write compare method of mpc
This commit is contained in:
parent
54320b3ab4
commit
dca46b0889
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -3,7 +3,8 @@ import matplotlib.pyplot as plt
|
|||
import math
|
||||
import copy
|
||||
|
||||
from mpc_func import MpcController
|
||||
from mpc_func_with_scipy import MpcController as MpcController_scipy
|
||||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
from control import matlab
|
||||
|
||||
class FirstOrderSystem():
|
||||
|
@ -86,7 +87,7 @@ class FirstOrderSystem():
|
|||
|
||||
def main():
|
||||
dt = 0.05
|
||||
simulation_time = 50 # in seconds
|
||||
simulation_time = 100 # in seconds
|
||||
iteration_num = int(simulation_time / dt)
|
||||
|
||||
# you must be care about this matrix
|
||||
|
@ -117,20 +118,21 @@ def main():
|
|||
Bd = sysd.B
|
||||
|
||||
# evaluation function weight
|
||||
Q = np.diag([1., 1., 1., 1.])
|
||||
R = np.diag([0.1, 0.1])
|
||||
Q = np.diag([1., 1., 10., 10.])
|
||||
R = np.diag([0.01, 0.01])
|
||||
pre_step = 5
|
||||
|
||||
# make controller with discreted matrix
|
||||
controller = MpcController(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([0.5 * dt, 0.5 * dt]), dt_input_lower=np.array([-0.5 * dt, -0.5 * dt]),
|
||||
input_upper=np.array([2. ,5.]), input_lower=np.array([-2., -5.]))
|
||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||
controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([0.25 * dt, 0.25 * dt]), dt_input_lower=np.array([-0.5 * dt, -0.5 * dt]),
|
||||
input_upper=np.array([1. ,3.]), input_lower=np.array([-1., -3.]))
|
||||
|
||||
controller.initialize_controller()
|
||||
|
||||
for i in range(iteration_num):
|
||||
print("simulation time = {0}".format(i))
|
||||
reference = np.array([[0., 0., -10., -5.] for _ in range(pre_step)]).flatten()
|
||||
reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten()
|
||||
states = plant.xs
|
||||
opt_u = controller.calc_input(states, reference)
|
||||
plant.update_state(opt_u)
|
||||
|
@ -144,18 +146,22 @@ def main():
|
|||
v_y_fig = time_history_fig.add_subplot(414)
|
||||
|
||||
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 0])
|
||||
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
v_x_fig.set_xlabel("time [s]")
|
||||
v_x_fig.set_ylabel("v_x")
|
||||
|
||||
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 1])
|
||||
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
v_y_fig.set_xlabel("time [s]")
|
||||
v_y_fig.set_ylabel("v_y")
|
||||
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 2])
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), [-5. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
x_fig.set_xlabel("time [s]")
|
||||
x_fig.set_ylabel("x")
|
||||
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 3])
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [7.5 for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
y_fig.set_xlabel("time [s]")
|
||||
y_fig.set_ylabel("y")
|
||||
time_history_fig.tight_layout()
|
||||
|
|
|
@ -0,0 +1,257 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import copy
|
||||
|
||||
from cvxopt import matrix, solvers
|
||||
|
||||
class MpcController():
|
||||
"""
|
||||
Attributes
|
||||
------------
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
input matrix
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight
|
||||
R : numpy.ndarray
|
||||
evaluation function weight
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray
|
||||
constraints of input dt
|
||||
dt_input_lower : numpy.ndarray
|
||||
constraints of input dt
|
||||
input_upper : numpy.ndarray
|
||||
constraints of input
|
||||
input_lower : numpy.ndarray
|
||||
constraints of input
|
||||
history_
|
||||
"""
|
||||
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||
"""
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
input matrix
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight
|
||||
R : numpy.ndarray
|
||||
