add mpc with noise
This commit is contained in:
parent
88b6a4dbf1
commit
d1ff16bfba
|
@ -0,0 +1,233 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.animation as ani
|
||||||
|
import matplotlib.font_manager as fon
|
||||||
|
import sys
|
||||||
|
import math
|
||||||
|
|
||||||
|
# default setting of figures
|
||||||
|
plt.rcParams["mathtext.fontset"] = 'stix' # math fonts
|
||||||
|
plt.rcParams['xtick.direction'] = 'in' # x axis in
|
||||||
|
plt.rcParams['ytick.direction'] = 'in' # y axis in
|
||||||
|
plt.rcParams["font.size"] = 10
|
||||||
|
plt.rcParams['axes.linewidth'] = 1.0 # axis line width
|
||||||
|
plt.rcParams['axes.grid'] = True # make grid
|
||||||
|
|
||||||
|
def coordinate_transformation_in_angle(positions, base_angle):
|
||||||
|
'''
|
||||||
|
Transformation the coordinate in the angle
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
-------
|
||||||
|
positions : numpy.ndarray
|
||||||
|
this parameter is composed of xs, ys
|
||||||
|
should have (2, N) shape
|
||||||
|
base_angle : float [rad]
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
traslated_positions : numpy.ndarray
|
||||||
|
the shape is (2, N)
|
||||||
|
|
||||||
|
'''
|
||||||
|
if positions.shape[0] != 2:
|
||||||
|
raise ValueError('the input data should have (2, N)')
|
||||||
|
|
||||||
|
positions = np.array(positions)
|
||||||
|
positions = positions.reshape(2, -1)
|
||||||
|
|
||||||
|
rot_matrix = [[np.cos(base_angle), np.sin(base_angle)],
|
||||||
|
[-1*np.sin(base_angle), np.cos(base_angle)]]
|
||||||
|
|
||||||
|
rot_matrix = np.array(rot_matrix)
|
||||||
|
|
||||||
|
translated_positions = np.dot(rot_matrix, positions)
|
||||||
|
|
||||||
|
return translated_positions
|
||||||
|
|
||||||
|
def square_make_with_angles(center_x, center_y, size, angle):
|
||||||
|
'''
|
||||||
|
Create square matrix with angle line matrix(2D)
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
-------
|
||||||
|
center_x : float in meters
|
||||||
|
the center x position of the square
|
||||||
|
center_y : float in meters
|
||||||
|
the center y position of the square
|
||||||
|
size : float in meters
|
||||||
|
the square's half-size
|
||||||
|
angle : float in radians
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
square xs : numpy.ndarray
|
||||||
|
lenght is 5 (counterclockwise from right-up)
|
||||||
|
square ys : numpy.ndarray
|
||||||
|
length is 5 (counterclockwise from right-up)
|
||||||
|
angle line xs : numpy.ndarray
|
||||||
|
angle line ys : numpy.ndarray
|
||||||
|
'''
|
||||||
|
|
||||||
|
# start with the up right points
|
||||||
|
# create point in counterclockwise
|
||||||
|
square_xys = np.array([[size, 0.5 * size], [-size, 0.5 * size], [-size, -0.5 * size], [size, -0.5 * size], [size, 0.5 * size]])
|
||||||
|
trans_points = coordinate_transformation_in_angle(square_xys.T, -angle) # this is inverse type
|
||||||
|
trans_points += np.array([[center_x], [center_y]])
|
||||||
|
|
||||||
|
square_xs = trans_points[0, :]
|
||||||
|
square_ys = trans_points[1, :]
|
||||||
|
|
||||||
|
angle_line_xs = [center_x, center_x + math.cos(angle) * size]
|
||||||
|
angle_line_ys = [center_y, center_y + math.sin(angle) * size]
|
||||||
|
|
||||||
|
return square_xs, square_ys, np.array(angle_line_xs), np.array(angle_line_ys)
|
||||||
|
|
||||||
|
|
||||||
|
class AnimDrawer():
|
||||||
|
"""create animation of path and robot
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
------------
|
||||||
|
cars :
|
||||||
|
anim_fig : figure of matplotlib
|
||||||
|
