
||||
"NMPC-Newton":{
|
||||
"NMPC-CGMRES": {
|
||||
},
|
||||
"NMPC-Newton": {
|
||||
},
|
||||
}
|
||||
|
||||
|
@ -142,13 +154,13 @@ class TwoWheeledConfigModule():
|
|||
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
|
||||
shape(pop_size, pred_len)
|
||||
"""
|
||||
terminal_diff = TwoWheeledConfigModule.fit_diff_in_range(terminal_x \
|
||||
terminal_diff = TwoWheeledConfigModule.fit_diff_in_range(terminal_x
|
||||
- terminal_g_x)
|
||||
|
||||
return ((terminal_diff)**2) * np.diag(TwoWheeledConfigModule.Sf)
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -164,11 +176,11 @@ class TwoWheeledConfigModule():
|
|||
if not terminal:
|
||||
return 2. * (diff) * np.diag(TwoWheeledConfigModule.Q)
|
||||
|
||||
return (2. * (diff) \
|
||||
return (2. * (diff)
|
||||
* np.diag(TwoWheeledConfigModule.Sf))[np.newaxis, :]
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -181,7 +193,7 @@ class TwoWheeledConfigModule():
|
|||
return 2. * u * np.diag(TwoWheeledConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -200,7 +212,7 @@ class TwoWheeledConfigModule():
|
|||
return np.tile(2.*TwoWheeledConfigModule.Sf, (1, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -216,7 +228,7 @@ class TwoWheeledConfigModule():
|
|||
return np.tile(2.*TwoWheeledConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
@ -231,3 +243,166 @@ class TwoWheeledConfigModule():
|
|||
(pred_len, input_size) = u.shape
|
||||
|
||||
return np.zeros((pred_len, input_size, state_size))
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_input(x, lam, u, g_x):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
|
||||
Returns:
|
||||
F (numpy.ndarray), shape(pred_len, input_size)
|
||||
"""
|
||||
if len(x.shape) == 1:
|
||||
input_size = u.shape[0]
|
||||
F = np.zeros(input_size)
|
||||
F[0] = u[0] * TwoWheeledConfigModule.R[0, 0] + \
|
||||
lam[0] * np.cos(x[2]) + lam[1] * np.sin(x[2])
|
||||
F[1] = u[1] * TwoWheeledConfigModule.R[1, 1] + lam[2]
|
||||
|
||||
return F
|
||||
|
||||
elif len(x.shape) == 2:
|
||||
pred_len, input_size = u.shape
|
||||
F = np.zeros((pred_len, input_size))
|
||||
|
||||
for i in range(pred_len):
|
||||
F[i, 0] = u[i, 0] * TwoWheeledConfigModule.R[0, 0] + \
|
||||
lam[i, 0] * np.cos(x[i, 2]) + lam[i, 1] * np.sin(x[i, 2])
|
||||
F[i, 1] = u[i, 1] * TwoWheeledConfigModule.R[1, 1] + lam[i, 2]
|
||||
|
||||
return F
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_state(x, lam, u, g_x):
|
||||
"""
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
|
||||
Returns:
|
||||
lam_dot (numpy.ndarray), shape(state_size, )
|
||||
"""
|
||||
if len(lam.shape) == 1:
|
||||
state_size = lam.shape[0]
|
||||
lam_dot = np.zeros(state_size)
|
||||
lam_dot[0] = \
|
||||
(x[0] - g_x[0]) * TwoWheeledConfigModule.Q[0, 0]
|
||||
lam_dot[1] = \
|
||||
(x[1] - g_x[1]) * TwoWheeledConfigModule.Q[1, 1]
|
||||
|
||||
relative_angle = fit_angle_in_range(x[2] - g_x[2])
|
||||
lam_dot[2] = \
|
||||
relative_angle * TwoWheeledConfigModule.Q[2, 2] \
|
||||
- lam[0] * u[0] * np.sin(x[2]) \
|
||||
+ lam[1] * u[0] * np.cos(x[2])
|
||||
|
||||
return lam_dot
|
||||
|
||||
elif len(lam.shape) == 2:
|
||||
pred_len, state_size = lam.shape
|
||||
lam_dot = np.zeros((pred_len, state_size))
|
||||
|
||||
for i in range(pred_len):
|
||||
lam_dot[i, 0] = \
|
||||
(x[i, 0] - g_x[i, 0]) * TwoWheeledConfigModule.Q[0, 0]
|
||||
lam_dot[i, 1] = \
|
||||
(x[i, 1] - g_x[i, 1]) * TwoWheeledConfigModule.Q[1, 1]
|
||||
|
||||
relative_angle = fit_angle_in_range(x[i, 2] - g_x[i, 2])
|
||||
lam_dot[i, 2] = \
|
||||
relative_angle * TwoWheeledConfigModule.Q[2, 2] \
|
||||
- lam[i, 0] * u[i, 0] * np.sin(x[i, 2]) \
|
||||
+ lam[i, 1] * u[i, 0] * np.cos(x[i, 2])
|
||||
|
||||
return lam_dot
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TwoWheeledExtendConfigModule(TwoWheeledConfigModule):
|
||||
PRED_LEN = 20
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.opt_config = {
|
||||
"NMPCCGMRES": {
|
||||
"threshold": 1e-3,
|
||||
"zeta": 5.,
|
||||
"delta": 0.01,
|
||||
"alpha": 0.5,
|
||||
"tf": 1.,
|
||||
"constraint": True
|
||||
},
|
||||
"NMPCNewton": {
|
||||
"threshold": 1e-3,
|
||||
"max_iteration": 500,
|
||||
"learning_rate": 1e-3
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_input_with_constraint(x, lam, u, g_x, dummy_u, raw):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
dummy_u (numpy.ndarray): shape(pred_len, input_size)
|
||||
raw (numpy.ndarray): shape(pred_len, input_size), Lagrangian for constraints
|
||||
|
||||
Returns:
|
||||
F (numpy.ndarray), shape(pred_len, 3)
|
||||
"""
|
||||
if len(x.shape) == 1:
|
||||
vanilla_F = np.zeros(2)
|
||||
extend_F = np.zeros(2) # 1 is the same as input size
|
||||
extend_C = np.zeros(2)
|
||||
|
||||
vanilla_F[0] = u[0] + lam[0] * \
|
||||
np.cos(x[2]) + lam[1] * np.sin(x[2]) + 2. * raw[0] * u[0]
|
||||
vanilla_F[1] = u[1] + lam[2] + 2 * raw[1] * u[1]
|
||||
|
||||
extend_F[0] = -0.01 + 2. * raw[0] * dummy_u[0]
|
||||
extend_F[1] = -0.01 + 2. * raw[1] * dummy_u[1]
|
||||
|
||||
extend_C[0] = u[0]**2 + dummy_u[0]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[0]**2
|
||||
extend_C[1] = u[1]**2 + dummy_u[1]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[1]**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C])
|
||||
|
||||
elif len(x.shape) == 2:
|
||||
pred_len, _ = u.shape
|
||||
vanilla_F = np.zeros((pred_len, 2))
|
||||
extend_F = np.zeros((pred_len, 2)) # 1 is the same as input size
|
||||
extend_C = np.zeros((pred_len, 2))
|
||||
|
||||
for i in range(pred_len):
|
||||
vanilla_F[i, 0] = u[i, 0] + lam[i, 0] * \
|
||||
np.cos(x[i, 2]) + lam[i, 1] * \
|
||||
np.sin(x[i, 2]) + 2. * raw[i, 0] * u[i, 0]
|
||||
vanilla_F[i, 1] = u[i, 1] + lam[i, 2] + 2 * raw[i, 1] * u[i, 1]
|
||||
|
||||
extend_F[i, 0] = -0.01 + 2. * raw[i, 0] * dummy_u[i, 0]
|
||||
extend_F[i, 1] = -0.01 + 2. * raw[i, 1] * dummy_u[i, 1]
|
||||
|
||||
extend_C[i, 0] = u[i, 0]**2 + dummy_u[i, 0]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[0]**2
|
||||
extend_C[i, 1] = u[i, 1]**2 + dummy_u[i, 1]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[1]**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C], axis=1)
|
||||
|
||||
return F
|
||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class CEM(Controller):
|
||||
""" Cross Entropy Method for linear and nonlinear method
|
||||
|
||||
|
@ -19,6 +20,7 @@ class CEM(Controller):
|
|||
using probabilistic dynamics models.
|
||||
In Advances in Neural Information Processing Systems (pp. 4754-4765).
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
super(CEM, self).__init__(config, model)
|
||||
|
||||
|
@ -50,7 +52,7 @@ class CEM(Controller):
|
|||
self.input_cost_fn = config.input_cost_fn
|
||||
|
||||
# init mean
|
||||
self.init_mean = np.tile((config.INPUT_UPPER_BOUND \
|
||||
self.init_mean = np.tile((config.INPUT_UPPER_BOUND
|
||||
+ config.INPUT_LOWER_BOUND) / 2.,
|
||||
self.pred_len)
|
||||
self.prev_sol = self.init_mean.copy()
|
||||
|
@ -86,7 +88,7 @@ class CEM(Controller):
|
|||
|
||||
# make distribution
|
||||
X = stats.truncnorm(-1, 1,
|
||||
loc=np.zeros_like(mean),\
|
||||
loc=np.zeros_like(mean),
|
||||
scale=np.ones_like(mean))
|
||||
|
||||
while (opt_count < self.max_iters) and np.max(var) > self.epsilon:
|
||||
|
|
|
@ -2,9 +2,11 @@ import numpy as np
|
|||
|
||||
from ..envs.cost import calc_cost
|
||||
|
||||
|
||||
class Controller():
|
||||
""" Controller class
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
"""
|
||||
"""
|
||||
|
@ -49,19 +51,7 @@ class Controller():
|
|||
|
||||
# get particle cost
|
||||
costs = calc_cost(pred_xs, samples, g_xs,
|
||||
self.state_cost_fn, self.input_cost_fn, \
|
||||
self.state_cost_fn, self.input_cost_fn,
|
||||
self.terminal_state_cost_fn)
|
||||
|
||||
return costs
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_x(x, u, lam):
|
||||
""" gradient of hamitonian with respect to the state,
|
||||
"""
|
||||
raise NotImplementedError("Implement gradient of hamitonian with respect to the state")
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_u(x, u, lam):
|
||||
""" gradient of hamitonian with respect to the input
|
||||
"""
|
||||
raise NotImplementedError("Implement gradient of hamitonian with respect to the input")
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class DDP(Controller):
|
||||
""" Differential Dynamic Programming
|
||||
|
||||
|
@ -18,6 +19,7 @@ class DDP(Controller):
|
|||
https://github.com/studywolf/control, and
|
||||
https://github.com/anassinator/ilqr
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
"""
|
||||
"""
|
||||
|
@ -30,15 +32,15 @@ class DDP(Controller):
|
|||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
self.gradient_cost_fn_with_state = config.gradient_cost_fn_with_state
|
||||
self.gradient_cost_fn_with_input = config.gradient_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_state = config.hessian_cost_fn_with_state
|
||||
self.hessian_cost_fn_with_input = config.hessian_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_input_state = \
|
||||
config.hessian_cost_fn_with_input_state
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
self.gradient_cost_fn_input = config.gradient_cost_fn_input
|
||||
self.hessian_cost_fn_state = config.hessian_cost_fn_state
|
||||
self.hessian_cost_fn_input = config.hessian_cost_fn_input
|
||||
self.hessian_cost_fn_input_state = \
|
||||
config.hessian_cost_fn_input_state
|
||||
|
||||
# controller parameters
|
||||
self.max_iter = config.opt_config["DDP"]["max_iter"]
|
||||
self.max_iters = config.opt_config["DDP"]["max_iters"]
|
||||
self.init_mu = config.opt_config["DDP"]["init_mu"]
|
||||
self.mu = self.init_mu
|
||||
self.mu_min = config.opt_config["DDP"]["mu_min"]
|
||||
|
@ -86,7 +88,7 @@ class DDP(Controller):
|
|||
# line search param
|
||||
alphas = 1.1**(-np.arange(10)**2)
|
||||
|
||||
while opt_count < self.max_iter:
|
||||
while opt_count < self.max_iters:
|
||||
accepted_sol = False
|
||||
|
||||
# forward
|
||||
|
@ -98,7 +100,7 @@ class DDP(Controller):
|
|||
|
||||
try:
|
||||
# backward
|
||||
k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu, \
|
||||
k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu,
|
||||
l_x, l_xx, l_u, l_uu, l_ux)
|
||||
|
||||
# line search
|
||||
|
@ -139,7 +141,7 @@ class DDP(Controller):