evaluation function weight
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray
|
||||
constraints of input dt
|
||||
dt_input_lower : numpy.ndarray
|
||||
constraints of input dt
|
||||
input_upper : numpy.ndarray
|
||||
constraints of input
|
||||
input_lower : numpy.ndarray
|
||||
constraints of input
|
||||
"""
|
||||
self.A = np.array(A)
|
||||
self.B = np.array(B)
|
||||
self.Q = np.array(Q)
|
||||
self.R = np.array(R)
|
||||
self.pre_step = pre_step
|
||||
|
||||
self.Qs = None
|
||||
self.Rs = None
|
||||
|
||||
self.state_size = self.A.shape[0]
|
||||
self.input_size = self.B.shape[1]
|
||||
|
||||
self.history_us = [np.zeros(self.input_size)]
|
||||
|
||||
# initial state
|
||||
if initial_input is not None:
|
||||
self.history_us = [initial_input]
|
||||
|
||||
# constraints
|
||||
self.dt_input_lower = dt_input_lower
|
||||
self.dt_input_upper = dt_input_upper
|
||||
self.input_upper = input_upper
|
||||
self.input_lower = input_lower
|
||||
|
||||
self.W = None
|
||||
self.omega = None
|
||||
self.F = None
|
||||
self.f = None
|
||||
|
||||
def initialize_controller(self):
|
||||
"""
|
||||
make matrix to calculate optimal control input
|
||||
"""
|
||||
A_factorials = [self.A]
|
||||
|
||||
self.phi_mat = copy.deepcopy(self.A)
|
||||
|
||||
for _ in range(self.pre_step - 1):
|
||||
temp_mat = np.dot(A_factorials[-1], self.A)
|
||||
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
|
||||
|
||||
A_factorials.append(temp_mat) # after we use this factorials
|
||||
|
||||
print("phi_mat = \n{0}".format(self.phi_mat))
|
||||
|
||||
self.gamma_mat = copy.deepcopy(self.B)
|
||||
gammma_mat_temp = copy.deepcopy(self.B)
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_1_mat = np.dot(A_factorials[i], self.B)
|
||||
gammma_mat_temp = temp_1_mat + gammma_mat_temp
|
||||
self.gamma_mat = np.vstack((self.gamma_mat, gammma_mat_temp))
|
||||
|
||||
print("gamma_mat = \n{0}".format(self.gamma_mat))
|
||||
|
||||
self.theta_mat = copy.deepcopy(self.gamma_mat)
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_mat = np.zeros_like(self.gamma_mat)
|
||||
temp_mat[int((i + 1)*self.state_size): , :] = self.gamma_mat[:-int((i + 1)*self.state_size) , :]
|
||||
|
||||
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
|
||||
|
||||
print("theta_mat = \n{0}".format(self.theta_mat))
|
||||
|
||||
# evaluation function weight
|
||||
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
|
||||
diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)])
|
||||
|
||||
self.Qs = np.diag(diag_Qs.flatten())
|
||||
self.Rs = np.diag(diag_Rs.flatten())
|
||||
|
||||
print("Qs = \n{0}".format(self.Qs))
|
||||
print("Rs = \n{0}".format(self.Rs))
|
||||
|
||||
# constraints
|
||||
# about dt U
|
||||
if self.input_lower is not None:
|
||||
# initialize
|
||||
self.F = np.zeros((self.input_size * 2, self.pre_step * self.input_size))
|
||||
for i in range(self.input_size):
|
||||
self.F[i * 2: (i + 1) * 2, i] = np.array([1., -1.])
|
||||
temp_F = copy.deepcopy(self.F)
|
||||
|
||||
print("F = \n{0}".format(self.F))
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_F = copy.deepcopy(temp_F)
|
||||
|
||||
for j in range(self.input_size):
|
||||
temp_F[j * 2: (j + 1) * 2, ((i+1) * self.input_size) + j] = np.array([1., -1.])
|
||||
|
||||
self.F = np.vstack((self.F, temp_F))
|
||||
|
||||
self.F1 = self.F[:, :self.input_size]
|
||||
|
||||
temp_f = []
|
||||
|
||||
for i in range(self.input_size):
|
||||
temp_f.append(-1 * self.input_upper[i])
|
||||
temp_f.append(self.input_lower[i])
|
||||
|
||||
self.f = np.array([temp_f for _ in range(self.pre_step)]).flatten()
|
||||
|
||||
print("F = \n{0}".format(self.F))
|
||||
print("F1 = \n{0}".format(self.F1))
|
||||
print("f = \n{0}".format(self.f))
|
||||
|
||||
# about dt_u
|
||||
if self.dt_input_lower is not None:
|
||||
self.W = np.zeros((2, self.pre_step * self.input_size))
|
||||
self.W[:, 0] = np.array([1., -1.])