axis : axis of matplotlib
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self, objects):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
objects : list of objects
|
||||||
|
"""
|
||||||
|
self.lead_car_history_state = objects[0]
|
||||||
|
self.follow_car_history_state = objects[1]
|
||||||
|
|
||||||
|
self.history_xs = [self.lead_car_history_state[:, 0], self.follow_car_history_state[:, 0]]
|
||||||
|
self.history_ys = [self.lead_car_history_state[:, 1], self.follow_car_history_state[:, 1]]
|
||||||
|
self.history_ths = [self.lead_car_history_state[:, 2], self.follow_car_history_state[:, 2]]
|
||||||
|
|
||||||
|
# setting up figure
|
||||||
|
self.anim_fig = plt.figure(dpi=150)
|
||||||
|
self.axis = self.anim_fig.add_subplot(111)
|
||||||
|
|
||||||
|
# imgs
|
||||||
|
self.object_imgs = []
|
||||||
|
self.traj_imgs = []
|
||||||
|
|
||||||
|
def draw_anim(self, interval=50):
|
||||||
|
"""draw the animation and save
|
||||||
|
|
||||||
|
Parameteres
|
||||||
|
-------------
|
||||||
|
interval : int, optional
|
||||||
|
animation's interval time, you should link the sampling time of systems
|
||||||
|
default is 50 [ms]
|
||||||
|
"""
|
||||||
|
self._set_axis()
|
||||||
|
self._set_img()
|
||||||
|
|
||||||
|
self.skip_num = 1
|
||||||
|
frame_num = int((len(self.history_xs[0])-1) / self.skip_num)
|
||||||
|
|
||||||
|
animation = ani.FuncAnimation(self.anim_fig, self._update_anim, interval=interval, frames=frame_num)
|
||||||
|
|
||||||
|
# self.axis.legend()
|
||||||
|
print('save_animation?')
|
||||||
|
shuold_save_animation = int(input())
|
||||||
|
|
||||||
|
if shuold_save_animation:
|
||||||
|
print('animation_number?')
|
||||||
|
num = int(input())
|
||||||
|
animation.save('animation_{0}.mp4'.format(num), writer='ffmpeg')
|
||||||
|
# animation.save("Sample.gif", writer = 'imagemagick') # gif保存
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def _set_axis(self):
|
||||||
|
""" initialize the animation axies
|
||||||
|
"""
|
||||||
|
# (1) set the axis name
|
||||||
|
self.axis.set_xlabel(r'$\it{x}$ [m]')
|
||||||
|
self.axis.set_ylabel(r'$\it{y}$ [m]')
|
||||||
|
self.axis.set_aspect('equal', adjustable='box')
|
||||||
|
|
||||||
|
# (2) set the xlim and ylim
|
||||||
|
self.axis.set_xlim(-5, 50)
|
||||||
|
self.axis.set_ylim(-2, 5)
|
||||||
|
|
||||||
|
def _set_img(self):
|
||||||
|
""" initialize the imgs of animation
|
||||||
|
this private function execute the make initial imgs for animation
|
||||||
|
"""
|
||||||
|
# object imgs
|
||||||
|
obj_color_list = ["k", "k", "m", "m"]
|
||||||
|
obj_styles = ["solid", "solid", "solid", "solid"]
|
||||||
|
|
||||||
|
for i in range(len(obj_color_list)):
|
||||||
|
temp_img, = self.axis.plot([], [], color=obj_color_list[i], linestyle=obj_styles[i])
|
||||||
|
self.object_imgs.append(temp_img)
|
||||||
|
|
||||||
|
traj_color_list = ["k", "m"]
|
||||||
|
|
||||||
|
for i in range(len(traj_color_list)):
|
||||||
|
temp_img, = self.axis.plot([],[], color=traj_color_list[i], linestyle="dashed")
|
||||||
|
self.traj_imgs.append(temp_img)
|
||||||
|
|
||||||
|
def _update_anim(self, i):
|
||||||
|
"""the update animation
|
||||||
|
this function should be used in the animation functions
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
i : int
|
||||||
|
time step of the animation
|
||||||
|
the sampling time should be related to the sampling time of system
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-----------
|
||||||
|
object_imgs : list of img
|
||||||
|
traj_imgs : list of img
|