|
|||
# increase regularization term.
|
||||
self.delta = max(1.0, self.delta) * self.init_delta
|
||||
self.mu = max(self.mu_min, self.mu * self.delta)
|
||||
logger.debug("Update regularization term to {}"\
|
||||
logger.debug("Update regularization term to {}"
|
||||
.format(self.mu))
|
||||
if self.mu >= self.mu_max:
|
||||
logger.debug("Reach Max regularization term")
|
||||
|
@ -262,31 +264,31 @@ class DDP(Controller):
|
|||
shape(pred_len, input_size, state_size)
|
||||
"""
|
||||
# l_x.shape = (pred_len+1, state_size)
|
||||
l_x = self.gradient_cost_fn_with_state(pred_xs[:-1],
|
||||
l_x = self.gradient_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_x = \
|
||||
self.gradient_cost_fn_with_state(pred_xs[-1],
|
||||
self.gradient_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
||||
|
||||
# l_u.shape = (pred_len, input_size)
|
||||
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_u = self.gradient_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_xx.shape = (pred_len+1, state_size, state_size)
|
||||
l_xx = self.hessian_cost_fn_with_state(pred_xs[:-1],
|
||||
l_xx = self.hessian_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_xx = \
|
||||
self.hessian_cost_fn_with_state(pred_xs[-1],
|
||||
self.hessian_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
||||
|
||||
# l_uu.shape = (pred_len, input_size, input_size)
|
||||
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_uu = self.hessian_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_ux.shape = (pred_len, input_size, state_size)
|
||||
l_ux = self.hessian_cost_fn_with_input_state(pred_xs[:-1], sol)
|
||||
l_ux = self.hessian_cost_fn_input_state(pred_xs[:-1], sol)
|
||||
|
||||
return l_x, l_xx, l_u, l_uu, l_ux
|
||||
|
||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class iLQR(Controller):
|
||||
""" iterative Liner Quadratique Regulator
|
||||
|
||||
|
@ -16,6 +17,7 @@ class iLQR(Controller):
|
|||
Intelligent Robots and Systems (pp. 4906-4913). and Study Wolf,
|
||||
https://github.com/studywolf/control
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
"""
|
||||
"""
|
||||
|
@ -28,15 +30,15 @@ class iLQR(Controller):
|
|||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
self.gradient_cost_fn_with_state = config.gradient_cost_fn_with_state
|
||||
self.gradient_cost_fn_with_input = config.gradient_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_state = config.hessian_cost_fn_with_state
|
||||
self.hessian_cost_fn_with_input = config.hessian_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_input_state = \
|
||||
config.hessian_cost_fn_with_input_state
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
self.gradient_cost_fn_input = config.gradient_cost_fn_input
|
||||
self.hessian_cost_fn_state = config.hessian_cost_fn_state
|
||||
self.hessian_cost_fn_input = config.hessian_cost_fn_input
|
||||
self.hessian_cost_fn_input_state = \
|
||||
config.hessian_cost_fn_input_state
|
||||
|
||||
# controller parameters
|
||||
self.max_iter = config.opt_config["iLQR"]["max_iter"]
|
||||
self.max_iters = config.opt_config["iLQR"]["max_iters"]
|
||||
self.init_mu = config.opt_config["iLQR"]["init_mu"]
|
||||
self.mu = self.init_mu
|
||||
self.mu_min = config.opt_config["iLQR"]["mu_min"]
|
||||
|
@ -79,7 +81,7 @@ class iLQR(Controller):
|
|||
# line search param
|
||||
alphas = 1.1**(-np.arange(10)**2)
|
||||
|
||||
while opt_count < self.max_iter:
|
||||
while opt_count < self.max_iters:
|
||||
accepted_sol = False
|
||||
|
||||
# forward
|
||||
|
@ -130,7 +132,7 @@ class iLQR(Controller):
|
|||
# increase regularization term.
|
||||
self.delta = max(1.0, self.delta) * self.init_delta
|
||||
self.mu = max(self.mu_min, self.mu * self.delta)
|
||||
logger.debug("Update regularization term to {}"\
|
||||
logger.debug("Update regularization term to {}"
|
||||
.format(self.mu))
|
||||
if self.mu >= self.mu_max:
|
||||
logger.debug("Reach Max regularization term")
|
||||
|
@ -242,31 +244,31 @@ class iLQR(Controller):
|
|||
shape(pred_len, input_size, state_size)
|
||||
"""
|
||||
# l_x.shape = (pred_len+1, state_size)
|
||||
l_x = self.gradient_cost_fn_with_state(pred_xs[:-1],
|
||||
l_x = self.gradient_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_x = \
|
||||
self.gradient_cost_fn_with_state(pred_xs[-1],
|
||||
self.gradient_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
||||
|
||||
# l_u.shape = (pred_len, input_size)
|
||||
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_u = self.gradient_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_xx.shape = (pred_len+1, state_size, state_size)
|
||||
l_xx = self.hessian_cost_fn_with_state(pred_xs[:-1],
|
||||
l_xx = self.hessian_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_xx = \
|
||||
self.hessian_cost_fn_with_state(pred_xs[-1],
|
||||
self.hessian_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
||||
|
||||
# l_uu.shape = (pred_len, input_size, input_size)
|
||||
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_uu = self.hessian_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_ux.shape = (pred_len, input_size, state_size)
|
||||
l_ux = self.hessian_cost_fn_with_input_state(pred_xs[:-1], sol)
|
||||
l_ux = self.hessian_cost_fn_input_state(pred_xs[:-1], sol)
|
||||
|
||||
return l_x, l_xx, l_u, l_uu, l_ux
|
||||
|
||||
|
|
|
@ -5,6 +5,9 @@ from .mppi import MPPI
|
|||
from .mppi_williams import MPPIWilliams
|
||||
from .ilqr import iLQR
|
||||
from .ddp import DDP
|
||||
from .nmpc import NMPC
|
||||
from .nmpc_cgmres import NMPCCGMRES
|
||||
|
||||
|
||||
def make_controller(args, config, model):
|
||||
|
||||
|
@ -22,5 +25,9 @@ def make_controller(args, config, model):
|
|||
return iLQR(config, model)
|
||||
elif args.controller_type == "DDP":
|
||||
return DDP(config, model)
|
||||
elif args.controller_type == "NMPC":
|
||||
return NMPC(config, model)
|
||||
elif args.controller_type == "NMPCCGMRES":
|
||||
return NMPCCGMRES(config, model)
|
||||
|
||||
raise ValueError("No controller: {}".format(args.controller_type))
|
|
@ -9,6 +9,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class LinearMPC(Controller):
|
||||
""" Model Predictive Controller for linear model
|
||||
|
||||
|
@ -21,6 +22,7 @@ class LinearMPC(Controller):
|
|||
Ref:
|
||||
Maciejowski, J. M. (2002). Predictive control: with constraints.
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
"""
|
||||
Args:
|
||||
|
@ -91,8 +93,8 @@ class LinearMPC(Controller):
|
|||
|
||||
for i in range(self.pred_len - 1):
|
||||
temp_mat = np.zeros_like(self.gamma_mat)
|
||||
temp_mat[int((i + 1)*self.state_size): , :] =\
|
||||
self.gamma_mat[:-int((i + 1)*self.state_size) , :]
|
||||
temp_mat[int((i + 1)*self.state_size):, :] =\
|
||||
self.gamma_mat[:-int((i + 1)*self.state_size), :]
|
||||
|
||||
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
|
||||
|
||||
|
@ -114,7 +116,7 @@ class LinearMPC(Controller):
|
|||
|
||||
for i in range(self.pred_len - 1):
|
||||
for j in range(self.input_size):
|
||||
temp_F[j * 2: (j + 1) * 2,\
|
||||
temp_F[j * 2: (j + 1) * 2,
|
||||
((i+1) * self.input_size) + j] = np.array([1., -1.])
|
||||
self.F = np.vstack((self.F, temp_F))
|
||||
|
||||
|
@ -187,14 +189,14 @@ class LinearMPC(Controller):
|
|||
|
||||
# using cvxopt
|
||||
def optimized_func(dt_us):
|
||||
return (np.dot(dt_us, np.dot(H, dt_us.reshape(-1, 1))) \
|
||||
return (np.dot(dt_us, np.dot(H, dt_us.reshape(-1, 1)))
|
||||
- np.dot(G.T, dt_us.reshape(-1, 1)))[0]
|
||||
|
||||
# constraint
|
||||
lb = np.array([-np.inf for _ in range(len(ub))]) # one side cons
|
||||
cons = LinearConstraint(A, lb, ub)
|
||||
# solve
|
||||
opt_sol = minimize(optimized_func, self.prev_sol.flatten(),\
|
||||
opt_sol = minimize(optimized_func, self.prev_sol.flatten(),
|
||||
constraints=[cons])
|
||||
opt_dt_us = opt_sol.x
|
||||
|
||||
|
@ -213,7 +215,7 @@ class LinearMPC(Controller):
|
|||
"""
|
||||
|
||||
# to dt form
|
||||
opt_dt_u_seq = np.cumsum(opt_dt_us.reshape(self.pred_len,\
|
||||
opt_dt_u_seq = np.cumsum(opt_dt_us.reshape(self.pred_len,
|
||||
self.input_size),
|
||||
axis=0)
|
||||
self.prev_sol = opt_dt_u_seq.copy()
|
||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class MPPI(Controller):
|
||||
""" Model Predictive Path Integral for linear and nonlinear method
|
||||
|
||||
|
@ -18,6 +19,7 @@ class MPPI(Controller):
|
|||
Deep Dynamics Models for Learning Dexterous Manipulation.
|
||||
arXiv preprint arXiv:1909.11652.
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
super(MPPI, self).__init__(config, model)
|
||||
|
||||
|
@ -47,7 +49,7 @@ class MPPI(Controller):
|
|||
self.input_cost_fn = config.input_cost_fn
|
||||
|
||||
# init mean
|
||||
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND \
|
||||
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND
|
||||
+ config.INPUT_LOWER_BOUND) / 2.,
|
||||
self.pred_len)
|
||||
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
||||
|
@ -81,13 +83,13 @@ class MPPI(Controller):
|
|||
for t in range(self.pred_len):
|
||||
if t > 0:
|
||||
noised_inputs[:, t, :] = self.beta \
|
||||
* (self.prev_sol[t, :] \
|
||||
* (self.prev_sol[t, :]
|
||||
+ noise[:, t, :]) \
|
||||
+ (1 - self.beta) \
|
||||
* noised_inputs[:, t-1, :]
|
||||
else:
|
||||
noised_inputs[:, t, :] = self.beta \
|
||||
* (self.prev_sol[t, :] \
|
||||
* (self.prev_sol[t, :]
|
||||
+ noise[:, t, :]) \
|
||||
+ (1 - self.beta) \
|
||||
* self.history_u[-1]
|
||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class MPPIWilliams(Controller):
|
||||
""" Model Predictive Path Integral for linear and nonlinear method
|
||||
|
||||
|
@ -19,6 +20,7 @@ class MPPIWilliams(Controller):
|
|||
2017 IEEE International Conference on Robotics and Automation (ICRA),
|
||||
Singapore, 2017, pp. 1714-1721.
