add animation

This commit is contained in:
Shunichi09 2019-02-10 02:47:13 +09:00
parent f1fc57a219
commit dcb9aa0689
5 changed files with 252 additions and 78 deletions

View File

@ -84,6 +84,42 @@ def square_make_with_angles(center_x, center_y, size, angle):
return square_xs, square_ys, np.array(angle_line_xs), np.array(angle_line_ys)
def circle_make_with_angles(center_x, center_y, radius, angle):
'''
Create circle matrix with angle line matrix
Parameters
-------
center_x : float
the center x position of the circle
center_y : float
the center y position of the circle
radius : float
angle : float [rad]
Returns
-------
circle xs : numpy.ndarray
circle ys : numpy.ndarray
angle line xs : numpy.ndarray
angle line ys : numpy.ndarray
'''
point_num = 100 # 分解能
circle_xs = []
circle_ys = []
for i in range(point_num + 1):
circle_xs.append(center_x + radius * math.cos(i*2*math.pi/point_num))
circle_ys.append(center_y + radius * math.sin(i*2*math.pi/point_num))
angle_line_xs = [center_x, center_x + math.cos(angle) * radius]
angle_line_ys = [center_y, center_y + math.sin(angle) * radius]
return np.array(circle_xs), np.array(circle_ys), np.array(angle_line_xs), np.array(angle_line_ys)
class AnimDrawer():
"""create animation of path and robot
@ -99,22 +135,29 @@ class AnimDrawer():
Parameters
------------
objects : list of objects
Notes
---------
lead_history_states, lead_history_predict_states, traj_ref, history_traj_ref, history_angle_ref
"""
self.lead_car_history_state = objects[0]
self.follow_car_history_state = objects[1]
self.lead_car_history_predict_state = objects[1]
self.traj = objects[2]
self.history_traj_ref = objects[3]
self.history_angle_ref = objects[4]
self.history_xs = [self.lead_car_history_state[:, 0], self.follow_car_history_state[:, 0]]
self.history_ys = [self.lead_car_history_state[:, 1], self.follow_car_history_state[:, 1]]
self.history_ths = [self.lead_car_history_state[:, 2], self.follow_car_history_state[:, 2]]
self.history_xs = [self.lead_car_history_state[:, 0]]
self.history_ys = [self.lead_car_history_state[:, 1]]
self.history_ths = [self.lead_car_history_state[:, 2]]
# setting up figure
self.anim_fig = plt.figure(dpi=150)
self.axis = self.anim_fig.add_subplot(111)
# imgs
self.object_imgs = []
self.car_imgs = []
self.traj_imgs = []
self.predict_imgs = []
def draw_anim(self, interval=50):
"""draw the animation and save
@ -153,10 +196,12 @@ class AnimDrawer():
self.axis.set_ylabel(r'$\it{y}$ [m]')
self.axis.set_aspect('equal', adjustable='box')
# (2) set the xlim and ylim
self.axis.set_xlim(-2, 20)
self.axis.set_ylim(-10, 10)
LOW_MARGIN = 5
HIGH_MARGIN = 5
self.axis.set_xlim(np.min(self.history_xs) - LOW_MARGIN, np.max(self.history_xs) + HIGH_MARGIN)
self.axis.set_ylim(np.min(self.history_ys) - LOW_MARGIN, np.max(self.history_ys) + HIGH_MARGIN)
def _set_img(self):
""" initialize the imgs of animation
this private function execute the make initial imgs for animation
@ -167,14 +212,22 @@ class AnimDrawer():
for i in range(len(obj_color_list)):
temp_img, = self.axis.plot([], [], color=obj_color_list[i], linestyle=obj_styles[i])
self.object_imgs.append(temp_img)
self.car_imgs.append(temp_img)
traj_color_list = ["k", "m", "b"]