||||||
|
"""
|
||||||
|
i = int(i * self.skip_num)
|
||||||
|
|
||||||
|
self._draw_objects(i)
|
||||||
|
self._draw_traj(i)
|
||||||
|
|
||||||
|
return self.object_imgs, self.traj_imgs,
|
||||||
|
|
||||||
|
def _draw_objects(self, i):
|
||||||
|
"""
|
||||||
|
This private function is just divided thing of
|
||||||
|
the _update_anim to see the code more clear
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
i : int
|
||||||
|
time step of the animation
|
||||||
|
the sampling time should be related to the sampling time of system
|
||||||
|
"""
|
||||||
|
# cars
|
||||||
|
for j in range(2):
|
||||||
|
fix_j = j * 2
|
||||||
|
object_x, object_y, angle_x, angle_y = square_make_with_angles(self.history_xs[j][i],
|
||||||
|
self.history_ys[j][i],
|
||||||
|
1.0,
|
||||||
|
self.history_ths[j][i])
|
||||||
|
|
||||||
|
self.object_imgs[fix_j].set_data([object_x, object_y])
|
||||||
|
self.object_imgs[fix_j + 1].set_data([angle_x, angle_y])
|
||||||
|
|
||||||
|
def _draw_traj(self, i):
|
||||||
|
"""
|
||||||
|
This private function is just divided thing of
|
||||||
|
the _update_anim to see the code more clear
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
i : int
|
||||||
|
time step of the animation
|
||||||
|
the sampling time should be related to the sampling time of system
|
||||||
|
"""
|
||||||
|
for j in range(2):
|
||||||
|
self.traj_imgs[j].set_data(self.history_xs[j][:i], self.history_ys[j][:i])
|
|
@ -9,10 +9,12 @@ from control import matlab
|
||||||
|
|
||||||
class WheeledSystem():
|
class WheeledSystem():
|
||||||
"""SampleSystem, this is the simulator
|
"""SampleSystem, this is the simulator
|
||||||
|
Kinematic model of car
|
||||||
|
|
||||||
Attributes
|
Attributes
|
||||||
-----------
|
-----------
|
||||||
xs : numpy.ndarray
|
xs : numpy.ndarray
|
||||||
system states, [x, y, theta]
|
system states, [x, y, phi, beta]
|
||||||
history_xs : list
|
history_xs : list
|
||||||
time history of state
|
time history of state
|
||||||
"""
|
"""
|
||||||
|
@ -23,7 +25,11 @@ class WheeledSystem():
|
||||||
init_state : float, optional, shape(3, )
|
init_state : float, optional, shape(3, )
|
||||||
initial state of system default is None
|
initial state of system default is None
|
||||||
"""
|
"""
|
||||||
self.xs = np.zeros(3)
|
self.NUM_STATE = 4
|
||||||
|
self.xs = np.zeros(self.NUM_STATE)
|
||||||
|
|
||||||
|
self.FRONT_WHEELE_BASE = 1.0
|
||||||
|
self.REAR_WHEELE_BASE = 1.0
|
||||||
|
|
||||||
if init_states is not None:
|
if init_states is not None:
|
||||||
self.xs = copy.deepcopy(init_states)
|
self.xs = copy.deepcopy(init_states)
|
||||||
|
@ -40,36 +46,37 @@ class WheeledSystem():
|
||||||
sampling time of simulation, default is 0.01 [s]
|
sampling time of simulation, default is 0.01 [s]
|
||||||
"""
|
"""
|
||||||
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
||||||
k0 = [0.0 for _ in range(3)]
|
k0 = [0.0 for _ in range(self.NUM_STATE)]
|
||||||
k1 = [0.0 for _ in range(3)]
|
k1 = [0.0 for _ in range(self.NUM_STATE)]
|
||||||
k2 = [0.0 for _ in range(3)]
|
k2 = [0.0 for _ in range(self.NUM_STATE)]
|
||||||
k3 = [0.0 for _ in range(3)]
|
k3 = [0.0 for _ in range(self.NUM_STATE)]
|
||||||
|
|
||||||
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
|
functions = [self._func_x_1, self._func_x_2, self._func_x_3, self._func_x_4]
|
||||||
|
|
||||||
# solve Runge-Kutta
|
# solve Runge-Kutta
|
||||||
for i, func in enumerate(functions):
|
for i, func in enumerate(functions):
|
||||||
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], us[0], us[1])