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
super(MPPIWilliams, self).__init__(config, model)
|
||||
|
||||
|
@ -47,7 +49,7 @@ class MPPIWilliams(Controller):
|
|||
self.input_cost_fn = config.input_cost_fn
|
||||
|
||||
# init mean
|
||||
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND \
|
||||
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND
|
||||
+ config.INPUT_LOWER_BOUND) / 2.,
|
||||
self.pred_len)
|
||||
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
||||
|
@ -85,7 +87,7 @@ class MPPIWilliams(Controller):
|
|||
|
||||
# get particle cost
|
||||
costs = calc_cost(pred_xs, samples, g_xs,
|
||||
self.state_cost_fn, None, \
|
||||
self.state_cost_fn, None,
|
||||
self.terminal_state_cost_fn)
|
||||
|
||||
return costs
|
||||
|
|
|
@ -0,0 +1,109 @@
|
|||
from logging import getLogger
|
||||
|
||||
import numpy as np
|
||||
import scipy.stats as stats
|
||||
|
||||
from .controller import Controller
|
||||
from ..envs.cost import calc_cost
|
||||
from ..common.utils import line_search
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class NMPC(Controller):
|
||||
def __init__(self, config, model):
|
||||
""" Nonlinear Model Predictive Control using pure gradient algorithm
|
||||
"""
|
||||
super(NMPC, self).__init__(config, model)
|
||||
|
||||
# model
|
||||
self.model = model
|
||||
|
||||
# get cost func
|
||||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
|
||||
# controller parameters
|
||||
self.threshold = config.opt_config["NMPC"]["threshold"]
|
||||
self.max_iters = config.opt_config["NMPC"]["max_iters"]
|
||||
self.learning_rate = config.opt_config["NMPC"]["learning_rate"]
|
||||
self.optimizer_mode = config.opt_config["NMPC"]["optimizer_mode"]
|
||||
|
||||
# general parameters
|
||||
self.pred_len = config.PRED_LEN
|
||||
self.input_size = config.INPUT_SIZE
|
||||
self.dt = config.DT
|
||||
|
||||
# initialize
|
||||
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
||||
|
||||
def obtain_sol(self, curr_x, g_xs):
|
||||
""" calculate the optimal inputs
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
g_xs (numpy.ndarrya): goal trajectory, shape(plan_len, state_size)
|
||||
Returns:
|
||||
opt_input (numpy.ndarray): optimal input, shape(input_size, )
|
||||
"""
|
||||
sol = self.prev_sol.copy()
|
||||
count = 0
|
||||
# use for Conjugate method
|
||||
conjugate_d = None
|
||||
conjugate_prev_d = None
|
||||
conjugate_s = None
|
||||
conjugate_beta = None
|
||||
|
||||
while True:
|
||||
# shape(pred_len+1, state_size)
|
||||
pred_xs = self.model.predict_traj(curr_x, sol)
|
||||
# shape(pred_len, state_size)
|
||||
pred_lams = self.model.predict_adjoint_traj(pred_xs, sol, g_xs)
|
||||
|
||||
F_hat = self.config.gradient_hamiltonian_input(
|
||||
pred_xs, pred_lams, sol, g_xs)
|
||||
|
||||
if np.linalg.norm(F_hat) < self.threshold:
|
||||
break
|
||||
|
||||
if count > self.max_iters:
|
||||
logger.debug(" break max iteartion at F : `{}".format(
|
||||
np.linalg.norm(F_hat)))
|
||||
break
|
||||
|
||||
if self.optimizer_mode == "conjugate":
|
||||
conjugate_d = F_hat.flatten()
|
||||
|
||||
if conjugate_prev_d is None: # initial
|
||||
conjugate_s = conjugate_d
|
||||
conjugate_prev_d = conjugate_d
|
||||
F_hat = conjugate_s.reshape(F_hat.shape)
|
||||
else:
|
||||
prev_d = np.dot(conjugate_prev_d, conjugate_prev_d)
|
||||
d = np.dot(conjugate_d, conjugate_d - conjugate_prev_d)
|
||||
conjugate_beta = (d + 1e-6) / (prev_d + 1e-6)
|
||||
|
||||
conjugate_s = conjugate_d + conjugate_beta * conjugate_s
|
||||
conjugate_prev_d = conjugate_d
|
||||
F_hat = conjugate_s.reshape(F_hat.shape)
|
||||
|
||||
def compute_eval_val(u):
|
||||
pred_xs = self.model.predict_traj(curr_x, u)
|
||||
state_cost = np.sum(self.config.state_cost_fn(
|
||||
pred_xs[1:-1], g_xs[1:-1]))
|
||||
input_cost = np.sum(self.config.input_cost_fn(u))
|
||||
terminal_cost = np.sum(
|
||||
self.config.terminal_state_cost_fn(pred_xs[-1], g_xs[-1]))
|
||||
return state_cost + input_cost + terminal_cost
|
||||
|
||||
alpha = line_search(F_hat, sol,
|
||||
compute_eval_val, init_alpha=self.learning_rate)
|
||||
|
||||
sol -= alpha * F_hat
|
||||
count += 1
|
||||
|
||||
# update us for next optimization
|
||||
self.prev_sol = np.concatenate(
|
||||
(sol[1:], np.zeros((1, self.input_size))), axis=0)
|
||||
|
||||
return sol[0]
|
|
@ -0,0 +1,167 @@
|
|||
from logging import getLogger
|
||||
|
||||
import numpy as np
|
||||
import scipy.stats as stats
|
||||
|
||||
from .controller import Controller
|
||||
from ..envs.cost import calc_cost
|
||||
from ..common.utils import line_search
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class NMPCCGMRES(Controller):
|
||||
def __init__(self, config, model):
|
||||
""" Nonlinear Model Predictive Control using cgmres
|
||||
"""
|
||||
super(NMPCCGMRES, self).__init__(config, model)
|
||||
|
||||
# model
|
||||
self.model = model
|
||||
|
||||
# get cost func
|
||||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
|
||||
# general parameters
|
||||
self.pred_len = config.PRED_LEN
|
||||
self.input_size = config.INPUT_SIZE
|
||||
self.dt = config.DT
|
||||
|
||||
# controller parameters
|
||||
self.threshold = config.opt_config["NMPCCGMRES"]["threshold"]
|
||||
self.zeta = config.opt_config["NMPCCGMRES"]["zeta"]
|
||||
self.delta = config.opt_config["NMPCCGMRES"]["delta"]
|
||||
self.alpha = config.opt_config["NMPCCGMRES"]["alpha"]
|
||||
self.tf = config.opt_config["NMPCCGMRES"]["tf"]
|
||||
self.divide_num = config.PRED_LEN
|
||||
self.with_constraint = config.opt_config["NMPCCGMRES"]["constraint"]
|
||||
if not self.with_constraint:
|
||||
raise NotImplementedError
|
||||
# 3 means u, dummy_u, raw
|
||||
self.max_iters = 3 * self.input_size * self.divide_num
|
||||
|
||||
# initialize
|
||||
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
||||
self.opt_count = 1
|
||||
# add smaller than constraints value
|
||||
input_constraint = np.abs([config.INPUT_LOWER_BOUND])
|
||||
self.prev_dummy_sol = np.ones(
|
||||
(self.pred_len, self.input_size)) * input_constraint - 1e-3
|
||||
# add bigger than 0.01 to avoid computational error
|
||||
self.prev_raw = np.zeros(
|
||||
(self.pred_len, self.input_size)) + 0.01 + 1e-3
|
||||
|
||||
def _compute_f(self, curr_x, sol, g_xs, dummy_sol=None, raw=None):
|
||||
# shape(pred_len+1, state_size)
|
||||
pred_xs = self.model.predict_traj(curr_x, sol)
|
||||
# shape(pred_len, state_size)
|
||||
pred_lams = self.model.predict_adjoint_traj(pred_xs, sol, g_xs)
|
||||
|
||||
if self.with_constraint:
|
||||
F = self.config.gradient_hamiltonian_input_with_constraint(
|
||||
pred_xs, pred_lams, sol, g_xs, dummy_sol, raw)
|
||||
|
||||
return F
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def obtain_sol(self, curr_x, g_xs):
|
||||
""" calculate the optimal inputs
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
g_xs (numpy.ndarrya): goal trajectory, shape(plan_len, state_size)
|
||||
Returns:
|
||||
opt_input (numpy.ndarray): optimal input, shape(input_size, )
|
||||
"""
|
||||
sol = self.prev_sol.copy()
|
||||
dummy_sol = self.prev_dummy_sol.copy()
|
||||
raw = self.prev_raw.copy()
|
||||
|
||||
# compute delta t
|
||||
time = self.dt * self.opt_count
|
||||
dt = self.tf * (1. - np.exp(-self.alpha * time)) / \
|
||||
float(self.divide_num)
|
||||
self.model.dt = dt
|
||||
|
||||
# compute Fxt
|
||||
x_dot = self.model.x_dot(curr_x, sol[0])
|
||||
dx = x_dot * self.delta
|
||||
Fxt = self._compute_f(curr_x+dx, sol, g_xs, dummy_sol, raw).flatten()
|
||||
|
||||
# compute F
|
||||
F = self._compute_f(curr_x, sol, g_xs, dummy_sol, raw).flatten()
|
||||
right = - self.zeta * F - ((Fxt - F) / self.delta)
|
||||
|
||||
# compute Fuxt
|
||||
du = sol * self.delta
|
||||
ddummy_u = dummy_sol * self.delta
|
||||
draw = raw * self.delta
|
||||
Fuxt = self._compute_f(curr_x+dx, sol+du, g_xs,
|
||||
dummy_sol+ddummy_u, raw+draw).flatten()
|
||||
left = ((Fuxt - Fxt) / self.delta)
|
||||
|
||||
r0 = right - left
|
||||
r0_norm = np.linalg.norm(r0)
|
||||
|
||||
vs = np.zeros((self.max_iters, self.max_iters + 1))
|
||||
vs[:, 0] = r0 / r0_norm
|
||||
hs = np.zeros((self.max_iters + 1, self.max_iters + 1))
|
||||
e = np.zeros((self.max_iters + 1, 1))
|
||||
e[0] = 1.
|
||||
|
||||
for i in range(self.max_iters):
|
||||
reshaped_vs = vs.reshape(
|
||||
(self.divide_num, 3, self.input_size, self.max_iters+1))
|
||||
du = reshaped_vs[:, 0, :, i] * self.delta
|
||||
ddummy_u = reshaped_vs[:, 1, :, i] * self.delta
|
||||
draw = reshaped_vs[:, 2, :, i] * self.delta
|
||||
|
||||
Fuxt = self._compute_f(
|
||||
curr_x+dx, sol+du, g_xs, dummy_sol+ddummy_u, raw+draw).flatten()
|
||||
Av = ((Fuxt - Fxt) / self.delta)
|
||||
|
||||
sum_Av = np.zeros(self.max_iters)
|
||||
|
||||
for j in range(i + 1):
|
||||
hs[j, i] = np.dot(Av, vs[:, j])
|
||||
sum_Av = sum_Av + hs[j, i] * vs[:, j]
|
||||
|
||||
v_est = Av - sum_Av
|
||||
|
||||
hs[i+1, i] = np.linalg.norm(v_est)
|
||||
|
||||
vs[:, i+1] = v_est / hs[i+1, i]
|
||||
|
||||
inv_hs = np.linalg.pinv(hs[:i+1, :i])
|
||||
ys = np.dot(inv_hs, r0_norm * e[:i+1])
|
||||
|
||||
judge_value = r0_norm * e[:i+1] - np.dot(hs[:i+1, :i], ys[:i])
|
||||
|
||||
if np.linalg.norm(judge_value) < self.threshold or i == self.max_iters-1:
|
||||
update_value = np.dot(vs[:, :i-1], ys_pre[:i-1]).flatten()
|
||||
|
||||
update_value = update_value.reshape(
|
||||
(self.divide_num, 3, self.input_size))
|
||||
du_new = du + update_value[:, 0, :]
|
||||
ddummy_u_new = ddummy_u + update_value[:, 1, :]
|
||||
draw_new = draw + update_value[:, 2, :]
|
||||
break
|
||||
|
||||
ys_pre = ys
|
||||
|
||||
sol += du_new * self.delta
|
||||
dummy_sol += ddummy_u_new * self.delta
|
||||
raw += draw_new * self.delta
|
||||
|
||||
F = self._compute_f(curr_x, sol, g_xs, dummy_sol, raw)
|
||||
logger.debug("check F = {0}".format(np.linalg.norm(F)))
|
||||
|
||||
self.prev_sol = sol.copy()
|
||||
self.prev_dummy_sol = dummy_sol.copy()
|
||||
self.prev_raw = raw.copy()
|
||||
|
||||
self.opt_count += 1
|
||||
|
||||
return sol[0]
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class RandomShooting(Controller):
|
||||
""" Random Shooting Method for linear and nonlinear method
|
||||
|
||||
|
@ -19,6 +20,7 @@ class RandomShooting(Controller):
|
|||
using probabilistic dynamics models.