|
||||
|
||||
for i in range(self.pre_step * self.input_size - 1):
|
||||
temp_W = np.zeros((2, self.pre_step * self.input_size))
|
||||
temp_W[:, i+1] = np.array([1., -1.])
|
||||
self.W = np.vstack((self.W, temp_W))
|
||||
|
||||
temp_omega = []
|
||||
|
||||
for i in range(self.input_size):
|
||||
temp_omega.append(self.dt_input_upper[i])
|
||||
temp_omega.append(-1. * self.dt_input_lower[i])
|
||||
|
||||
self.omega = np.array([temp_omega for _ in range(self.pre_step)]).flatten()
|
||||
|
||||
print("W = \n{0}".format(self.W))
|
||||
print("omega = \n{0}".format(self.omega))
|
||||
|
||||
# about state
|
||||
print("check the matrix!! if you think rite, plese push enter")
|
||||
input()
|
||||
|
||||
def calc_input(self, states, references):
|
||||
"""calculate optimal input
|
||||
Parameters
|
||||
-----------
|
||||
states : numpy.array
|
||||
the size should have (state length * 1)
|
||||
references :
|
||||
the size should have (state length * pre_step)
|
||||
|
||||
References
|
||||
------------
|
||||
opt_input : numpy.ndarray
|
||||
optimal input, size is (1, input_length)
|
||||
"""
|
||||
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||
|
||||
error = references.reshape(-1, 1) - temp_1 - temp_2
|
||||
|
||||
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error) )
|
||||
|
||||
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
|
||||
|
||||
# constraints
|
||||
A = []
|
||||
b = []
|
||||
|
||||
if self.W is not None:
|
||||
A.append(self.W)
|
||||
b.append(self.omega.reshape(-1, 1))
|
||||
|
||||
if self.F is not None:
|
||||
b_F = - np.dot(self.F1, self.history_us[-1].reshape(-1, 1)) - self.f.reshape(-1, 1)
|
||||
A.append(self.F)
|
||||
b.append(b_F)
|
||||
|
||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||
# b = np.array(b).reshape(-1, 1)
|
||||
ub = np.array(b).flatten()
|
||||
# print(np.dot(self.F1, self.history_us[-1].reshape(-1, 1)))
|
||||
|
||||
# make cvxpy problem formulation
|
||||
P = 2*matrix(H)
|
||||
q = matrix(-1 * G)
|
||||
A = matrix(A)
|
||||
b = matrix(ub)
|
||||
|
||||
# constraint
|
||||
if self.W is not None or self.F is not None :
|
||||
# print("consider constraint!")
|
||||
opt_result = solvers.qp(P, q, G=A, h=b)
|
||||
|
||||
# print(list(opt_result['x']))
|
||||
opt_dt_us = list(opt_result['x'])
|
||||
# print("current_u = {0}".format(self.history_us[-1]))
|
||||
# print("opt_dt_u = {0}".format(np.round(opt_dt_us, 5)))
|
||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||
# print("opt_u = {0}".format(np.round(opt_u, 5)))
|
||||
# save
|
||||
self.history_us.append(opt_u)
|
||||
# a = input()
|
||||
return opt_u
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
constraint = []
|
||||
for i in range(self.pre_step * self.input_size):
|
||||
sums = -1. * (np.dot(A[i], init_dt_us) - b[i])[0]
|
||||
constraint.append(sums)
|
||||
"""
|
|
@ -4,6 +4,7 @@ import math
|
|||
import copy
|
||||
|
||||
from scipy.optimize import minimize
|
||||
from scipy.optimize import LinearConstraint
|
||||
|
||||
class MpcController():
|
||||
"""
|
||||
|
@ -220,7 +221,9 @@ class MpcController():
|
|||
b.append(b_F)
|
||||
|
||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||
b = np.array(b).reshape(-1, 1)
|
||||
# b = np.array(b).reshape(-1, 1)
|
||||
ub = np.array(b).flatten()
|
||||
# print(np.dot(self.F1, self.history_us[-1].reshape(-1, 1)))
|
||||
|
||||
def optimized_func(dt_us):
|
||||
"""
|
||||