|
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], self.xs[3], us[0], us[1])
|
||||||
|
|
||||||
for i, func in enumerate(functions):
|
for i, func in enumerate(functions):
|
||||||
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., self.xs[3] + k0[3]/2, us[0], us[1])
|
||||||
|
|
||||||
for i, func in enumerate(functions):
|
for i, func in enumerate(functions):
|
||||||
k2[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
k2[i] = dt * func(self.xs[0] + k1[0]/2., self.xs[1] + k1[1]/2., self.xs[2] + k1[2]/2., self.xs[3] + k1[3]/2., us[0], us[1])
|
||||||
|
|
||||||
for i, func in enumerate(functions):
|
for i, func in enumerate(functions):
|
||||||
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], us[0], us[1])
|
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], self.xs[3] + k2[3], us[0], us[1])
|
||||||
|
|
||||||
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
||||||
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
||||||
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
||||||
|
self.xs[3] += (k0[3] + 2. * k1[3] + 2. * k2[3] + k3[3]) / 6.
|
||||||
|
|
||||||
# save
|
# save
|
||||||
save_states = copy.deepcopy(self.xs)
|
save_states = copy.deepcopy(self.xs)
|
||||||
self.history_xs.append(save_states)
|
self.history_xs.append(save_states)
|
||||||
print(self.xs)
|
print(self.xs)
|
||||||
|
|
||||||
def _func_x_1(self, y_1, y_2, y_3, u_1, u_2):
|
def _func_x_1(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||||
"""
|
"""
|
||||||
Parameters
|
Parameters
|
||||||
------------
|
------------
|
||||||
|
@ -81,10 +88,10 @@ class WheeledSystem():
|
||||||
u_2 : float
|
u_2 : float
|
||||||
system input
|
system input
|
||||||
"""
|
"""
|
||||||
y_dot = math.cos(y_3) * u_1
|
y_dot = u_1 * math.cos(y_3 + y_4)
|
||||||
return y_dot
|
return y_dot
|
||||||
|
|
||||||
def _func_x_2(self, y_1, y_2, y_3, u_1, u_2):
|
def _func_x_2(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||||
"""
|
"""
|
||||||
Parameters
|
Parameters
|
||||||
------------
|
------------
|
||||||
|
@ -96,10 +103,10 @@ class WheeledSystem():
|
||||||
u_2 : float
|
u_2 : float
|
||||||
system input
|
system input
|
||||||
"""
|
"""
|
||||||
y_dot = math.sin(y_3) * u_1
|
y_dot = u_1 * math.sin(y_3 + y_4)
|
||||||
return y_dot
|
return y_dot
|
||||||
|
|
||||||
def _func_x_3(self, y_1, y_2, y_3, u_1, u_2):
|
def _func_x_3(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||||
"""
|
"""
|
||||||
Parameters
|
Parameters
|
||||||
------------
|
------------
|
||||||
|
@ -111,11 +118,18 @@ class WheeledSystem():
|
||||||
u_2 : float
|
u_2 : float
|
||||||
system input
|
system input
|
||||||
"""
|
"""
|
||||||
y_dot = u_2
|
y_dot = u_1 / self.REAR_WHEELE_BASE * math.sin(y_4)
|
||||||
|
return y_dot
|
||||||
|
|
||||||
|
def _func_x_4(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
y_dot = math.atan2(self.REAR_WHEELE_BASE / (self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE) * math.tan(u_2))
|
||||||
|
|
||||||
return y_dot
|
return y_dot
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
dt = 0.05
|
dt = 0.016
|
||||||
simulation_time = 10 # in seconds
|
simulation_time = 10 # in seconds
|
||||||
iteration_num = int(simulation_time / dt)
|
iteration_num = int(simulation_time / dt)
|
||||||
|
|
||||||
|
@ -123,38 +137,33 @@ def main():
|
||||||
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||||
# lineared car system
|
# lineared car system
|
||||||
V = 5.0
|
V = 5.0
|
||||||
A = np.array([[0., V], [0., 0.]])