|
||||
In Advances in Neural Information Processing Systems (pp. 4754-4765).
|
||||
"""
|
||||
|
||||
def __init__(self, config, model):
|
||||
super(RandomShooting, self).__init__(config, model)
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@ from matplotlib.axes import Axes
|
|||
from .env import Env
|
||||
from ..plotters.plot_objs import square
|
||||
|
||||
|
||||
class CartPoleEnv(Env):
|
||||
""" Cartpole Environment
|
||||
|
||||
|
@ -13,13 +14,14 @@ class CartPoleEnv(Env):
|
|||
6-832-underactuated-robotics-spring-2009/readings/
|
||||
MIT6_832s09_read_ch03.pdf
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
self.config = {"state_size" : 4,
|
||||
"input_size" : 1,
|
||||
"dt" : 0.02,
|
||||
"max_step" : 500,
|
||||
self.config = {"state_size": 4,
|
||||
"input_size": 1,
|
||||
"dt": 0.02,
|
||||
"max_step": 500,
|
||||
"input_lower_bound": [-3.],
|
||||
"input_upper_bound": [3.],
|
||||
"mp": 0.2,
|
||||
|
@ -76,21 +78,21 @@ class CartPoleEnv(Env):
|
|||
# x
|
||||
d_x0 = self.curr_x[1]
|
||||
# v_x
|
||||
d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2]) \
|
||||
* (self.config["l"] * (self.curr_x[3]**2) \
|
||||
d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2])
|
||||
* (self.config["l"] * (self.curr_x[3]**2)
|
||||
+ self.config["g"] * np.cos(self.curr_x[2]))) \
|
||||
/ (self.config["mc"] + self.config["mp"] \
|
||||
/ (self.config["mc"] + self.config["mp"]
|
||||
* (np.sin(self.curr_x[2])**2))
|
||||
# theta
|
||||
d_x2 = self.curr_x[3]
|
||||
|
||||
# v_theta
|
||||
d_x3 = (-u[0] * np.cos(self.curr_x[2]) \
|
||||
- self.config["mp"] * self.config["l"] * (self.curr_x[3]**2) \
|
||||
* np.cos(self.curr_x[2]) * np.sin(self.curr_x[2]) \
|
||||
- (self.config["mc"] + self.config["mp"]) * self.config["g"] \
|
||||
d_x3 = (-u[0] * np.cos(self.curr_x[2])
|
||||
- self.config["mp"] * self.config["l"] * (self.curr_x[3]**2)
|
||||
* np.cos(self.curr_x[2]) * np.sin(self.curr_x[2])
|
||||
- (self.config["mc"] + self.config["mp"]) * self.config["g"]
|
||||
* np.sin(self.curr_x[2])) \
|
||||
/ (self.config["l"] * (self.config["mc"] + self.config["mp"] \
|
||||
/ (self.config["l"] * (self.config["mc"] + self.config["mp"]
|
||||
* (np.sin(self.curr_x[2])**2)))
|
||||
|
||||
next_x = self.curr_x +\
|
||||
|
@ -115,7 +117,7 @@ class CartPoleEnv(Env):
|
|||
|
||||
return next_x.flatten(), costs, \
|
||||
self.step_count > self.config["max_step"], \
|
||||
{"goal_state" : self.g_x}
|
||||
{"goal_state": self.g_x}
|
||||
|
||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||
""" plot cartpole object function
|
||||
|
@ -134,10 +136,10 @@ class CartPoleEnv(Env):
|
|||
|
||||
imgs["cart"] = to_plot.plot([], [], c="k")[0]
|
||||
imgs["pole"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
||||
imgs["center"] = to_plot.plot([], [], marker="o", c="k",\
|
||||
imgs["center"] = to_plot.plot([], [], marker="o", c="k",
|
||||
markersize=10)[0]
|
||||
# centerline
|
||||
to_plot.plot(np.linspace(-1., 1., num=50), np.zeros(50),\
|
||||
to_plot.plot(np.linspace(-1., 1., num=50), np.zeros(50),
|
||||
c="k", linestyle="dashed")
|
||||
|
||||
# set axis
|
||||
|
@ -166,13 +168,13 @@ class CartPoleEnv(Env):
|
|||
pole_y (numpy.ndarray): y data of pole
|
||||
"""
|
||||
# cart
|
||||
cart_x, cart_y = square(curr_x[0], 0.,\
|
||||
cart_x, cart_y = square(curr_x[0], 0.,
|
||||
self.config["cart_size"], 0.)
|
||||
|
||||
# pole
|
||||
pole_x = np.array([curr_x[0], curr_x[0] + self.config["l"] \
|
||||
pole_x = np.array([curr_x[0], curr_x[0] + self.config["l"]
|
||||
* np.cos(curr_x[2]-np.pi/2)])
|
||||
pole_y = np.array([0., self.config["l"] \
|
||||
pole_y = np.array([0., self.config["l"]
|
||||
* np.sin(curr_x[2]-np.pi/2)])
|
||||
|
||||
return cart_x, cart_y, pole_x, pole_y
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
def calc_cost(pred_xs, input_sample, g_xs,
|
||||
state_cost_fn, input_cost_fn, terminal_state_cost_fn):
|
||||
""" calculate the cost
|
||||
|
@ -24,7 +25,8 @@ def calc_cost(pred_xs, input_sample, g_xs,
|
|||
# state cost
|
||||
state_cost = 0.
|
||||
if state_cost_fn is not None:
|
||||
state_pred_par_cost = state_cost_fn(pred_xs[:, 1:-1, :], g_xs[:, 1:-1, :])
|
||||
state_pred_par_cost = state_cost_fn(
|
||||
pred_xs[:, 1:-1, :], g_xs[:, 1:-1, :])
|
||||
state_cost = np.sum(np.sum(state_pred_par_cost, axis=-1), axis=-1)
|
||||
|
||||
# terminal cost
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class Env():
|
||||
""" Environments class
|
||||
Attributes:
|
||||
|
@ -8,6 +9,7 @@ class Env():
|
|||
history_x (list[numpy.ndarray]): historty of state, shape(step_count*state_size)
|
||||
step_count (int): step count
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
|
|
|
@ -3,17 +3,19 @@ import scipy
|
|||
from scipy import integrate
|
||||
from .env import Env
|
||||
|
||||
|
||||
class FirstOrderLagEnv(Env):
|
||||
""" First Order Lag System Env
|
||||
"""
|
||||
|
||||
def __init__(self, tau=0.63):
|
||||
"""
|
||||
"""
|
||||
self.config = {"state_size" : 4,\
|
||||
"input_size" : 2,\
|
||||
"dt" : 0.05,\
|
||||
"max_step" : 500,\
|
||||
"input_lower_bound": [-0.5, -0.5],\
|
||||
self.config = {"state_size": 4,
|
||||
"input_size": 2,
|
||||
"dt": 0.05,
|
||||
"max_step": 500,
|
||||
"input_lower_bound": [-0.5, -0.5],
|
||||
"input_upper_bound": [0.5, 0.5],
|
||||
}
|
||||
|
||||
|
@ -112,7 +114,7 @@ class FirstOrderLagEnv(Env):
|
|||
|
||||
return next_x.flatten(), cost, \
|
||||
self.step_count > self.config["max_step"], \
|
||||
{"goal_state" : self.g_x}
|
||||
{"goal_state": self.g_x}
|
||||
|
||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||
"""
|
||||
|
|
|
@ -2,6 +2,8 @@ from .first_order_lag import FirstOrderLagEnv
|
|||
from .two_wheeled import TwoWheeledConstEnv
|
||||
from .two_wheeled import TwoWheeledTrackEnv
|
||||
from .cartpole import CartPoleEnv
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemEnv
|
||||
|
||||
|
||||
def make_env(args):
|
||||
|
||||
|
@ -13,5 +15,7 @@ def make_env(args):
|
|||
return TwoWheeledTrackEnv()
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleEnv()
|
||||
elif args.env == "NonlinearSample":
|
||||
return NonlinearSampleSystemEnv()
|
||||
|
||||
raise NotImplementedError("There is not {} Env".format(args.env))
|
|
@ -4,21 +4,23 @@ from scipy import integrate
|
|||
from .env import Env
|
||||
from ..common.utils import update_state_with_Runge_Kutta
|
||||
|
||||
class NonlinearSampleEnv(Env):
|
||||
|
||||
class NonlinearSampleSystemEnv(Env):
|
||||
""" Nonlinear Sample Env
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
self.config = {"state_size" : 2,\
|
||||
"input_size" : 1,\
|
||||
"dt" : 0.01,\
|
||||
"max_step" : 250,\
|
||||
"input_lower_bound": [-0.5],\
|
||||
self.config = {"state_size": 2,
|
||||
"input_size": 1,
|
||||
"dt": 0.01,
|
||||
"max_step": 2000,
|
||||
"input_lower_bound": [-0.5],
|
||||
"input_upper_bound": [0.5],
|
||||
}
|
||||
|
||||
super(NonlinearSampleEnv, self).__init__(self.config)
|
||||
super(NonlinearSampleSystemEnv, self).__init__(self.config)
|
||||
|
||||
def reset(self, init_x=np.array([2., 0.])):
|
||||
""" reset state
|
||||
|
@ -57,10 +59,11 @@ class NonlinearSampleEnv(Env):
|
|||
self.config["input_lower_bound"],
|
||||
self.config["input_upper_bound"])
|
||||
|
||||
funtions = [self._func_x_1, self._func_x_2]
|
||||
functions = [self._func_x_1, self._func_x_2]
|
||||
|
||||
next_x = update_state_with_Runge_Kutta(self._curr_x, u,
|
||||
functions, self.config["dt"])
|
||||
next_x = update_state_with_Runge_Kutta(self.curr_x, u,
|
||||
functions, self.config["dt"],
|
||||
batch=False)
|
||||
|
||||
# cost
|
||||
cost = 0
|
||||
|
@ -78,21 +81,17 @@ class NonlinearSampleEnv(Env):
|
|||
|
||||
return next_x.flatten(), cost, \
|
||||
self.step_count > self.config["max_step"], \
|
||||
{"goal_state" : self.g_x}
|
||||
{"goal_state": self.g_x}
|
||||
|
||||
def _func_x_1(self, x_1, x_2, u):
|
||||
"""
|
||||
"""
|
||||
x_dot = x_2
|
||||
def _func_x_1(self, x, u):
|
||||
x_dot = x[1]
|
||||
return x_dot
|
||||
|
||||
def _func_x_2(self, x_1, x_2, u):
|
||||
"""
|
||||
"""
|
||||
x_dot = (1. - x_1**2 - x_2**2) * x_2 - x_1 + u
|
||||
def _func_x_2(self, x, u):