traj_color_list = ["k", "b"]
for i in range(len(traj_color_list)):
temp_img, = self.axis.plot([],[], color=traj_color_list[i], linestyle="dashed")
self.traj_imgs.append(temp_img)
temp_img, = self.axis.plot([],[], ".", color="m")
self.traj_imgs.append(temp_img)
# predict
for _ in range(2 * len(self.history_angle_ref[0])):
temp_img, = self.axis.plot([],[], color="g", linewidth=0.5) # point
# temp_img, = self.axis.plot([],[], ".", color="g", linewidth=0.5) # point
self.predict_imgs.append(temp_img)
def _update_anim(self, i):
"""the update animation
@ -193,12 +246,24 @@ class AnimDrawer():
"""
i = int(i * self.skip_num)
self._draw_objects(i)
# self._draw_set_axis(i)
self._draw_car(i)
self._draw_traj(i)
# self._draw_prediction(i)
return self.object_imgs, self.traj_imgs,
def _draw_objects(self, i):
return self.car_imgs, self.traj_imgs, self.predict_imgs,
def _draw_set_axis(self, i):
"""
"""
# (2) set the xlim and ylim
LOW_MARGIN = 20
HIGH_MARGIN = 20
OVER_LOOK = 50
self.axis.set_xlim(np.min(self.history_xs[0][i : i + OVER_LOOK]) - LOW_MARGIN, np.max(self.history_xs[0][i : i + OVER_LOOK]) + HIGH_MARGIN)
self.axis.set_ylim(np.min(self.history_ys[0][i : i + OVER_LOOK]) - LOW_MARGIN, np.max(self.history_ys[0][i : i + OVER_LOOK]) + HIGH_MARGIN)
def _draw_car(self, i):
"""
This private function is just divided thing of
the _update_anim to see the code more clear
@ -210,16 +275,14 @@ class AnimDrawer():
the sampling time should be related to the sampling time of system
"""
# cars
for j in range(2):
fix_j = j * 2
object_x, object_y, angle_x, angle_y = square_make_with_angles(self.history_xs[j][i],
self.history_ys[j][i],
1.0,
self.history_ths[j][i])
object_x, object_y, angle_x, angle_y = square_make_with_angles(self.history_xs[0][i],
self.history_ys[0][i],
5.0,
self.history_ths[0][i])
self.car_imgs[0].set_data([object_x, object_y])
self.car_imgs[1].set_data([angle_x, angle_y])
self.object_imgs[fix_j].set_data([object_x, object_y])
self.object_imgs[fix_j + 1].set_data([angle_x, angle_y])
def _draw_traj(self, i):
"""
This private function is just divided thing of
@ -231,7 +294,31 @@ class AnimDrawer():
time step of the animation
the sampling time should be related to the sampling time of system
"""
for j in range(2):
self.traj_imgs[j].set_data(self.history_xs[j][:i], self.history_ys[j][:i])
# car
self.traj_imgs[0].set_data(self.history_xs[0][:i], self.history_ys[0][:i])
self.traj_imgs[2].set_data(self.traj[0, :], self.traj[1, :])
# all traj_ref
self.traj_imgs[1].set_data(self.traj[0, :], self.traj[1, :])
# traj_ref
# self.traj_imgs[2].set_data(self.history_traj_ref[i][0, :], self.history_traj_ref[i][1, :])
def _draw_prediction(self, i):
"""draw prediction
Parameters
------------
i : int
time step of the animation
the sampling time should be related to the sampling time of system
"""
for j in range(0, len(self.history_angle_ref[0]), 4):
fix_j = j * 2
object_x, object_y, angle_x, angle_y =\
circle_make_with_angles(self.lead_car_history_predict_state[i][j, 0],
self.lead_car_history_predict_state[i][j, 1], 1.,
self.lead_car_history_predict_state[i][j, 2])
self.predict_imgs[fix_j].set_data(object_x, object_y)
self.predict_imgs[fix_j + 1].set_data(angle_x, angle_y)