|
Ad = np.array([[1., 0., 0., 0.],
|
||||||
B = np.array([[0.], [1.]])
|
[0., 1, V, 0.],
|
||||||
|
[0., 0., 1., 0.],
|
||||||
|
[0., 0., 1., 0.]]) * dt
|
||||||
|
|
||||||
C = np.eye(2)
|
Bd = np.array([[0.], [0.], [0.], [0.3]]) * dt
|
||||||
D = np.zeros((2, 1))
|
|
||||||
|
W_D = np.array([[V], [0.], [0.], [0.]]) * dt
|
||||||
|
|
||||||
# make simulator with coninuous matrix
|
# make simulator with coninuous matrix
|
||||||
init_xs_lead = np.array([5., 0., 0.])
|
init_xs_lead = np.array([5., 0., 0. ,0.])
|
||||||
init_xs_follow = np.array([0., 0., 0.])
|
init_xs_follow = np.array([0., 0., 0., 0.])
|
||||||
lead_car = TwoWheeledSystem(init_states=init_xs_lead)
|
lead_car = WheeledSystem(init_states=init_xs_lead)
|
||||||
follow_car = TwoWheeledSystem(init_states=init_xs_follow)
|
follow_car = WheeledSystem(init_states=init_xs_follow)
|
||||||
|
|
||||||
# create system
|
|
||||||
sysc = matlab.ss(A, B, C, D)
|
|
||||||
# discrete system
|
|
||||||
sysd = matlab.c2d(sysc, dt)
|
|
||||||
|
|
||||||
Ad = sysd.A
|
|
||||||
Bd = sysd.B
|
|
||||||
|
|
||||||
# evaluation function weight
|
# evaluation function weight
|
||||||
Q = np.diag([1., 1.])
|
Q = np.diag([1., 1., 1., 1.])
|
||||||
R = np.diag([5.])
|
R = np.diag([5.])
|
||||||
pre_step = 15
|
pre_step = 2
|
||||||
|
|
||||||
# make controller with discreted matrix
|
# make controller with discreted matrix
|
||||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||||
lead_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
lead_controller = MpcController_cvxopt(Ad, Bd, W_D, Q, R, pre_step,
|
||||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||||
|
|
||||||
follow_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
follow_controller = MpcController_cvxopt(Ad, Bd, W_D, Q, R, pre_step,
|
||||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||||
|
|
|
@ -0,0 +1,297 @@
|
||||||
|
import numpy as np
|
||||||
|
np.set_printoptions(threshold=np.inf)
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import math
|
||||||
|
import copy
|
||||||
|
|
||||||
|
from cvxopt import matrix, solvers
|
||||||
|
|
||||||
|
class MpcController():
|
||||||
|
"""
|
||||||
|
Attributes
|
||||||
|
------------
|
||||||
|
A : numpy.ndarray
|
||||||
|
system matrix
|
||||||
|
B : numpy.ndarray
|
||||||
|
input matrix
|
||||||
|
W_D : numpy.ndarray
|
||||||
|
distubance matrix in state equation
|
||||||
|
Q : numpy.ndarray
|
||||||
|
evaluation function weight for states
|
||||||
|
Qs : numpy.ndarray
|
||||||
|
concatenated evaluation function weight for states
|
||||||
|
R : numpy.ndarray
|
||||||
|
evaluation function weight for inputs
|
||||||
|
Rs : numpy.ndarray
|
||||||
|
concatenated evaluation function weight for inputs
|
||||||
|
pre_step : int
|
||||||
|
prediction step
|
||||||
|
state_size : int
|
||||||
|
state size of the plant
|
||||||
|
input_size : int
|
||||||
|
input size of the plant
|
||||||
|
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input dt, default is None
|
||||||
|
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input dt, default is None
|
||||||
|
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
|
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
|
"""
|
||||||
|
def __init__(self, A, B, W_D, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
A : numpy.ndarray
|
||||||
|
system matrix
|
||||||
|
B : numpy.ndarray
|
||||||
|
input matrix
|
||||||
|
W_D : numpy.ndarray
|
||||||
|
distubance matrix in state equation
|
||||||
|
Q : numpy.ndarray
|
||||||
|
evaluation function weight for states
|
||||||
|
R : numpy.ndarray
|
||||||
|
evaluation function weight for inputs
|
||||||
|
pre_step : int
|
||||||
|
prediction step
|
||||||
|
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input dt, default is None
|
||||||
|
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input dt, default is None
|
||||||
|
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
|
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
|
history_us : list
|
||||||
|
time history of optimal input us(numpy.ndarray)
|
||||||
|
"""
|
||||||
|
self.A = np.array(A)
|
||||||
|
self.B = np.array(B)
|
||||||
|
self.W_D = np.array(W_D)
|
||||||
|
self.Q = np.array(Q)
|
||||||
|
self.R = np.array(R)
|
||||||
|
self.pre_step = pre_step
|
||||||
|
|
||||||
|
self.Qs = None
|
||||||
|
self.Rs = None
|
||||||
|
|
||||||
|
self.state_size = self.A.shape[0]
|
||||||
|
self.input_size = self.B.shape[1]
|
||||||
|
|
||||||
|
self.history_us = [np.zeros(self.input_size)]
|
||||||
|
|
||||||
|
# initial state
|
||||||
|
if initial_input is not None:
|
||||||
|
self.history_us = [initial_input]
|
||||||
|
|
||||||
|
# constraints
|
||||||
|
self.dt_input_lower = dt_input_lower
|
||||||
|
self.dt_input_upper = dt_input_upper
|
||||||
|
self.input_upper = input_upper
|
||||||
|
self.input_lower = input_lower
|
||||||
|
|
||||||
|
# about mpc matrix
|
||||||
|
self.W = None
|
||||||
|
self.omega = None
|
||||||
|
self.F = None
|
||||||
|
self.f = None
|
||||||
|
|
||||||
|
def initialize_controller(self):
|
||||||
|
"""
|
||||||
|
make matrix to calculate optimal control input
|
||||||
|
|
||||||
|
"""
|
||||||
|
A_factorials = [self.A]
|
||||||
|
|
||||||
|
self.phi_mat = copy.deepcopy(self.A)
|
||||||
|
|
||||||
|
for _ in range(self.pre_step - 1):
|
||||||
|
temp_mat = np.dot(A_factorials[-1], self.A)
|
||||||
|
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
|
||||||
|
|
||||||
|
A_factorials.append(temp_mat) # after we use this factorials
|
||||||
|
|
||||||
|
print("phi_mat = \n{0}".format(self.phi_mat))
|
||||||
|
|
||||||
|
self.gamma_mat = copy.deepcopy(self.B)
|
||||||
|
gammma_mat_temp = copy.deepcopy(self.B)
|
||||||
|
|
||||||
|
for i in range(self.pre_step - 1):
|
||||||
|
temp_1_mat = np.dot(A_factorials[i], self.B)
|
||||||
|
gammma_mat_temp = temp_1_mat + gammma_mat_temp
|
||||||
|
self.gamma_mat = np.vstack((self.gamma_mat, gammma_mat_temp))
|
||||||
|
|
||||||
|
print("gamma_mat = \n{0}".format(self.gamma_mat))
|
||||||
|
|
||||||
|
self.theta_mat = copy.deepcopy(self.gamma_mat)