|
||||
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
|
||||
return x_dot
|
||||
|
||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||
"""
|
||||
"""
|
||||
raise ValueError("NonlinearSampleEnv does not have animation")
|
||||
raise ValueError("NonlinearSampleSystemEnv does not have animation")
|
||||
|
|
|
@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
|||
from .env import Env
|
||||
from ..plotters.plot_objs import circle_with_angle, square, circle
|
||||
|
||||
|
||||
def step_two_wheeled_env(curr_x, u, dt, method="Oylar"):
|
||||
""" step two wheeled enviroment
|
||||
|
||||
|
@ -28,19 +29,21 @@ def step_two_wheeled_env(curr_x, u, dt, method="Oylar"):
|
|||
|
||||
return next_x
|
||||
|
||||
|
||||
class TwoWheeledConstEnv(Env):
|
||||
""" Two wheeled robot with constant goal Env
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
self.config = {"state_size" : 3,\
|
||||
"input_size" : 2,\
|
||||
"dt" : 0.01,\
|
||||
"max_step" : 500,\
|
||||
"input_lower_bound": (-1.5, -3.14),\
|
||||
"input_upper_bound": (1.5, 3.14),\
|
||||
"car_size": 0.2,\
|
||||
self.config = {"state_size": 3,
|
||||
"input_size": 2,
|
||||
"dt": 0.01,
|
||||
"max_step": 500,
|
||||
"input_lower_bound": (-1.5, -3.14),
|
||||
"input_upper_bound": (1.5, 3.14),
|
||||
"car_size": 0.2,
|
||||
"wheel_size": (0.075, 0.015)
|
||||
}
|
||||
|
||||
|
@ -55,7 +58,9 @@ class TwoWheeledConstEnv(Env):
|
|||
"""
|
||||
self.step_count = 0
|
||||
|
||||
self.curr_x = np.zeros(self.config["state_size"])
|
||||
noise = np.clip(np.random.randn(3), -0.1, 0.1)
|
||||
noise *= 0.1
|
||||
self.curr_x = np.zeros(self.config["state_size"]) + noise
|
||||
|
||||
if init_x is not None:
|
||||
self.curr_x = init_x
|
||||
|
@ -104,7 +109,7 @@ class TwoWheeledConstEnv(Env):
|
|||
|
||||
return next_x.flatten(), costs, \
|
||||
self.step_count > self.config["max_step"], \
|
||||
{"goal_state" : self.g_x}
|
||||
{"goal_state": self.g_x}
|
||||
|
||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||
""" plot cartpole object function
|
||||
|
@ -160,10 +165,10 @@ class TwoWheeledConstEnv(Env):
|
|||
self.config["car_size"], curr_x[2])
|
||||
|
||||
# left tire
|
||||
center_x = (self.config["car_size"] \
|
||||
center_x = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
|
||||
center_y = (self.config["car_size"] \
|
||||
center_y = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
|
||||
|
||||
|
@ -172,10 +177,10 @@ class TwoWheeledConstEnv(Env):
|
|||
self.config["wheel_size"], curr_x[2])
|
||||
|
||||
# right tire
|
||||
center_x = (self.config["car_size"] \
|
||||
center_x = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
|
||||
center_y = (self.config["car_size"] \
|
||||
center_y = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
|
||||
|
||||
|
@ -187,19 +192,21 @@ class TwoWheeledConstEnv(Env):
|
|||
left_tire_x, left_tire_y,\
|
||||
right_tire_x, right_tire_y
|
||||
|
||||
|
||||
class TwoWheeledTrackEnv(Env):
|
||||
""" Two wheeled robot with constant goal Env
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
self.config = {"state_size" : 3,\
|
||||
"input_size" : 2,\
|
||||
"dt" : 0.01,\
|
||||
"max_step" : 1000,\
|
||||
"input_lower_bound": (-1.5, -3.14),\
|
||||
"input_upper_bound": (1.5, 3.14),\
|
||||
"car_size": 0.2,\
|
||||
self.config = {"state_size": 3,
|
||||
"input_size": 2,
|
||||
"dt": 0.01,
|
||||
"max_step": 1000,
|
||||
"input_lower_bound": (-1.5, -3.14),
|
||||
"input_upper_bound": (1.5, 3.14),
|
||||
"car_size": 0.2,
|
||||
"wheel_size": (0.075, 0.015)
|
||||
}
|
||||
|
||||
|
@ -221,11 +228,11 @@ class TwoWheeledTrackEnv(Env):
|
|||
# circle
|
||||
circle_1_x, circle_1_y = circle(linelength/2., circle_radius,
|
||||
circle_radius, start=-np.pi/2., end=np.pi/2., n_point=50)
|
||||
circle_1 = np.stack((circle_1_x , circle_1_y), axis=1)
|
||||
circle_1 = np.stack((circle_1_x, circle_1_y), axis=1)
|
||||
|
||||
circle_2_x, circle_2_y = circle(-linelength/2., circle_radius,
|
||||
circle_radius, start=np.pi/2., end=3*np.pi/2., n_point=50)
|
||||
circle_2 = np.stack((circle_2_x , circle_2_y), axis=1)
|
||||
circle_2 = np.stack((circle_2_x, circle_2_y), axis=1)
|
||||
|
||||
road_pos = np.concatenate((line_1, circle_1, line_2, circle_2), axis=0)
|
||||
|
||||
|
@ -247,7 +254,9 @@ class TwoWheeledTrackEnv(Env):
|
|||
"""
|
||||
self.step_count = 0
|
||||
|
||||
self.curr_x = np.zeros(self.config["state_size"])
|
||||
noise = np.clip(np.random.randn(3), -0.1, 0.1)
|
||||
noise *= 0.01
|
||||
self.curr_x = np.zeros(self.config["state_size"]) + noise
|
||||
|
||||
if init_x is not None:
|
||||
self.curr_x = init_x
|
||||
|
@ -294,7 +303,7 @@ class TwoWheeledTrackEnv(Env):
|
|||
|
||||
return next_x.flatten(), costs, \
|
||||
self.step_count > self.config["max_step"], \
|
||||
{"goal_state" : self.g_traj}
|
||||
{"goal_state": self.g_traj}
|
||||
|
||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||
""" plot cartpole object function
|
||||
|
@ -354,10 +363,10 @@ class TwoWheeledTrackEnv(Env):
|
|||
self.config["car_size"], curr_x[2])
|
||||
|
||||
# left tire
|
||||
center_x = (self.config["car_size"] \
|
||||
center_x = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
|
||||
center_y = (self.config["car_size"] \
|
||||
center_y = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
|
||||
|
||||
|
@ -366,10 +375,10 @@ class TwoWheeledTrackEnv(Env):
|
|||
self.config["wheel_size"], curr_x[2])
|
||||
|
||||
# right tire
|
||||
center_x = (self.config["car_size"] \
|
||||
center_x = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
|
||||
center_y = (self.config["car_size"] \
|
||||
center_y = (self.config["car_size"]
|
||||
+ self.config["wheel_size"][1]) \
|
||||
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
|
||||
|
||||
|
|
|
@ -7,6 +7,7 @@ import six
|
|||
import pickle
|
||||
from logging import DEBUG, basicConfig, getLogger, FileHandler, StreamHandler, Formatter, Logger
|
||||
|
||||
|
||||
def make_logger(save_dir):
|
||||
"""
|
||||
Args:
|
||||
|
@ -33,6 +34,7 @@ def make_logger(save_dir):
|
|||
# sh_handler = StreamHandler()
|
||||
# logger.addHandler(sh_handler)
|
||||
|
||||
|
||||
def int_tuple(s):
|
||||
""" transform str to tuple
|
||||
Args:
|
||||
|
@ -42,6 +44,7 @@ def int_tuple(s):
|
|||
"""
|
||||
return tuple(int(i) for i in s.split(','))
|
||||
|
||||
|
||||
def bool_flag(s):
|
||||
""" transform str to bool flg
|
||||
Args:
|
||||
|
@ -54,6 +57,7 @@ def bool_flag(s):
|
|||
msg = 'Invalid value "%s" for bool flag (should be 0 or 1)'
|
||||
raise ValueError(msg % s)
|
||||
|
||||
|
||||
def file_exists(path):
|
||||
""" Check file existence on given path
|
||||
Args:
|
||||
|
@ -63,6 +67,7 @@ def file_exists(path):
|
|||
"""
|
||||
return os.path.exists(path)
|
||||
|
||||
|
||||
def create_dir_if_not_exist(outdir):
|
||||
""" Check directory existence and creates new directory if not exist
|
||||
Args:
|
||||
|
@ -77,6 +82,7 @@ def create_dir_if_not_exist(outdir):
|
|||
return
|
||||
os.makedirs(outdir)
|
||||
|
||||
|
||||
def write_text_to_file(file_path, data):
|
||||
""" Write given text data to file
|
||||
Args:
|
||||
|
@ -86,6 +92,7 @@ def write_text_to_file(file_path, data):
|
|||
with open(file_path, 'w') as f:
|
||||
f.write(data)
|
||||
|
||||
|
||||
def read_text_from_file(file_path):
|
||||
""" Read given file as text
|
||||
Args:
|
||||
|
@ -96,6 +103,7 @@ def read_text_from_file(file_path):
|
|||
with open(file_path, 'r') as f:
|
||||
return f.read()
|
||||
|
||||
|
||||
def save_pickle(file_path, data):
|
||||
""" pickle given data to file
|
||||
Args:
|
||||
|
@ -105,6 +113,7 @@ def save_pickle(file_path, data):
|
|||
with open(file_path, 'wb') as f:
|
||||
pickle.dump(data, f)
|
||||
|
||||
|
||||
def load_pickle(file_path):
|
||||
""" load pickled data from file
|
||||
Args:
|
||||
|
@ -118,6 +127,7 @@ def load_pickle(file_path):
|
|||
else:
|
||||
return pickle.load(f, encoding='bytes')
|
||||
|
||||
|
||||
def prepare_output_dir(base_dir, args, time_format='%Y-%m-%d-%H%M%S'):
|
||||
""" prepare a directory with current datetime as name.
|
||||
created directory contains the command and args when the script was called as text file.