View File

@ -138,6 +138,22 @@ def calc_curvatures(traj_ref, predict_step, num_skip):
return angles, curvatures
def calc_ideal_vel(traj_ref, dt):
"""
Parameters
------------
traj_ref : numpy.ndarray, shape (2, N)
these points should follow subseqently
dt : float
sampling time of system
"""
# end point and start point
diff = traj_ref[:, -1] - traj_ref[:, 0]
distance = np.sqrt(np.sum(diff**2))
V = distance / (dt * traj_ref.shape[1])
return V
def main():
"""

View File

@ -11,11 +11,11 @@ class IterativeMpcController():
"""
Attributes
------------
A : numpy.ndarray
Ad_s : list of numpy.ndarray
system matrix
B : numpy.ndarray
Bd_s : list of numpy.ndarray
input matrix
W_D : numpy.ndarray
W_D_s : list of numpy.ndarray
distubance matrix in state equation
Q : numpy.ndarray
evaluation function weight for states
@ -107,7 +107,7 @@ class IterativeMpcController():
A_factorials.append(temp_mat) # after we use this factorials
print("phi_mat = \n{0}".format(self.phi_mat))
# print("phi_mat = \n{0}".format(self.phi_mat))
self.gamma_mat = copy.deepcopy(self.Bd_s[0])
gammma_mat_temp = copy.deepcopy(self.Bd_s[0])
@ -117,7 +117,7 @@ class IterativeMpcController():
gammma_mat_temp = temp_1_mat + gammma_mat_temp
self.gamma_mat = np.vstack((self.gamma_mat, gammma_mat_temp))
print("gamma_mat = \n{0}".format(self.gamma_mat))
# print("gamma_mat = \n{0}".format(self.gamma_mat))
self.theta_mat = copy.deepcopy(self.gamma_mat)
@ -127,25 +127,25 @@ class IterativeMpcController():
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
print("theta_mat = \n{0}".format(self.theta_mat))
# print("theta_mat = \n{0}".format(self.theta_mat))
# disturbance
print("A_factorials_mat = \n{0}".format(A_factorials))
# print("A_factorials_mat = \n{0}".format(A_factorials))
A_factorials_mat = np.array(A_factorials).reshape(-1, self.state_size)
print("A_factorials_mat = \n{0}".format(A_factorials_mat))
# print("A_factorials_mat = \n{0}".format(A_factorials_mat))
eye = np.eye(self.state_size)
self.dist_mat = np.vstack((eye, A_factorials_mat[:-self.state_size, :]))
base_mat = copy.deepcopy(self.dist_mat)
print("base_mat = \n{0}".format(base_mat))
# print("base_mat = \n{0}".format(base_mat))
for i in range(self.pre_step - 1):
temp_mat = np.zeros_like(A_factorials_mat)
temp_mat[int((i + 1)*self.state_size): , :] = base_mat[:-int((i + 1)*self.state_size) , :]
self.dist_mat = np.hstack((self.dist_mat, temp_mat))
print("dist_mat = \n{0}".format(self.dist_mat))
# print("dist_mat = \n{0}".format(self.dist_mat))
W_Ds = copy.deepcopy(self.W_D_s[0])
@ -154,7 +154,7 @@ class IterativeMpcController():
self.dist_mat = np.dot(self.dist_mat, W_Ds)
print("dist_mat = \n{0}".format(self.dist_mat))
# print("dist_mat = \n{0}".format(self.dist_mat))
# evaluation function weight
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
@ -163,8 +163,8 @@ class IterativeMpcController():
self.Qs = np.diag(diag_Qs.flatten())
self.Rs = np.diag(diag_Rs.flatten())
print("Qs = \n{0}".format(self.Qs))
print("Rs = \n{0}".format(self.Rs))
# print("Qs = \n{0}".format(self.Qs))
# print("Rs = \n{0}".format(self.Rs))
# constraints
# about dt U
@ -175,7 +175,7 @@ class IterativeMpcController():
self.F[i * 2: (i + 1) * 2, i] = np.array([1., -1.])
temp_F = copy.deepcopy(self.F)
print("F = \n{0}".format(self.F))
# print("F = \n{0}".format(self.F))
for i in range(self.pre_step - 1):
temp_F = copy.deepcopy(temp_F)
@ -195,9 +195,9 @@ class IterativeMpcController():
self.f = np.array([temp_f for _ in range(self.pre_step)]).flatten()
print("F = \n{0}".format(self.F))
print("F1 = \n{0}".format(self.F1))
print("f = \n{0}".format(self.f))
# print("F = \n{0}".format(self.F))
# print("F1 = \n{0}".format(self.F1))
# print("f = \n{0}".format(self.f))
# about dt_u
if self.dt_input_lower is not None:
@ -217,8 +217,8 @@ class IterativeMpcController():
self.omega = np.array([temp_omega for _ in range(self.pre_step)]).flatten()
print("W = \n{0}".format(self.W))
print("omega = \n{0}".format(self.omega))
# print("W = \n{0}".format(self.W))
# print("omega = \n{0}".format(self.omega))
# about state
print("check the matrix!! if you think rite, plese push enter")
@ -235,8 +235,9 @@ class IterativeMpcController():
References
------------
opt_input : numpy.ndarray, shape(input_length, )
opt_u : numpy.ndarray, shape(input_length, )
optimal input
all_opt_u : numpy.ndarray, shape(PREDICT_STEP, input_length)
"""
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
@ -277,11 +278,19 @@ class IterativeMpcController():
opt_dt_us = list(opt_result['x'])
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
# calc all predit u
all_opt_u = [copy.deepcopy(opt_u)]
temp_u = copy.deepcopy(opt_u)
for i in range(1, self.pre_step):
temp_u += opt_dt_us[i * self.input_size: (i + 1) * self.input_size]
all_opt_u.append(copy.deepcopy(temp_u))
# save
self.history_us.append(opt_u)
return opt_u
return opt_u, np.array(all_opt_u)
def update_system_model(self, system_model):
"""update system model