|
@ -228,37 +231,26 @@ class MpcController():
|
|||
temp_dt_us = np.array([dt_us[i] for i in range(self.input_size * self.pre_step)])
|
||||
|
||||
return (np.dot(temp_dt_us, np.dot(H, temp_dt_us.reshape(-1, 1))) - np.dot(G.T, temp_dt_us.reshape(-1, 1)))[0]
|
||||
|
||||
def constraint_func(dt_us):
|
||||
""" we consider the constraints in Ax <= b
|
||||
however the scipy constraints is -(Ax - b) >= 0
|
||||
so we should recalculate the A and B
|
||||
"""
|
||||
temp_dt_us = np.array([dt_us[i] for i in range(self.input_size * self.pre_step)])
|
||||
|
||||
constraint = []
|
||||
for i in range(self.pre_step * self.input_size):
|
||||
sums = -1. * (np.dot(A[i], temp_dt_us) - b[i])[0]
|
||||
constraint.append(sums)
|
||||
|
||||
return np.array(sums)
|
||||
# constraint
|
||||
lb = np.array([-np.inf for _ in range(len(ub))])
|
||||
linear_cons = LinearConstraint(A, lb, ub)
|
||||
|
||||
init_dt_us = np.zeros(self.input_size * self.pre_step)
|
||||
|
||||
# constraint
|
||||
if self.W is not None or self.F is not None :
|
||||
print("consider constraint!")
|
||||
cons = ({'type' : 'ineq', 'fun' : constraint_func})
|
||||
opt_result = minimize(optimized_func, init_dt_us, constraints=cons)
|
||||
# print("consider constraint!")
|
||||
opt_result = minimize(optimized_func, init_dt_us, constraints=[linear_cons])
|
||||
|
||||
opt_dt_us = opt_result.x
|
||||
print("opt_u = {0}".format(np.round(opt_dt_us, 5)))
|
||||
# print("current_u = {0}".format(self.history_us[-1]))
|
||||
# print("opt_dt_u = {0}".format(np.round(opt_dt_us, 5)))
|
||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||
|
||||
# print("opt_u = {0}".format(np.round(opt_u, 5)))
|
||||
# save
|
||||
self.history_us.append(opt_u)
|
||||
|
||||
|
||||
return opt_u
|
||||
|
||||
|
|
@ -1,70 +0,0 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
|
||||
class FirstOrderSystem():
|
||||
"""FirstOrderSystem
|
||||
|
||||
Attributes
|
||||
-----------
|
||||
state : float
|
||||
system state, this system should have one input - one output
|
||||
a : float
|
||||
parameter of the system
|
||||
b : float
|
||||
parameter of the system
|
||||
history_state : list
|
||||
time history of state
|
||||
"""
|
||||
def __init__(self, a, b, init_state=0.0):
|
||||
"""
|
||||
Parameters
|
||||
-----------
|
||||
a : float
|
||||
parameter of the system
|
||||
b : float
|
||||
parameter of the system
|
||||
init_state : float, optional
|
||||
initial state of system default is 0.0
|
||||
"""
|
||||
self.state = init_state
|
||||
self.a = a
|
||||
self.b = b
|
||||
self.history_state = [init_state]
|
||||
|
||||
def update_state(self, u, dt=0.01):
|
||||
"""calculating input
|
||||
Parameters
|
||||
------------
|
||||
u : float
|
||||
input of system in some cases this means the reference
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
# solve Runge-Kutta
|
||||
k0 = dt * self._func(self.state, u)
|
||||
k1 = dt * self._func(self.state + k0/2.0, u)
|
||||
k2 = dt * self._func(self.state + k1/2.0, u)
|
||||
k3 = dt * self._func(self.state + k2, u)
|
||||
|
||||
self.state += (k0 + 2 * k1 + 2 * k2 + k3) / 6.0
|
||||
|
||||
# for oylar
|
||||
# self.state += k0
|
||||
|
||||
# save
|
||||
self.history_state.append(self.state)
|
||||
|
||||
def _func(self, y, u):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y : float
|
||||
state of system
|
||||
u : float
|
||||
input of system in some cases this means the reference