|
||||
|
|
|
@ -2,9 +2,11 @@ import numpy as np
|
|||
|
||||
from .model import Model
|
||||
|
||||
|
||||
class CartPoleModel(Model):
|
||||
""" cartpole model
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
|
@ -31,16 +33,16 @@ class CartPoleModel(Model):
|
|||
# x
|
||||
d_x0 = curr_x[1]
|
||||
# v_x
|
||||
d_x1 = (u[0] + self.mp * np.sin(curr_x[2]) \
|
||||
* (self.l * (curr_x[3]**2) \
|
||||
d_x1 = (u[0] + self.mp * np.sin(curr_x[2])
|
||||
* (self.l * (curr_x[3]**2)
|
||||
+ self.g * np.cos(curr_x[2]))) \
|
||||
/ (self.mc + self.mp * (np.sin(curr_x[2])**2))
|
||||
# theta
|
||||
d_x2 = curr_x[3]
|
||||
# v_theta
|
||||
d_x3 = (-u[0] * np.cos(curr_x[2]) \
|
||||
- self.mp * self.l * (curr_x[3]**2) \
|
||||
* np.cos(curr_x[2]) * np.sin(curr_x[2]) \
|
||||
d_x3 = (-u[0] * np.cos(curr_x[2])
|
||||
- self.mp * self.l * (curr_x[3]**2)
|
||||
* np.cos(curr_x[2]) * np.sin(curr_x[2])
|
||||
- (self.mc + self.mp) * self.g * np.sin(curr_x[2])) \
|
||||
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
|
||||
|
||||
|
@ -53,16 +55,16 @@ class CartPoleModel(Model):
|
|||
# x
|
||||
d_x0 = curr_x[:, 1]
|
||||
# v_x
|
||||
d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2]) \
|
||||
* (self.l * (curr_x[:, 3]**2) \
|
||||
d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2])
|
||||
* (self.l * (curr_x[:, 3]**2)
|
||||
+ self.g * np.cos(curr_x[:, 2]))) \
|
||||
/ (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
|
||||
# theta
|
||||
d_x2 = curr_x[:, 3]
|
||||
# v_theta
|
||||
d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2]) \
|
||||
- self.mp * self.l * (curr_x[:, 3]**2) \
|
||||
* np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2]) \
|
||||
d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2])
|
||||
- self.mp * self.l * (curr_x[:, 3]**2)
|
||||
* np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2])
|
||||
- (self.mc + self.mp) * self.g * np.sin(curr_x[:, 2])) \
|
||||
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
|
||||
|
||||
|
@ -99,31 +101,31 @@ class CartPoleModel(Model):
|
|||
tmp2 = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
|
||||
|
||||
f_x[:, 1, 2] = - us[:, 0] * tmp \
|
||||
- tmp * (self.mp * np.sin(xs[:, 2]) \
|
||||
* (self.l * xs[:, 3]**2 \
|
||||
- tmp * (self.mp * np.sin(xs[:, 2])
|
||||
* (self.l * xs[:, 3]**2
|
||||
+ self.g * np.cos(xs[:, 2]))) \
|
||||
+ tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l \
|
||||
* xs[:, 3]**2 \
|
||||
+ self.mp * self.g * (np.cos(xs[:, 2])**2 \
|
||||
+ tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l
|
||||
* xs[:, 3]**2
|
||||
+ self.mp * self.g * (np.cos(xs[:, 2])**2
|
||||
- np.sin(xs[:, 2])**2))
|
||||
f_x[:, 3, 2] = - 1. / self.l * tmp \
|
||||
* (-us[:, 0] * np.cos(xs[:, 2]) \
|
||||
- self.mp * self.l * (xs[:, 3]**2) \
|
||||
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]) \
|
||||
* (-us[:, 0] * np.cos(xs[:, 2])
|
||||
- self.mp * self.l * (xs[:, 3]**2)
|
||||
* np.cos(xs[:, 2]) * np.sin(xs[:, 2])
|
||||
- (self.mc + self.mp) * self.g * np.sin(xs[:, 2])) \
|
||||
+ 1. / self.l * tmp2 \
|
||||
* (us[:, 0] * np.sin(xs[:, 2]) \
|
||||
- self.mp * self.l * xs[:, 3]**2 \
|
||||
* (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2) \
|
||||
- (self.mc + self.mp) \
|
||||
* (us[:, 0] * np.sin(xs[:, 2])
|
||||
- self.mp * self.l * xs[:, 3]**2
|
||||
* (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2)
|
||||
- (self.mc + self.mp)
|
||||
* self.g * np.cos(xs[:, 2]))
|
||||
|
||||
# f_theta_dot
|
||||
f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2]) \
|
||||
f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2])
|
||||
* self.l * 2 * xs[:, 3])
|
||||
f_x[:, 2, 3] = np.ones(pred_len)
|
||||
f_x[:, 3, 3] = 1. / self.l * tmp2 \
|
||||
* (-2. * self.mp * self.l * xs[:, 3] \
|
||||
* (-2. * self.mp * self.l * xs[:, 3]
|
||||
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]))
|
||||
|
||||
return f_x * dt + np.eye(state_size) # to discrete form
|
||||
|
@ -150,7 +152,7 @@ class CartPoleModel(Model):
|
|||
f_u[:, 1, 0] = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
|
||||
|
||||
f_u[:, 3, 0] = -np.cos(xs[:, 2]) \
|
||||
/ (self.l * (self.mc \
|
||||
/ (self.l * (self.mc
|
||||
+ self.mp * (np.sin(xs[:, 2])**2)))
|
||||
|
||||
return f_u * dt # to discrete form
|
||||
|
|
|
@ -3,6 +3,7 @@ import scipy.linalg
|
|||
from scipy import integrate
|
||||
from .model import LinearModel
|
||||
|
||||
|
||||
class FirstOrderLagModel(LinearModel):
|
||||
""" first order lag model
|
||||
Attributes:
|
||||
|
@ -10,13 +11,15 @@ class FirstOrderLagModel(LinearModel):
|
|||
u (numpy.ndarray):
|
||||
history_pred_xs (numpy.ndarray):
|
||||
"""
|
||||
|
||||
def __init__(self, config, tau=0.63):
|
||||
"""
|
||||
Args:
|
||||
tau (float): time constant
|
||||
"""
|
||||
# param
|
||||
self.A, self.B = self._to_state_space(tau, dt=config.DT) # discrete system
|
||||
self.A, self.B = self._to_state_space(
|
||||
tau, dt=config.DT) # discrete system
|
||||
super(FirstOrderLagModel, self).__init__(self.A, self.B)
|
||||
|
||||
@staticmethod
|
||||
|
@ -44,7 +47,8 @@ class FirstOrderLagModel(LinearModel):
|
|||
B = np.zeros_like(Bc)
|
||||
for m in range(Bc.shape[0]):
|
||||
for n in range(Bc.shape[1]):
|
||||
integrate_fn = lambda tau: np.matmul(scipy.linalg.expm(Ac*tau), Bc)[m, n]
|
||||
def integrate_fn(tau): return np.matmul(
|
||||
scipy.linalg.expm(Ac*tau), Bc)[m, n]
|
||||
sol = integrate.quad(integrate_fn, 0, dt)
|
||||
B[m, n] = sol[0]
|
||||
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
from .first_order_lag import FirstOrderLagModel
|
||||
from .two_wheeled import TwoWheeledModel
|
||||
from .cartpole import CartPoleModel
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemModel
|
||||
|
||||
|
||||
def make_model(args, config):
|
||||
|
||||
|
@ -10,5 +12,7 @@ def make_model(args, config):
|
|||
return TwoWheeledModel(config)
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleModel(config)
|
||||
elif args.env == "NonlinearSample":
|
||||
return NonlinearSampleSystemModel(config)
|
||||
|
||||
raise NotImplementedError("There is not {} Model".format(args.env))
|
|
@ -1,8 +1,10 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class Model():
|
||||
""" base class of model
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
|
@ -22,7 +24,7 @@ class Model():
|
|||
or shape(pop_size, pred_len+1, state_size)
|
||||
"""
|
||||
if len(us.shape) == 3:
|
||||
pred_xs =self._predict_traj_alltogether(curr_x, us)
|
||||
pred_xs = self._predict_traj_alltogether(curr_x, us)
|
||||
elif len(us.shape) == 2:
|
||||
pred_xs = self._predict_traj(curr_x, us)
|
||||
else:
|
||||
|
@ -75,7 +77,7 @@ class Model():
|
|||
# next_x.shape = (pop_size, state_size)
|
||||
next_x = self.predict_next_state(x, us[t])
|
||||
# update
|
||||
pred_xs = np.concatenate((pred_xs, next_x[np.newaxis, :, :]),\
|
||||
pred_xs = np.concatenate((pred_xs, next_x[np.newaxis, :, :]),
|
||||
axis=0)
|
||||
x = next_x
|
||||
|
||||
|
@ -86,6 +88,11 @@ class Model():
|
|||
"""
|
||||
raise NotImplementedError("Implement the model")
|
||||
|
||||
def x_dot(self, curr_x, u):
|
||||
""" compute x dot
|
||||
"""
|
||||
raise NotImplementedError("Implement the model")
|
||||
|
||||
def predict_adjoint_traj(self, xs, us, g_xs):
|
||||
"""
|
||||
Args:
|
||||
|
@ -95,32 +102,35 @@ class Model():
|
|||
Returns:
|
||||
lams (numpy.ndarray): adjoint state, shape(pred_len, state_size),
|
||||
adjoint size is the same as state_size
|
||||
Notes:
|
||||
Adjoint trajectory be computed by backward path.
|
||||
Usually, we should -\dot{lam} but in backward path case, we can use \dot{lam} directry
|
||||
"""
|
||||
# get size
|
||||
(pred_len, input_size) = us.shape
|
||||
# pred final adjoint state
|
||||
lam = self.predict_terminal_adjoint_state(xs[-1],\
|
||||
lam = self.predict_terminal_adjoint_state(xs[-1],
|
||||
terminal_g_x=g_xs[-1])
|
||||
lams = lam[np.newaxis, :]
|
||||
|
||||
for t in range(pred_len-1, 0, -1):
|
||||
prev_lam = \
|
||||
self.predict_adjoint_state(lam, xs[t], us[t],\
|
||||
goal=g_xs[t], t=t)
|
||||
self.predict_adjoint_state(lam, xs[t], us[t],
|
||||
g_x=g_xs[t])
|
||||
# update
|
||||
lams = np.concatenate((prev_lam[np.newaxis, :], lams), axis=0)
|
||||
lam = prev_lam
|
||||
|
||||
return lams
|
||||
|
||||
def predict_adjoint_state(self, lam, x, u, goal=None, t=None):
|
||||
def predict_adjoint_state(self, lam, x, u, g_x=None, t=None):
|
||||
""" predict adjoint states
|
||||
|
||||
Args:
|
||||
lam (numpy.ndarray): adjoint state, shape(state_size, )
|
||||
x (numpy.ndarray): state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
goal (numpy.ndarray): goal state, shape(state_size, )
|
||||
g_x (numpy.ndarray): goal state, shape(state_size, )
|
||||
Returns:
|
||||
prev_lam (numpy.ndarrya): previous adjoint state,
|
||||
shape(state_size, )
|
||||
|
@ -175,6 +185,7 @@ class Model():
|
|||
raise NotImplementedError("Implement hessian of model \
|
||||
with respect to the input")
|
||||
|
||||
|
||||
class LinearModel(Model):
|
||||
""" discrete linear model, x[k+1] = Ax[k] + Bu[k]
|
||||
|
||||
|
@ -182,6 +193,7 @@ class LinearModel(Model):
|
|||
A (numpy.ndarray): shape(state_size, state_size)
|
||||
B (numpy.ndarray): shape(state_size, input_size)
|
||||
"""
|
||||
|
||||
def __init__(self, A, B):
|
||||
"""
|
||||
"""
|
||||
|
|
|
@ -0,0 +1,217 @@
|
|||
import numpy as np
|
||||
|
||||
from .model import Model
|
||||
from ..common.utils import update_state_with_Runge_Kutta
|
||||
|
||||
|
||||
class NonlinearSampleSystemModel(Model):
|
||||
""" nonlinear sample system model
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
super(NonlinearSampleSystemModel, self).__init__()
|
||||
self.dt = config.DT
|
||||
self.gradient_hamiltonian_state = config.gradient_hamiltonian_state
|
||||
self.gradient_hamiltonian_input = config.gradient_hamiltonian_input
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
|
||||
def predict_next_state(self, curr_x, u):
|
||||
""" predict next state
|
||||
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
||||
shape(pop_size, state_size)
|
||||
u (numpy.ndarray): input, shape(input_size, ) or
|
||||
shape(pop_size, input_size)
|
||||
Returns:
|
||||
next_x (numpy.ndarray): next state, shape(state_size, ) or
|
||||
shape(pop_size, state_size)
|
||||
"""
|
||||
if len(u.shape) == 1:
|
||||
func_1 = self._func_x_1
|
||||
func_2 = self._func_x_2
|
||||
functions = [func_1, func_2]
|
||||
next_x = update_state_with_Runge_Kutta(
|
||||
curr_x, u, functions, batch=False, dt=self.dt)
|
||||
return next_x
|
||||
|
||||
elif len(u.shape) == 2:
|
||||
def func_1(xs, us): return self._func_x_1(xs, us, batch=True)
|
||||
def func_2(xs, us): return self._func_x_2(xs, us, batch=True)
|
||||
functions = [func_1, func_2]
|
||||
next_x = update_state_with_Runge_Kutta(
|
||||
curr_x, u, functions, batch=True, dt=self.dt)
|
||||
|
||||
return next_x
|
||||
|
||||
def x_dot(self, curr_x, u):
|
||||
"""
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
Returns:
|
||||
x_dot (numpy.ndarray): next state, shape(state_size, )
|
||||
"""
|
||||
state_size = curr_x.shape[0]
|
||||
x_dot = np.zeros(state_size)
|
||||
x_dot[0] = self._func_x_1(curr_x, u)
|
||||
x_dot[1] = self._func_x_2(curr_x, u)
|
||||
return x_dot
|
||||
|
||||
def predict_adjoint_state(self, lam, x, u, g_x=None):
|
||||
""" predict adjoint states
|
||||
|
||||
Args:
|
||||
lam (numpy.ndarray): adjoint state, shape(state_size, )
|
||||
x (numpy.ndarray): state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
goal (numpy.ndarray): goal state, shape(state_size, )
|
||||
Returns:
|
||||
prev_lam (numpy.ndarrya): previous adjoint state,
|
||||
shape(state_size, )
|
||||
"""
|
||||
if len(u.shape) == 1:
|
||||
delta_lam = self.dt * \
|
||||
self.gradient_hamiltonian_state(x, lam, u, g_x)
|
||||
prev_lam = lam + delta_lam
|
||||
return prev_lam
|
||||
|
||||
elif len(u.shape) == 2:
|
||||
raise ValueError
|
||||
|
||||
def predict_terminal_adjoint_state(self, terminal_x, terminal_g_x=None):
|
||||
""" predict terminal adjoint state
|
||||
|
||||
Args:
|
||||
terminal_x (numpy.ndarray): terminal state, shape(state_size, )
|
||||
terminal_g_x (numpy.ndarray): terminal goal state,
|
||||
shape(state_size, )
|
||||
Returns:
|
||||
terminal_lam (numpy.ndarray): terminal adjoint state,
|
||||
shape(state_size, )
|
||||
"""
|
||||
terminal_lam = self.gradient_cost_fn_state(
|
||||
terminal_x, terminal_g_x, terminal=True) # return in shape[1, state_size]
|
||||
return terminal_lam[0]
|
||||
|
||||
def _func_x_1(self, x, u, batch=False):
|
||||
if not batch:
|
||||
x_dot = x[1]
|
||||
else:
|
||||
x_dot = x[:, 1]
|
||||
return x_dot
|
||||
|
||||
def _func_x_2(self, x, u, batch=False):
|
||||
if not batch:
|
||||
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
|
||||
else:
|
||||
x_dot = (1. - x[:, 0]**2 - x[:, 1]**2) * \
|
||||
x[:, 1] - x[:, 0] + u[:, 0]
|
||||
return x_dot
|
||||
|
||||
def calc_f_x(self, xs, us, dt):
|
||||
""" gradient of model with respect to the state in batch form
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_x (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, state_size)
|
||||
|
||||
Notes:
|
||||
This should be discrete form !!