View File

@ -9,7 +9,7 @@ from animation import AnimDrawer
# from control import matlab
from coordinate_trans import coordinate_transformation_in_angle, coordinate_transformation_in_position
from traj_func import make_sample_traj
from func_curvature import calc_curvatures
from func_curvature import calc_curvatures, calc_ideal_vel
class WheeledSystem():
"""SampleSystem, this is the simulator
@ -21,6 +21,11 @@ class WheeledSystem():
system states, [x, y, phi, beta]
history_xs : list
time history of state
tau : float
time constant of tire
FRONT_WHEEL_BASE : float
REAR_WHEEL_BASE : float
predict_xs :
"""
def __init__(self, init_states=None):
"""
@ -41,6 +46,7 @@ class WheeledSystem():
self.xs = copy.deepcopy(init_states)
self.history_xs = [init_states]
self.history_predict_xs = []
def update_state(self, us, dt=0.01):
"""
@ -51,7 +57,6 @@ class WheeledSystem():
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
# for theta 1, theta 1 dot, theta 2, theta 2 dot
k0 = [0.0 for _ in range(self.NUM_STATE)]
k1 = [0.0 for _ in range(self.NUM_STATE)]
k2 = [0.0 for _ in range(self.NUM_STATE)]
@ -80,7 +85,50 @@ class WheeledSystem():
# save
save_states = copy.deepcopy(self.xs)
self.history_xs.append(save_states)
print(self.xs)
# print(self.xs)
def predict_state(self, us, dt=0.01):
"""make predict state by using optimal input made by MPC
Paramaters
-----------
us : array-like, shape(2, N)
optimal input made by MPC
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
xs = copy.deepcopy(self.xs)
predict_xs = [copy.deepcopy(xs)]
for i in range(us.shape[1]):
k0 = [0.0 for _ in range(self.NUM_STATE)]
k1 = [0.0 for _ in range(self.NUM_STATE)]
k2 = [0.0 for _ in range(self.NUM_STATE)]
k3 = [0.0 for _ in range(self.NUM_STATE)]
functions = [self._func_x_1, self._func_x_2, self._func_x_3, self._func_x_4]
# solve Runge-Kutta
for i, func in enumerate(functions):
k0[i] = dt * func(xs[0], xs[1], xs[2], xs[3], us[0, i], us[1, i])
for i, func in enumerate(functions):
k1[i] = dt * func(xs[0] + k0[0]/2., xs[1] + k0[1]/2., xs[2] + k0[2]/2., xs[3] + k0[3]/2., us[0, i], us[1, i])
for i, func in enumerate(functions):
k2[i] = dt * func(xs[0] + k1[0]/2., xs[1] + k1[1]/2., xs[2] + k1[2]/2., xs[3] + k1[3]/2., us[0, i], us[1, i])
for i, func in enumerate(functions):
k3[i] = dt * func(xs[0] + k2[0], xs[1] + k2[1], xs[2] + k2[2], xs[3] + k2[3], us[0, i], us[1, i])
xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
xs[3] += (k0[3] + 2. * k1[3] + 2. * k2[3] + k3[3]) / 6.
predict_xs.append(copy.deepcopy(xs))
self.history_predict_xs.append(np.array(predict_xs))
def _func_x_1(self, y_1, y_2, y_3, y_4, u_1, u_2):
"""
@ -184,6 +232,7 @@ class SystemModel():
"""
calc next predict systemo models
V : float
current speed of car
curvatures : list
this is the next curvature's list
predict_step : int
@ -236,52 +285,53 @@ def main():
# parameters
dt = 0.01
simulation_time = 20 # in seconds
PREDICT_STEP = 15
PREDICT_STEP = 30
iteration_num = int(simulation_time / dt)
# make simulator with coninuous matrix
init_xs_lead = np.array([0., 0., math.pi/4, 0.])
init_xs_follow = np.array([0., 0., math.pi/4, 0.])
init_xs_lead = np.array([0., 0., math.pi/6, 0.])
lead_car = WheeledSystem(init_states=init_xs_lead)
follow_car = WheeledSystem(init_states=init_xs_follow)
# make system model
lead_car_system_model = SystemModel()
follow_car_system_model = SystemModel()
# reference
history_traj_ref = []
history_angle_ref = []
traj_ref_xs, traj_ref_ys = make_sample_traj(int(simulation_time/dt))
traj_ref = np.array([traj_ref_xs, traj_ref_ys])
# nearest point
index_min, nearest_point = search_nearest_point(traj_ref, lead_car.xs[:2].reshape(2, 1))
# get traj's curvature
NUM_SKIP = 5
MARGIN = 10
NUM_SKIP = 3
MARGIN = 20
angles, curvatures = calc_curvatures(traj_ref[:, index_min + MARGIN:index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN], PREDICT_STEP, NUM_SKIP)
# save traj ref
history_traj_ref.append(traj_ref[:, index_min + MARGIN:index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN])
history_angle_ref.append(angles)