|
||||
"""
|
||||
y_dot = -self.a * y + self.b * u
|
||||
|
||||
return y_dot
|
||||
|
|
@ -0,0 +1,211 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import copy
|
||||
|
||||
from mpc_func_with_scipy import MpcController as MpcController_scipy
|
||||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
from control import matlab
|
||||
|
||||
class FirstOrderSystem():
|
||||
"""FirstOrderSystemWithStates
|
||||
|
||||
Attributes
|
||||
-----------
|
||||
states : float
|
||||
system states
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
control matrix
|
||||
C : numpy.ndarray
|
||||
observation matrix
|
||||
history_state : list
|
||||
time history of state
|
||||
"""
|
||||
def __init__(self, A, B, C, D=None, init_states=None):
|
||||
"""
|
||||
Parameters
|
||||
-----------
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
control matrix
|
||||
C : numpy.ndarray
|
||||
observation matrix
|
||||
C : numpy.ndarray
|
||||
directly matrix
|
||||
init_state : float, optional
|
||||
initial state of system default is None
|
||||
history_xs : list
|
||||
time history of system states
|
||||
"""
|
||||
|
||||
self.A = A
|
||||
self.B = B
|
||||
self.C = C
|
||||
|
||||
if D is not None:
|
||||
self.D = D
|
||||
|
||||
self.xs = np.zeros(self.A.shape[0])
|
||||
|
||||
if init_states is not None:
|
||||
self.xs = copy.deepcopy(init_states)
|
||||
|
||||
self.history_xs = [init_states]
|
||||
|
||||
def update_state(self, u, dt=0.01):
|
||||
"""calculating input
|
||||
Parameters
|
||||
------------
|
||||
u : float
|
||||
input of system in some cases this means the reference
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
temp_x = self.xs.reshape(-1, 1)
|
||||
temp_u = u.reshape(-1, 1)
|
||||
|
||||
# solve Runge-Kutta
|
||||
k0 = dt * (np.dot(self.A, temp_x) + np.dot(self.B, temp_u))
|
||||
k1 = dt * (np.dot(self.A, temp_x + k0/2.) + np.dot(self.B, temp_u))
|
||||
k2 = dt * (np.dot(self.A, temp_x + k1/2.) + np.dot(self.B, temp_u))
|
||||
k3 = dt * (np.dot(self.A, temp_x + k2) + np.dot(self.B, temp_u))
|
||||
|
||||
self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten()
|
||||
|
||||
# for oylar
|
||||
# self.xs += k0.flatten()
|
||||
|
||||
# print("xs = {0}".format(self.xs))
|
||||
# a = input()
|
||||
# save
|
||||
save_states = copy.deepcopy(self.xs)
|
||||
self.history_xs.append(save_states)
|
||||
# print(self.history_xs)
|
||||
|
||||
def main():
|
||||
dt = 0.05
|
||||
simulation_time = 50 # in seconds
|
||||
iteration_num = int(simulation_time / dt)
|
||||
|
||||
# you must be care about this matrix
|
||||
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||
tau = 0.63
|
||||
A = np.array([[-1./tau, 0., 0., 0.],
|
||||
[0., -1./tau, 0., 0.],
|
||||
[1., 0., 0., 0.],
|
||||
[0., 1., 0., 0.]])
|
||||
B = np.array([[1./tau, 0.],
|
||||
[0., 1./tau],
|
||||
[0., 0.],
|
||||
[0., 0.]])
|
||||
|
||||
C = np.eye(4)
|
||||
D = np.zeros((4, 2))
|
||||
|
||||
# make simulator with coninuous matrix
|
||||
init_xs = np.array([0., 0., 0., 0.])
|
||||
plant_cvxopt = FirstOrderSystem(A, B, C, init_states=init_xs)
|
||||
plant_scipy = FirstOrderSystem(A, B, C, init_states=init_xs)
|
||||
|
||||
# create system
|
||||
sysc = matlab.ss(A, B, C, D)
|
||||
# discrete system
|
||||
sysd = matlab.c2d(sysc, dt)
|
||||
|
||||
Ad = sysd.A
|
||||
Bd = sysd.B
|
||||
|
||||
# evaluation function weight
|
||||
Q = np.diag([1., 1., 10., 10.])