|
||||||
|
|
||||||
|
for i in range(self.pre_step - 1):
|
||||||
|
temp_mat = np.zeros_like(self.gamma_mat)
|
||||||
|
temp_mat[int((i + 1)*self.state_size): , :] = self.gamma_mat[:-int((i + 1)*self.state_size) , :]
|
||||||
|
|
||||||
|
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
|
||||||
|
|
||||||
|
print("theta_mat = \n{0}".format(self.theta_mat))
|
||||||
|
|
||||||
|
# disturbance
|
||||||
|
print("A_factorials_mat = \n{0}".format(A_factorials))
|
||||||
|
A_factorials_mat = np.array(A_factorials).reshape(-1, self.state_size)
|
||||||
|
print("A_factorials_mat = \n{0}".format(A_factorials_mat))
|
||||||
|
|
||||||
|
eye = np.eye(self.state_size)
|
||||||
|
self.dist_mat = np.vstack((eye, A_factorials_mat[:-self.state_size, :]))
|
||||||
|
base_mat = copy.deepcopy(self.dist_mat)
|
||||||
|
|
||||||
|
print("base_mat = \n{0}".format(base_mat))
|
||||||
|
|
||||||
|
for i in range(self.pre_step - 1):
|
||||||
|
temp_mat = np.zeros_like(A_factorials_mat)
|
||||||
|
temp_mat[int((i + 1)*self.state_size): , :] = base_mat[:-int((i + 1)*self.state_size) , :]
|
||||||
|
self.dist_mat = np.hstack((self.dist_mat, temp_mat))
|
||||||
|
|
||||||
|
print("dist_mat = \n{0}".format(self.dist_mat))
|
||||||
|
|
||||||
|
# evaluation function weight
|
||||||
|
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
|
||||||
|
diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)])
|
||||||
|
|
||||||
|
self.Qs = np.diag(diag_Qs.flatten())
|
||||||
|
self.Rs = np.diag(diag_Rs.flatten())
|
||||||
|
|
||||||
|
print("Qs = \n{0}".format(self.Qs))
|
||||||
|
print("Rs = \n{0}".format(self.Rs))
|
||||||
|
|
||||||
|
# constraints
|
||||||
|
# about dt U
|
||||||
|
if self.input_lower is not None:
|
||||||
|
# initialize
|
||||||
|
self.F = np.zeros((self.input_size * 2, self.pre_step * self.input_size))
|
||||||
|
for i in range(self.input_size):
|
||||||
|
self.F[i * 2: (i + 1) * 2, i] = np.array([1., -1.])
|
||||||
|
temp_F = copy.deepcopy(self.F)
|
||||||
|
|
||||||
|
print("F = \n{0}".format(self.F))
|
||||||
|
|
||||||
|
for i in range(self.pre_step - 1):
|
||||||
|
temp_F = copy.deepcopy(temp_F)
|
||||||
|
|
||||||
|
for j in range(self.input_size):
|
||||||
|
temp_F[j * 2: (j + 1) * 2, ((i+1) * self.input_size) + j] = np.array([1., -1.])
|
||||||
|
|
||||||
|
self.F = np.vstack((self.F, temp_F))
|
||||||
|
|
||||||
|
self.F1 = self.F[:, :self.input_size]
|
||||||
|
|
||||||
|
temp_f = []
|
||||||
|
|
||||||
|
for i in range(self.input_size):
|
||||||
|
temp_f.append(-1 * self.input_upper[i])
|
||||||
|
temp_f.append(self.input_lower[i])
|
||||||
|
|
||||||
|
self.f = np.array([temp_f for _ in range(self.pre_step)]).flatten()
|
||||||
|
|
||||||
|
print("F = \n{0}".format(self.F))
|
||||||
|
print("F1 = \n{0}".format(self.F1))
|
||||||
|
print("f = \n{0}".format(self.f))
|
||||||
|
|
||||||
|
# about dt_u
|
||||||
|
if self.dt_input_lower is not None:
|
||||||
|
self.W = np.zeros((2, self.pre_step * self.input_size))
|
||||||
|
self.W[:, 0] = np.array([1., -1.])