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, _) = us.shape
|
||||
|
||||
f_x = np.zeros((pred_len, state_size, state_size))
|
||||
f_x[:, 0, 1] = 1.
|
||||
f_x[:, 1, 0] = 2. * xs[:, 0] * xs[:, 1] - 1.
|
||||
f_x[:, 1, 1] = - 2. * xs[:, 1] * xs[:, 1] + \
|
||||
(1. - xs[:, 0]**2 - xs[:, 1]**2)
|
||||
|
||||
return f_x * dt + np.eye(state_size) # to discrete form
|
||||
|
||||
def calc_f_u(self, xs, us, dt):
|
||||
""" gradient of model with respect to the input in batch form
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_u (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, input_size)
|
||||
|
||||
Notes:
|
||||
This should be discrete form !!
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, input_size) = us.shape
|
||||
|
||||
f_u = np.zeros((pred_len, state_size, input_size))
|
||||
|
||||
f_u[:, 1, 0] = 1.
|
||||
|
||||
return f_u * dt # to discrete form
|
||||
|
||||
def calc_f_xx(self, xs, us, dt):
|
||||
""" hessian of model with respect to the state in batch form
|
||||
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_xx (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, state_size, state_size)
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, _) = us.shape
|
||||
|
||||
f_xx = np.zeros((pred_len, state_size, state_size, state_size))
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
def calc_f_ux(self, xs, us, dt):
|
||||
""" hessian of model with respect to state and input in batch form
|
||||
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_ux (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, input_size, state_size)
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, input_size) = us.shape
|
||||
|
||||
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
|
||||
|
||||
raise NotImplementedError
|
||||
|
||||
def calc_f_uu(self, xs, us, dt):
|
||||
""" hessian of model with respect to input in batch form
|
||||
|
||||
Args:
|
||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||
|
||||
Return:
|
||||
f_uu (numpy.ndarray): gradient of model with respect to x,
|
||||
shape(pred_len, state_size, input_size, input_size)
|
||||
"""
|
||||
# get size
|
||||
(_, state_size) = xs.shape
|
||||
(pred_len, input_size) = us.shape
|
||||
|
||||
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
||||
|
||||
raise NotImplementedError
|
|
@ -2,14 +2,19 @@ import numpy as np
|
|||
|
||||
from .model import Model
|
||||
|
||||
|
||||
class TwoWheeledModel(Model):
|
||||
""" two wheeled model
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
super(TwoWheeledModel, self).__init__()
|
||||
self.dt = config.DT
|
||||
self.gradient_hamiltonian_state = config.gradient_hamiltonian_state
|
||||
self.gradient_hamiltonian_input = config.gradient_hamiltonian_input
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
|
||||
def predict_next_state(self, curr_x, u):
|
||||
""" predict next state
|
||||
|
@ -51,6 +56,56 @@ class TwoWheeledModel(Model):
|
|||
|
||||
return next_x
|
||||
|
||||
def x_dot(self, curr_x, u):
|
||||
""" compute x dot
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
Returns:
|
||||
x_dot (numpy.ndarray): next state, shape(state_size, )
|
||||
"""
|
||||
B = np.array([[np.cos(curr_x[-1]), 0.],
|
||||
[np.sin(curr_x[-1]), 0.],
|
||||
[0., 1.]])
|
||||
x_dot = np.matmul(B, u[:, np.newaxis])
|
||||
return x_dot.flatten()
|
||||
|
||||
def predict_adjoint_state(self, lam, x, u, g_x=None, t=None):
|
||||
""" predict adjoint states
|
||||
|
||||
Args:
|
||||
lam (numpy.ndarray): adjoint state, shape(state_size, )
|
||||
x (numpy.ndarray): state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
goal (numpy.ndarray): goal state, shape(state_size, )
|
||||
Returns:
|
||||
prev_lam (numpy.ndarrya): previous adjoint state,
|
||||
shape(state_size, )
|
||||
"""
|
||||
if len(u.shape) == 1:
|
||||
delta_lam = self.dt * \
|
||||
self.gradient_hamiltonian_state(x, lam, u, g_x)
|
||||
prev_lam = lam + delta_lam
|
||||
return prev_lam
|
||||
|
||||
elif len(u.shape) == 2:
|
||||
raise ValueError
|
||||
|
||||
def predict_terminal_adjoint_state(self, terminal_x, terminal_g_x=None):
|
||||
""" predict terminal adjoint state
|
||||
|
||||
Args:
|
||||
terminal_x (numpy.ndarray): terminal state, shape(state_size, )
|
||||
terminal_g_x (numpy.ndarray): terminal goal state,
|
||||
shape(state_size, )
|
||||
Returns:
|
||||
terminal_lam (numpy.ndarray): terminal adjoint state,
|
||||
shape(state_size, )
|
||||
"""
|
||||
terminal_lam = self.gradient_cost_fn_state(
|
||||
terminal_x, terminal_g_x, terminal=True) # return in shape[1, state_size]
|
||||
return terminal_lam[0]
|
||||
|
||||
@staticmethod
|
||||
def calc_f_x(xs, us, dt):
|
||||
""" gradient of model with respect to the state in batch form
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
import numpy as np
|
||||
from .planner import Planner
|
||||
|
||||
|
||||
class ClosestPointPlanner(Planner):
|
||||
""" This planner make goal state according to goal path
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
import numpy as np
|
||||
from .planner import Planner
|
||||
|
||||
|
||||
class ConstantPlanner(Planner):
|
||||
""" This planner make constant goal state
|
||||
"""
|
||||
|
||||
def __init__(self, config):
|
||||
"""
|
||||
"""
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from .const_planner import ConstantPlanner
|
||||
from .closest_point_planner import ClosestPointPlanner
|
||||
|
||||
|
||||
def make_planner(args, config):
|
||||
|
||||
if args.env == "FirstOrderLag":
|
||||
|
@ -11,5 +12,8 @@ def make_planner(args, config):
|
|||
return ClosestPointPlanner(config)
|
||||
elif args.env == "CartPole":
|
||||
return ConstantPlanner(config)
|
||||
elif args.env == "NonlinearSample":
|
||||
return ConstantPlanner(config)
|
||||
|
||||
raise NotImplementedError("There is not {} Planner".format(args.planner_type))
|
||||
raise NotImplementedError(
|
||||
"There is not {} Planner".format(args.planner_type))
|
||||
|
|
|
@ -1,8 +1,10 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
class Planner():
|
||||
"""
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
|
|
|
@ -8,9 +8,11 @@ import matplotlib.animation as animation
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class Animator():
|
||||
""" animation class
|
||||
"""
|
||||
|
||||
def __init__(self, env, args=None):
|
||||
"""
|
||||
"""
|
||||
|
@ -65,7 +67,7 @@ class Animator():
|
|||
"""
|
||||
# set up animation figures
|
||||
self._setup()
|
||||
_update_img = lambda i: self._update_img(i, history_x, history_g_x)
|
||||
def _update_img(i): return self._update_img(i, history_x, history_g_x)
|
||||
|
||||
# Set up formatting for the movie files
|
||||
Writer = animation.writers['ffmpeg']
|
||||
|
|
|
@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
|||
|
||||
from ..helper import save_pickle, load_pickle
|
||||
|
||||
|
||||
def plot_result(history, history_g=None, ylabel="x",
|
||||
save_dir="./result", name="state_history"):
|
||||
"""
|
||||
|
@ -28,7 +29,7 @@ def plot_result(history, history_g=None, ylabel="x",
|
|||
def plot(axis, history, history_g=None):
|
||||
axis.plot(range(iters), history, c="r", linewidth=3)
|
||||
if history_g is not None:
|
||||
axis.plot(range(iters), history_g,\
|
||||
axis.plot(range(iters), history_g,
|
||||
c="b", linewidth=3, label="goal")
|
||||
|
||||
if i < size:
|
||||
|
@ -47,6 +48,7 @@ def plot_result(history, history_g=None, ylabel="x",
|
|||
axis1.legend(ncol=1, bbox_to_anchor=(0., 1.02, 1., 0.102), loc=3)
|
||||
figure.savefig(path, bbox_inches="tight", pad_inches=0.05)
|
||||
|
||||
|
||||
def plot_results(history_x, history_u, history_g=None, args=None):
|
||||
"""
|
||||
|
||||
|
@ -64,12 +66,13 @@ def plot_results(history_x, history_u, history_g=None, args=None):
|
|||
controller_type = args.controller_type
|
||||
|
||||
plot_result(history_x, history_g=history_g, ylabel="x",
|
||||
name= env + "-state_history",
|
||||
name=env + "-state_history",
|
||||
save_dir="./result/" + controller_type)
|
||||
plot_result(history_u, history_g=np.zeros_like(history_u), ylabel="u",
|
||||
name= env + "-input_history",
|
||||
name=env + "-input_history",
|
||||
save_dir="./result/" + controller_type)
|
||||
|
||||
|
||||
def save_plot_data(history_x, history_u, history_g=None, args=None):
|
||||
""" save plot data
|
||||
|
||||
|
@ -98,6 +101,7 @@ def save_plot_data(history_x, history_u, history_g=None, args=None):
|
|||
env + "-history_g.pkl")
|
||||
save_pickle(path, history_g)
|
||||
|
||||
|
||||
def load_plot_data(env, controller_type, result_dir="./result"):
|
||||
"""
|
||||
Args:
|
||||
|
@ -123,6 +127,7 @@ def load_plot_data(env, controller_type, result_dir="./result"):
|
|||
|
||||
return history_x, history_u, history_g
|
||||
|
||||
|
||||
def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
|
||||
save_dir="./result", name="state_history"):
|
||||
"""
|
||||
|
@ -146,7 +151,7 @@ def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
|
|||
axis.plot(range(iters), history,
|
||||
linewidth=3, label=label, alpha=0.7, linestyle="dashed")
|
||||
if history_g is not None:
|
||||
axis.plot(range(iters), history_g,\
|
||||
axis.plot(range(iters), history_g,
|
||||
c="b", linewidth=3)
|
||||
|
||||
if i < size:
|
||||
|
|
|
@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
|||
|
||||
from ..common.utils import rotate_pos
|
||||
|
||||
|
||||
def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
|
||||
""" Create circle matrix
|
||||
|
||||
|
@ -29,6 +30,7 @@ def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
|
|||
|
||||
return np.array(circle_xs), np.array(circle_ys)
|
||||
|
||||
|
||||
def circle_with_angle(center_x, center_y, radius, angle):
|
||||
""" Create circle matrix with angle line matrix
|
||||
|
||||
|
@ -50,6 +52,7 @@ def circle_with_angle(center_x, center_y, radius, angle):
|
|||
|
||||
return circle_x, circle_y, angle_x, angle_y
|
||||
|
||||
|
||||
def square(center_x, center_y, shape, angle):
|
||||
""" Create square
|
||||
|
||||
|
@ -77,6 +80,7 @@ def square(center_x, center_y, shape, angle):
|
|||
|
||||
return trans_points[:, 0], trans_points[:, 1]
|
||||
|
||||
|
||||
def square_with_angle(center_x, center_y, shape, angle):
|
||||
""" Create square with angle line
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from .runner import ExpRunner
|
||||
|
||||
|
||||
def make_runner(args):
|
||||
return ExpRunner()
|
|
@ -4,9 +4,11 @@ import numpy as np
|
|||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class ExpRunner():
|
||||
""" experiment runner
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""
|
||||
"""
|
||||
|
@ -46,6 +48,6 @@ class ExpRunner():
|
|||
score += cost
|
||||
step_count += 1
|
||||
|
||||
logger.debug("Controller type = {}, Score = {}"\
|
||||
logger.debug("Controller type = {}, Score = {}"
|
||||
.format(controller, score))
|
||||
return np.array(history_x), np.array(history_u), np.array(history_g)
|
|
@ -53,10 +53,10 @@ Following algorithms are implemented in PythonLinearNonlinearControl
|
|||
- [script](PythonLinearNonlinearControl/controllers/ddp.py)
|
||||
- [Unconstrained Nonlinear Model Predictive Control (NMPC)](https://www.sciencedirect.com/science/article/pii/S0005109897000058)
|
||||
- Ref: Ohtsuka, T., & Fujii, H. A. (1997). Real-time optimization algorithm for nonlinear receding-horizon control. Automatica, 33(6), 1147-1154.