# print(history_traj_ref)
# input()
# evaluation function weight
Q = np.diag([100., 1., 1.])
R = np.diag([0.01])
Q = np.diag([100., 1000., 1.])
R = np.diag([0.1])
# System model update
V = 3.0 # in pratical we should calc from the state
V = calc_ideal_vel(traj_ref, dt) # in pratical we should calc from the state
lead_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
follow_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
# make controller with discreted matrix
lead_controller = IterativeMpcController(lead_car_system_model, Q, R, PREDICT_STEP,
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
input_upper=np.array([30.]), input_lower=np.array([-30.]))
dt_input_upper=np.array([1 * dt]), dt_input_lower=np.array([-1 * dt]),
input_upper=np.array([1.]), input_lower=np.array([-1.]))
follow_controller = IterativeMpcController(follow_car_system_model, Q, R, PREDICT_STEP,
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
input_upper=np.array([30.]), input_lower=np.array([-30.]))
# initialize
lead_controller.initialize_controller()
follow_controller.initialize_controller()
for i in range(iteration_num):
print("simulation time = {0}".format(i))
@ -292,6 +342,7 @@ def main():
# nearest point
index_min, nearest_point = search_nearest_point(traj_ref, lead_car.xs[:2].reshape(2, 1))
# end check
if len(traj_ref_ys) <= index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN:
print("break")
@ -300,8 +351,12 @@ def main():
# get traj's curvature
angles, curvatures = calc_curvatures(traj_ref[:, index_min+MARGIN:index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN], PREDICT_STEP, NUM_SKIP)
# save
history_traj_ref.append(traj_ref[:, index_min + MARGIN:index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN])
history_angle_ref.append(angles)
# System model update
V = 4.0 # in pratical we should calc from the state
V = calc_ideal_vel(traj_ref, dt) # in pratical we should calc from the state
lead_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
# transformation
@ -318,7 +373,7 @@ def main():
relative_ref_angle = np.array(angles) - angles[0]
# make ref
lead_reference = np.array([[relative_traj[1, -1], relative_ref_angle[i], 0.] for i in range(PREDICT_STEP)]).flatten()
lead_reference = np.array([[relative_traj[1, -1], relative_ref_angle[-1], 0.] for i in range(PREDICT_STEP)]).flatten()
print("relative car state = {}".format(relative_car_state))
print("nearest point = {}".format(nearest_point))
@ -327,19 +382,27 @@ def main():
# update system matrix
lead_controller.update_system_model(lead_car_system_model)
lead_opt_u = lead_controller.calc_input(relative_car_state, lead_reference)
lead_opt_u, all_opt_u = lead_controller.calc_input(relative_car_state, lead_reference)
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
all_opt_u = np.stack((np.ones(PREDICT_STEP)*V, all_opt_u.flatten()))
print("opt_u = {}".format(lead_opt_u))
# input()
print("all_opt_u = {}".format(all_opt_u))
# predict
lead_car.predict_state(all_opt_u, dt=dt)
# update
lead_car.update_state(lead_opt_u, dt=dt)
follow_car.update_state(lead_opt_u, dt=dt)
# print(lead_car.history_predict_xs)
# input()
# figures and animation
lead_history_states = np.array(lead_car.history_xs)
follow_history_states = np.array(follow_car.history_xs)
lead_history_predict_states = lead_car.history_predict_xs
"""
time_history_fig = plt.figure()
@ -394,7 +457,7 @@ def main():
plt.show()
"""
animdrawer = AnimDrawer([lead_history_states, follow_history_states, traj_ref])
animdrawer = AnimDrawer([lead_history_states, lead_history_predict_states, traj_ref, history_traj_ref, history_angle_ref])
animdrawer.draw_anim()
if __name__ == "__main__":

View File

@ -2,7 +2,7 @@ import numpy as np
import matplotlib.pyplot as plt
import math
def make_sample_traj(NUM, dt=0.01, a=5.):
def make_sample_traj(NUM, dt=0.01, a=30.):
"""
make sample trajectory
Parameters
@ -21,10 +21,9 @@ def make_sample_traj(NUM, dt=0.01, a=5.):
traj_ys = []
for i in range(NUM):
traj_xs.append(dt * i)
traj_xs.append(i * 0.1)
traj_ys.append(a * math.sin(dt * i / DELAY))
plt.plot(traj_xs, traj_ys)
plt.show()