|
||||||
|
|
||||||
|
for i in range(self.pre_step * self.input_size - 1):
|
||||||
|
temp_W = np.zeros((2, self.pre_step * self.input_size))
|
||||||
|
temp_W[:, i+1] = np.array([1., -1.])
|
||||||
|
self.W = np.vstack((self.W, temp_W))
|
||||||
|
|
||||||
|
temp_omega = []
|
||||||
|
|
||||||
|
for i in range(self.input_size):
|
||||||
|
temp_omega.append(self.dt_input_upper[i])
|
||||||
|
temp_omega.append(-1. * self.dt_input_lower[i])
|
||||||
|
|
||||||
|
self.omega = np.array([temp_omega for _ in range(self.pre_step)]).flatten()
|
||||||
|
|
||||||
|
print("W = \n{0}".format(self.W))
|
||||||
|
print("omega = \n{0}".format(self.omega))
|
||||||
|
|
||||||
|
# about state
|
||||||
|
print("check the matrix!! if you think rite, plese push enter")
|
||||||
|
input()
|
||||||
|
|
||||||
|
def calc_input(self, states, references):
|
||||||
|
"""calculate optimal input
|
||||||
|
Parameters
|
||||||
|
-----------
|
||||||
|
states : numpy.ndarray, shape(state length, )
|
||||||
|
current state of system
|
||||||
|
references : numpy.ndarray, shape(state length * pre_step, )
|
||||||
|
reference of the system, you should set this value as reachable goal
|
||||||
|
|
||||||
|
References
|
||||||
|
------------
|
||||||
|
opt_input : numpy.ndarray, shape(input_length, )
|
||||||
|
optimal input
|
||||||
|
"""
|
||||||
|
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||||
|
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||||
|
|
||||||
|
error = references.reshape(-1, 1) - temp_1 - temp_2 - self.dist_mat
|
||||||
|
|
||||||
|
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error))
|
||||||
|
|
||||||
|
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
|
||||||
|
|
||||||
|
# constraints
|
||||||
|
A = []
|
||||||
|
b = []
|
||||||
|
|
||||||
|
if self.W is not None:
|
||||||
|
A.append(self.W)
|
||||||
|
b.append(self.omega.reshape(-1, 1))
|
||||||
|
|
||||||
|
if self.F is not None:
|
||||||
|
b_F = - np.dot(self.F1, self.history_us[-1].reshape(-1, 1)) - self.f.reshape(-1, 1)
|
||||||
|
A.append(self.F)
|
||||||
|
b.append(b_F)
|
||||||
|
|
||||||
|
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||||
|
|
||||||
|
ub = np.array(b).flatten()
|
||||||
|
|
||||||
|
# make cvxpy problem formulation
|
||||||
|
P = 2*matrix(H)
|
||||||
|
q = matrix(-1 * G)
|
||||||
|
A = matrix(A)
|
||||||
|
b = matrix(ub)
|
||||||
|
|
||||||
|
# constraint
|
||||||
|
if self.W is not None or self.F is not None :
|
||||||
|
opt_result = solvers.qp(P, q, G=A, h=b)
|
||||||
|
|
||||||
|
opt_dt_us = list(opt_result['x'])
|
||||||
|
|
||||||
|
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||||
|
|
||||||
|
# save
|
||||||
|
self.history_us.append(opt_u)
|
||||||
|
|
||||||
|
return opt_u
|
||||||
|
|
||||||
|
def update_system_model(self, A, B, W_D):
|
||||||
|
"""update system model
|
||||||
|
A : numpy.ndarray
|
||||||
|
system matrix
|
||||||
|
B : numpy.ndarray
|
||||||
|
input matrix
|
||||||
|
W_D : numpy.ndarray
|
||||||
|
distubance matrix in state equation
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.A = A
|
||||||
|
self.B = B
|
||||||
|
self.W_D = W_D
|
||||||
|
|
||||||
|
self.initialize_controller()
|
Loading…
Reference in New Issue