|
||||
- [script (Coming soon)]()
|
||||
- [script](PythonLinearNonlinearControl/controllers/nmpc.py)
|
||||
- [Constrained Nonlinear Model Predictive Control -CGMRES- (NMPC-CGMRES)](https://www.sciencedirect.com/science/article/pii/S0005109897000058)
|
||||
- Ref: Ohtsuka, T., & Fujii, H. A. (1997). Real-time optimization algorithm for nonlinear receding-horizon control. Automatica, 33(6), 1147-1154.
|
||||
- [script (Coming soon)]()
|
||||
- [script](PythonLinearNonlinearControl/controllers/nmpc_cgmres.py)
|
||||
- [Constrained Nonlinear Model Predictive Control -Newton- (NMPC-Newton)](https://www.sciencedirect.com/science/article/pii/S0005109897000058)
|
||||
- Ref: Ohtsuka, T., & Fujii, H. A. (1997). Real-time optimization algorithm for nonlinear receding-horizon control. Automatica, 33(6), 1147-1154.
|
||||
- [script (Coming soon)]()
|
||||
|
@ -71,6 +71,7 @@ There are 4 example environments, "FirstOrderLag", "TwoWheeledConst", "TwoWheele
|
|||
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
|
||||
| Two wheeled System (Moving Goal) | x | ✓ | 3 | 2 |
|
||||
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
|
||||
| Nonlinear Sample System Env | x | ✓ | 2 | 1 |
|
||||
|
||||
All states and inputs of environments are continuous.
|
||||
**It should be noted that the algorithms for linear model could be applied to nonlinear enviroments if you have linealized the model of nonlinear environments.**
|
||||
|
@ -184,6 +185,8 @@ save_plot_data(history_x, history_u, history_g=history_g)
|
|||
animator = Animator(env)
|
||||
animator.draw(history_x, history_g)
|
||||
```
|
||||
**It should be noted that the controller parameters like Q, R and Sf strongly affect the performence of the controller.
|
||||
Please, check these parameters before you run the simulation.**
|
||||
|
||||
## Run Example Script
|
||||
|
||||
|
|
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
|
@ -8,6 +8,7 @@ import matplotlib.pyplot as plt
|
|||
from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \
|
||||
plot_multi_result
|
||||
|
||||
|
||||
def run(args):
|
||||
|
||||
controllers = ["iLQR", "DDP", "CEM", "MPPI"]
|
||||
|
@ -41,6 +42,7 @@ def run(args):
|
|||
plot_multi_result(history_us, histories_g=np.zeros_like(history_us),
|
||||
labels=controllers, ylabel="u", name="input_history")
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
|
@ -51,5 +53,6 @@ def main():
|
|||
|
||||
run(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -11,32 +11,24 @@ from PythonLinearNonlinearControl.plotters.plot_func import plot_results, \
|
|||
save_plot_data
|
||||
from PythonLinearNonlinearControl.plotters.animator import Animator
|
||||
|
||||
|
||||
def run(args):
|
||||
# logger
|
||||
make_logger(args.result_dir)
|
||||
|
||||
# make envs
|
||||
env = make_env(args)
|
||||
|
||||
# make config
|
||||
config = make_config(args)
|
||||
|
||||
# make planner
|
||||
planner = make_planner(args, config)
|
||||
|
||||
# make model
|
||||
model = make_model(args, config)
|
||||
|
||||
# make controller
|
||||
controller = make_controller(args, config, model)
|
||||
|
||||
# make simulator
|
||||
runner = make_runner(args)
|
||||
|
||||
# run experiment
|
||||
history_x, history_u, history_g = runner.run(env, controller, planner)
|
||||
|
||||
# plot results
|
||||
plot_results(history_x, history_u, history_g=history_g, args=args)
|
||||
save_plot_data(history_x, history_u, history_g=history_g, args=args)
|
||||
|
||||
|
@ -44,17 +36,19 @@ def run(args):
|
|||
animator = Animator(env, args=args)
|
||||
animator.draw(history_x, history_g)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--controller_type", type=str, default="CEM")
|
||||
parser.add_argument("--env", type=str, default="TwoWheeledTrack")
|
||||
parser.add_argument("--save_anim", type=bool_flag, default=1)
|
||||
parser.add_argument("--controller_type", type=str, default="NMPCCGMRES")
|
||||
parser.add_argument("--env", type=str, default="TwoWheeledConst")
|
||||
parser.add_argument("--save_anim", type=bool_flag, default=0)
|
||||
parser.add_argument("--result_dir", type=str, default="./result")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
run(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
from PythonLinearNonlinearControl.configs.cartpole \
|
||||
import CartPoleConfigModule
|
||||
|
||||
|
||||
class TestCalcCost():
|
||||
def test_calc_costs(self):
|
||||
# make config
|
||||
|
@ -25,17 +26,18 @@ class TestCalcCost():
|
|||
|
||||
assert costs.shape == (pop_size, pred_len, 1)
|
||||
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],
|
||||
g_xs[:, -1, :])
|
||||
|
||||
assert costs.shape == (pop_size, 1)
|
||||
|
||||
|
||||
class TestGradient():
|
||||
def test_state_gradient(self):
|
||||
"""
|
||||
"""
|
||||
xs = np.ones((1, 4))
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_with_state(xs, None)
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_state(xs, None)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -59,7 +61,7 @@ class TestGradient():
|
|||
"""
|
||||
xs = np.ones(4)
|
||||
cost_grad =\
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(xs, None,
|
||||
CartPoleConfigModule.gradient_cost_fn_state(xs, None,
|
||||
terminal=True)
|
||||
|
||||
# numeric grad
|
||||
|
@ -83,7 +85,7 @@ class TestGradient():
|
|||
"""
|
||||
"""
|
||||
us = np.ones((1, 1))
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_with_input(None, us)
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_input(None, us)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -106,7 +108,7 @@ class TestGradient():
|
|||
"""
|
||||
"""
|
||||
xs = np.ones((1, 4))
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_with_state(xs, None)
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_state(xs, None)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -115,12 +117,12 @@ class TestGradient():
|
|||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] + eps
|
||||
forward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=False)
|
||||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] - eps
|
||||
backward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=False)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
@ -132,7 +134,7 @@ class TestGradient():
|
|||
"""
|
||||
xs = np.ones(4)
|
||||
cost_hess =\
|
||||
CartPoleConfigModule.hessian_cost_fn_with_state(xs, None,
|
||||
CartPoleConfigModule.hessian_cost_fn_state(xs, None,
|
||||
terminal=True)
|
||||
|
||||
# numeric grad
|
||||
|
@ -142,12 +144,12 @@ class TestGradient():
|
|||
tmp_x = xs.copy()
|
||||
tmp_x[i] = xs[i] + eps
|
||||
forward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=True)
|
||||
tmp_x = xs.copy()
|
||||
tmp_x[i] = xs[i] - eps
|
||||
backward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=True)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
@ -159,7 +161,7 @@ class TestGradient():
|
|||
"""
|
||||
us = np.ones((1, 1))
|
||||
xs = np.ones((1, 4))
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_with_input(us, xs)
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_input(us, xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -168,12 +170,12 @@ class TestGradient():
|
|||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] + eps
|
||||
forward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_input(
|
||||
CartPoleConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] - eps
|
||||
backward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_input(
|
||||
CartPoleConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
from PythonLinearNonlinearControl.configs.two_wheeled \
|
||||
import TwoWheeledConfigModule
|
||||
|
||||
|
||||
class TestCalcCost():
|
||||
def test_calc_costs(self):
|
||||
# make config
|
||||
|
@ -27,12 +28,13 @@ class TestCalcCost():
|
|||
|
||||
assert costs == pytest.approx(expected_costs**2 * np.diag(config.Q))
|
||||
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],
|
||||
g_xs[:, -1, :])
|
||||
expected_costs = np.ones((pop_size, state_size))*0.5
|
||||
|
||||
assert costs == pytest.approx(expected_costs**2 * np.diag(config.Sf))
|
||||
|
||||
|
||||
class TestGradient():
|
||||
def test_state_gradient(self):
|
||||
"""
|
||||
|
@ -40,7 +42,7 @@ class TestGradient():
|
|||
xs = np.ones((1, 3))
|
||||
g_xs = np.ones((1, 3)) * 0.5
|
||||
cost_grad =\
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_state(xs, g_xs)
|
||||
TwoWheeledConfigModule.gradient_cost_fn_state(xs, g_xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -66,7 +68,7 @@ class TestGradient():
|
|||
"""
|
||||
us = np.ones((1, 2))
|
||||
cost_grad =\
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_input(None, us)
|
||||
TwoWheeledConfigModule.gradient_cost_fn_input(None, us)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -93,7 +95,7 @@ class TestGradient():
|
|||
g_xs = np.ones((1, 3)) * 0.5
|
||||
xs = np.ones((1, 3))
|
||||
cost_hess =\
|
||||
TwoWheeledConfigModule.hessian_cost_fn_with_state(xs, g_xs)
|
||||
TwoWheeledConfigModule.hessian_cost_fn_state(xs, g_xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -102,12 +104,12 @@ class TestGradient():
|
|||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] + eps
|
||||
forward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_state(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, g_xs, terminal=False)
|
||||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] - eps
|
||||
backward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_state(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, g_xs, terminal=False)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
@ -119,7 +121,7 @@ class TestGradient():
|
|||
"""
|
||||
us = np.ones((1, 2))
|
||||
xs = np.ones((1, 3))
|
||||
cost_hess = TwoWheeledConfigModule.hessian_cost_fn_with_input(us, xs)
|
||||
cost_hess = TwoWheeledConfigModule.hessian_cost_fn_input(us, xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -128,12 +130,12 @@ class TestGradient():
|
|||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] + eps
|
||||
forward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_input(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] - eps
|
||||
backward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_input(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
|
Loading…
Reference in New Issue