|
||||
R = np.diag([0.01, 0.01])
|
||||
pre_step = 5
|
||||
|
||||
# make controller with discreted matrix
|
||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||
controller_cvxopt = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([0.25 * dt, 0.25 * dt]), dt_input_lower=np.array([-0.5 * dt, -0.5 * dt]),
|
||||
input_upper=np.array([1. ,3.]), input_lower=np.array([-1., -3.]))
|
||||
|
||||
controller_scipy = MpcController_scipy(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([0.25 * dt, 0.25 * dt]), dt_input_lower=np.array([-0.5 * dt, -0.5 * dt]),
|
||||
input_upper=np.array([1. ,3.]), input_lower=np.array([-1., -3.]))
|
||||
|
||||
controller_cvxopt.initialize_controller()
|
||||
controller_scipy.initialize_controller()
|
||||
|
||||
for i in range(iteration_num):
|
||||
print("simulation time = {0}".format(i))
|
||||
reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten()
|
||||
|
||||
states_cvxopt = plant_cvxopt.xs
|
||||
states_scipy = plant_scipy.xs
|
||||
|
||||
opt_u_cvxopt = controller_cvxopt.calc_input(states_cvxopt, reference)
|
||||
opt_u_scipy = controller_scipy.calc_input(states_scipy, reference)
|
||||
|
||||
plant_cvxopt.update_state(opt_u_cvxopt)
|
||||
plant_scipy.update_state(opt_u_scipy)
|
||||
|
||||
history_states_cvxopt = np.array(plant_cvxopt.history_xs)
|
||||
history_states_scipy = np.array(plant_scipy.history_xs)
|
||||
|
||||
time_history_fig = plt.figure(dpi=75)
|
||||
x_fig = time_history_fig.add_subplot(411)
|
||||
y_fig = time_history_fig.add_subplot(412)
|
||||
v_x_fig = time_history_fig.add_subplot(413)
|
||||
v_y_fig = time_history_fig.add_subplot(414)
|
||||
|
||||
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_cvxopt[:, 0], label="cvxopt")
|
||||
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_scipy[:, 0], label="scipy", linestyle="dashdot")
|
||||
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
v_x_fig.set_xlabel("time [s]")
|
||||
v_x_fig.set_ylabel("v_x")
|
||||
v_x_fig.legend()
|
||||
|
||||
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_cvxopt[:, 1], label="cvxopt")
|
||||
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_scipy[:, 1], label="scipy", linestyle="dashdot")
|
||||
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
v_y_fig.set_xlabel("time [s]")
|
||||
v_y_fig.set_ylabel("v_y")
|
||||
v_y_fig.legend()
|
||||
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_cvxopt[:, 2], label="cvxopt")
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_scipy[:, 2], label="scipy", linestyle="dashdot")
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), [-5. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
x_fig.set_xlabel("time [s]")
|
||||
x_fig.set_ylabel("x")
|
||||
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_cvxopt[:, 3], label ="cvxopt")
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states_scipy[:, 3], label="scipy", linestyle="dashdot")
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [7.5 for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
y_fig.set_xlabel("time [s]")
|
||||
y_fig.set_ylabel("y")
|
||||
time_history_fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
history_us_cvxopt = np.array(controller_cvxopt.history_us)
|
||||
history_us_scipy = np.array(controller_scipy.history_us)
|
||||
|
||||
input_history_fig = plt.figure(dpi=75)
|
||||
u_1_fig = input_history_fig.add_subplot(211)
|
||||
u_2_fig = input_history_fig.add_subplot(212)
|
||||
|
||||
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us_cvxopt[:, 0], label="cvxopt")
|
||||
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us_scipy[:, 0], label="scipy", linestyle="dashdot")
|
||||
u_1_fig.set_xlabel("time [s]")
|
||||
u_1_fig.set_ylabel("u_x")
|
||||
u_1_fig.legend()
|
||||
|
||||
u_2_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us_cvxopt[:, 1], label="cvxopt")
|
||||
u_2_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us_scipy[:, 1], label="scipy", linestyle="dashdot")
|
||||
u_2_fig.set_xlabel("time [s]")
|
||||
u_2_fig.set_ylabel("u_y")
|
||||
u_2_fig.legend()
|
||||
input_history_fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue