modify mpc
This commit is contained in:
parent
93ffb33055
commit
e7263b216a
|
@ -0,0 +1,243 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import copy
|
||||
|
||||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
from animation import AnimDrawer
|
||||
# from control import matlab
|
||||
|
||||
class TwoWheeledSystem():
|
||||
"""SampleSystem, this is the simulator
|
||||
Attributes
|
||||
-----------
|
||||
xs : numpy.ndarray
|
||||
system states, [x, y, theta]
|
||||
history_xs : list
|
||||
time history of state
|
||||
"""
|
||||
def __init__(self, init_states=None):
|
||||
"""
|
||||
Palameters
|
||||
-----------
|
||||
init_state : float, optional, shape(3, )
|
||||
initial state of system default is None
|
||||
"""
|
||||
self.xs = np.zeros(3)
|
||||
|
||||
if init_states is not None:
|
||||
self.xs = copy.deepcopy(init_states)
|
||||
|
||||
self.history_xs = [init_states]
|
||||
|
||||
def update_state(self, us, dt=0.01):
|
||||
"""
|
||||
Palameters
|
||||
------------
|
||||
u : numpy.ndarray
|
||||
inputs of system in some cases this means the reference
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
||||
k0 = [0.0 for _ in range(3)]
|
||||
k1 = [0.0 for _ in range(3)]
|
||||
k2 = [0.0 for _ in range(3)]
|
||||
k3 = [0.0 for _ in range(3)]
|
||||
|
||||
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
|
||||
|
||||
# solve Runge-Kutta
|
||||
for i, func in enumerate(functions):
|
||||
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], us[0], us[1])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k2[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], us[0], us[1])
|
||||
|
||||
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
||||
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
||||
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
||||
|
||||
# save
|
||||
save_states = copy.deepcopy(self.xs)
|
||||
self.history_xs.append(save_states)
|
||||
print(self.xs)
|
||||
|
||||
def _func_x_1(self, y_1, y_2, y_3, u_1, u_2):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = math.cos(y_3) * u_1
|
||||
return y_dot
|
||||
|
||||
def _func_x_2(self, y_1, y_2, y_3, u_1, u_2):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = math.sin(y_3) * u_1
|
||||
return y_dot
|
||||
|
||||
def _func_x_3(self, y_1, y_2, y_3, u_1, u_2):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = u_2
|
||||
return y_dot
|
||||
|
||||
def main():
|
||||
dt = 0.05
|
||||
simulation_time = 10 # in seconds
|
||||
iteration_num = int(simulation_time / dt)
|
||||
|
||||
# you must be care about this matrix
|
||||
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||
# lineared car system
|
||||
V = 5.0
|
||||
Ad = np.array([[1., V * dt], [0., 1.]])
|
||||
Bd = np.array([[0.], [1. * dt]])
|
||||
|
||||
C = np.eye(2)
|
||||
D = np.zeros((2, 1))
|
||||
|
||||
# make simulator with coninuous matrix
|
||||
init_xs_lead = np.array([5., 0., 0.])
|
||||
init_xs_follow = np.array([0., 0., 0.])
|
||||
lead_car = TwoWheeledSystem(init_states=init_xs_lead)
|
||||
follow_car = TwoWheeledSystem(init_states=init_xs_follow)
|
||||
|
||||
# create system
|
||||
# sysc = matlab.ss(A, B, C, D)
|
||||
# discrete system
|
||||
# sysd = matlab.c2d(sysc, dt)
|
||||
|
||||
# evaluation function weight
|
||||
Q = np.diag([1., 1.])
|
||||
R = np.diag([5.])
|
||||
pre_step = 15
|
||||
|
||||
# make controller with discreted matrix
|
||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||
lead_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||
|
||||
follow_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||
|
||||
lead_controller.initialize_controller()
|
||||
follow_controller.initialize_controller()
|
||||
|
||||
# reference
|
||||
lead_reference = np.array([[0., 0.] for _ in range(pre_step)]).flatten()
|
||||
|
||||
for i in range(iteration_num):
|
||||
print("simulation time = {0}".format(i))
|
||||
# make lead car's move
|
||||
if i > int(iteration_num / 3):
|
||||
lead_reference = np.array([[4., 0.] for _ in range(pre_step)]).flatten()
|
||||
|
||||
lead_states = lead_car.xs
|
||||
lead_opt_u = lead_controller.calc_input(lead_states[1:], lead_reference)
|
||||
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
|
||||
|
||||
# make follow car
|
||||
follow_reference = np.array([lead_states[1:] for _ in range(pre_step)]).flatten()
|
||||
follow_states = follow_car.xs
|
||||
|
||||
follow_opt_u = follow_controller.calc_input(follow_states[1:], follow_reference)
|
||||
follow_opt_u = np.hstack((np.array([V]), follow_opt_u))
|
||||
|
||||
lead_car.update_state(lead_opt_u, dt=dt)
|
||||
follow_car.update_state(follow_opt_u, dt=dt)
|
||||
|
||||
# figures and animation
|
||||
lead_history_states = np.array(lead_car.history_xs)
|
||||
follow_history_states = np.array(follow_car.history_xs)
|
||||
|
||||
time_history_fig = plt.figure()
|
||||
x_fig = time_history_fig.add_subplot(311)
|
||||
y_fig = time_history_fig.add_subplot(312)
|
||||
theta_fig = time_history_fig.add_subplot(313)
|
||||
|
||||
car_traj_fig = plt.figure()
|
||||
traj_fig = car_traj_fig.add_subplot(111)
|
||||
traj_fig.set_aspect('equal')
|
||||
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 0], label="lead")
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 0], label="follow")
|
||||
x_fig.set_xlabel("time [s]")
|
||||
x_fig.set_ylabel("x")
|
||||
x_fig.legend()
|
||||
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 1], label="lead")
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 1], label="follow")
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [4. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
y_fig.set_xlabel("time [s]")
|
||||
y_fig.set_ylabel("y")
|
||||
y_fig.legend()
|
||||
|
||||
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 2], label="lead")
|
||||
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 2], label="follow")
|
||||
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
theta_fig.set_xlabel("time [s]")
|
||||
theta_fig.set_ylabel("theta")
|
||||
theta_fig.legend()
|
||||
|
||||
time_history_fig.tight_layout()
|
||||
|
||||
traj_fig.plot(lead_history_states[:, 0], lead_history_states[:, 1], label="lead")
|
||||
traj_fig.plot(follow_history_states[:, 0], follow_history_states[:, 1], label="follow")
|
||||
traj_fig.set_xlabel("x")
|
||||
traj_fig.set_ylabel("y")
|
||||
traj_fig.legend()
|
||||
plt.show()
|
||||
|
||||
lead_history_us = np.array(lead_controller.history_us)
|
||||
follow_history_us = np.array(follow_controller.history_us)
|
||||
input_history_fig = plt.figure()
|
||||
u_1_fig = input_history_fig.add_subplot(111)
|
||||
|
||||
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_us[:, 0], label="lead")
|
||||
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_us[:, 0], label="follow")
|
||||
u_1_fig.set_xlabel("time [s]")
|
||||
u_1_fig.set_ylabel("u_omega")
|
||||
|
||||
input_history_fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
animdrawer = AnimDrawer([lead_history_states, follow_history_states])
|
||||
animdrawer.draw_anim()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,233 @@
|
|||
"""
|
||||
Cubic spline planner
|
||||
Author: Atsushi Sakai(@Atsushi_twi)
|
||||
"""
|
||||
import math
|
||||
import numpy as np
|
||||
import bisect
|
||||
|
||||
|
||||
class Spline:
|
||||
"""
|
||||
Cubic Spline class
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.b, self.c, self.d, self.w = [], [], [], []
|
||||
|
||||
self.x = x
|
||||
self.y = y
|
||||
|
||||
self.nx = len(x) # dimension of x
|
||||
h = np.diff(x)
|
||||
|
||||
# calc coefficient c
|
||||
self.a = [iy for iy in y]
|
||||
|
||||
# calc coefficient c
|
||||
A = self.__calc_A(h)
|
||||
B = self.__calc_B(h)
|
||||
self.c = np.linalg.solve(A, B)
|
||||
# print(self.c1)
|
||||
|
||||
# calc spline coefficient b and d
|
||||
for i in range(self.nx - 1):
|
||||
self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i]))
|
||||
tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \
|
||||
(self.c[i + 1] + 2.0 * self.c[i]) / 3.0
|
||||
self.b.append(tb)
|
||||
|
||||
def calc(self, t):
|
||||
"""
|
||||
Calc position
|
||||
if t is outside of the input x, return None
|
||||
"""
|
||||
|
||||
if t < self.x[0]:
|
||||
return None
|
||||
elif t > self.x[-1]:
|
||||
return None
|
||||
|
||||
i = self.__search_index(t)
|
||||
dx = t - self.x[i]
|
||||
result = self.a[i] + self.b[i] * dx + \
|
||||
self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
|
||||
|
||||
return result
|
||||
|
||||
def calcd(self, t):
|
||||
"""
|
||||
Calc first derivative
|
||||
if t is outside of the input x, return None
|
||||
"""
|
||||
|
||||
if t < self.x[0]:
|
||||
return None
|
||||
elif t > self.x[-1]:
|
||||
return None
|
||||
|
||||
i = self.__search_index(t)
|
||||
dx = t - self.x[i]
|
||||
result = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
|
||||
return result
|
||||
|
||||
def calcdd(self, t):
|
||||
"""
|
||||
Calc second derivative
|
||||
"""
|
||||
|
||||
if t < self.x[0]:
|
||||
return None
|
||||
elif t > self.x[-1]:
|
||||
return None
|
||||
|
||||
i = self.__search_index(t)
|
||||
dx = t - self.x[i]
|
||||
result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
|
||||
return result
|
||||
|
||||
def __search_index(self, x):
|
||||
"""
|
||||
search data segment index
|
||||
"""
|
||||
return bisect.bisect(self.x, x) - 1
|
||||
|
||||
def __calc_A(self, h):
|
||||
"""
|
||||
calc matrix A for spline coefficient c
|
||||
"""
|
||||
A = np.zeros((self.nx, self.nx))
|
||||
A[0, 0] = 1.0
|
||||
for i in range(self.nx - 1):
|
||||
if i != (self.nx - 2):
|
||||
A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
|
||||
A[i + 1, i] = h[i]
|
||||
A[i, i + 1] = h[i]
|
||||
|
||||
A[0, 1] = 0.0
|
||||
A[self.nx - 1, self.nx - 2] = 0.0
|
||||
A[self.nx - 1, self.nx - 1] = 1.0
|
||||
# print(A)
|
||||
return A
|
||||
|
||||
def __calc_B(self, h):
|
||||
"""
|
||||
calc matrix B for spline coefficient c
|
||||
"""
|
||||
B = np.zeros(self.nx)
|
||||
for i in range(self.nx - 2):
|
||||
B[i + 1] = 3.0 * (self.a[i + 2] - self.a[i + 1]) / \
|
||||
h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i]
|
||||
return B
|
||||
|
||||
|
||||
class Spline2D:
|
||||
"""
|
||||
2D Cubic Spline class
|
||||
"""
|
||||
|
||||
def __init__(self, x, y):
|
||||
self.s = self.__calc_s(x, y)
|
||||
self.sx = Spline(self.s, x)
|
||||
self.sy = Spline(self.s, y)
|
||||
|
||||
def __calc_s(self, x, y):
|
||||
dx = np.diff(x)
|
||||
dy = np.diff(y)
|
||||
self.ds = [math.sqrt(idx ** 2 + idy ** 2)
|
||||
for (idx, idy) in zip(dx, dy)]
|
||||
s = [0]
|
||||
s.extend(np.cumsum(self.ds))
|
||||
return s
|
||||
|
||||
def calc_position(self, s):
|
||||
"""
|
||||
calc position
|
||||
"""
|
||||
x = self.sx.calc(s)
|
||||
y = self.sy.calc(s)
|
||||
|
||||
return x, y
|
||||
|
||||
def calc_curvature(self, s):
|
||||
"""
|
||||
calc curvature
|
||||
"""
|
||||
dx = self.sx.calcd(s)
|
||||
ddx = self.sx.calcdd(s)
|
||||
dy = self.sy.calcd(s)
|
||||
ddy = self.sy.calcdd(s)
|
||||
k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
|
||||
return k
|
||||
|
||||
def calc_yaw(self, s):
|
||||
"""
|
||||
calc yaw
|
||||
"""
|
||||
dx = self.sx.calcd(s)
|
||||
dy = self.sy.calcd(s)
|
||||
yaw = math.atan2(dy, dx)
|
||||
return yaw
|
||||
|
||||
|
||||
def calc_spline_course(x, y, ds=0.1):
|
||||
sp = Spline2D(x, y)
|
||||
s = list(np.arange(0, sp.s[-1], ds))
|
||||
|
||||
rx, ry, ryaw, rk = [], [], [], []
|
||||
for i_s in s:
|
||||
ix, iy = sp.calc_position(i_s)
|
||||
rx.append(ix)
|
||||
ry.append(iy)
|
||||
ryaw.append(sp.calc_yaw(i_s))
|
||||
rk.append(sp.calc_curvature(i_s))
|
||||
|
||||
return rx, ry, ryaw, rk, s
|
||||
|
||||
|
||||
def main():
|
||||
print("Spline 2D test")
|
||||
import matplotlib.pyplot as plt
|
||||
x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
|
||||
y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
|
||||
ds = 0.1 # [m] distance of each intepolated points
|
||||
|
||||
sp = Spline2D(x, y)
|
||||
s = np.arange(0, sp.s[-1], ds)
|
||||
|
||||
rx, ry, ryaw, rk = [], [], [], []
|
||||
for i_s in s:
|
||||
ix, iy = sp.calc_position(i_s)
|
||||
rx.append(ix)
|
||||
ry.append(iy)
|
||||
ryaw.append(sp.calc_yaw(i_s))
|
||||
rk.append(sp.calc_curvature(i_s))
|
||||
|
||||
plt.subplots(1)
|
||||
plt.plot(x, y, "xb", label="input")
|
||||
plt.plot(rx, ry, "-r", label="spline")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.legend()
|
||||
|
||||
plt.subplots(1)
|
||||
plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.xlabel("line length[m]")
|
||||
plt.ylabel("yaw angle[deg]")
|
||||
|
||||
plt.subplots(1)
|
||||
plt.plot(s, rk, "-r", label="curvature")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.xlabel("line length[m]")
|
||||
plt.ylabel("curvature [1/m]")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,614 @@
|
|||
"""
|
||||
Path tracking simulation with iterative linear model predictive control for speed and steer control
|
||||
author: Atsushi Sakai (@Atsushi_twi)
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
import cvxpy
|
||||
import math
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
try:
|
||||
import pathplanner
|
||||
except:
|
||||
raise
|
||||
|
||||
|
||||
NX = 4 # x = x, y, v, yaw
|
||||
NU = 2 # a = [accel, steer]
|
||||
T = 5 # horizon length
|
||||
|
||||
# mpc parameters
|
||||
R = np.diag([0.01, 0.01]) # input cost matrix
|
||||
Rd = np.diag([0.01, 1.0]) # input difference cost matrix
|
||||
Q = np.diag([1.0, 1.0, 0.5, 0.5]) # state cost matrix
|
||||
Qf = Q # state final matrix
|
||||
GOAL_DIS = 1.5 # goal distance
|
||||
STOP_SPEED = 0.5 / 3.6 # stop speed
|
||||
MAX_TIME = 500.0 # max simulation time
|
||||
|
||||
# iterative paramter
|
||||
MAX_ITER = 3 # Max iteration
|
||||
DU_TH = 0.1 # iteration finish param
|
||||
|
||||
TARGET_SPEED = 10.0 / 3.6 # [m/s] target speed
|
||||
N_IND_SEARCH = 10 # Search index number
|
||||
|
||||
DT = 0.2 # [s] time tick
|
||||
|
||||
# Vehicle parameters
|
||||
LENGTH = 4.5 # [m]
|
||||
WIDTH = 2.0 # [m]
|
||||
BACKTOWHEEL = 1.0 # [m]
|
||||
WHEEL_LEN = 0.3 # [m]
|
||||
WHEEL_WIDTH = 0.2 # [m]
|
||||
TREAD = 0.7 # [m]
|
||||
WB = 2.5 # [m]
|
||||
|
||||
MAX_STEER = np.deg2rad(45.0) # maximum steering angle [rad]
|
||||
MAX_DSTEER = np.deg2rad(30.0) # maximum steering speed [rad/s]
|
||||
MAX_SPEED = 55.0 / 3.6 # maximum speed [m/s]
|
||||
MIN_SPEED = -20.0 / 3.6 # minimum speed [m/s]
|
||||
MAX_ACCEL = 1.0 # maximum accel [m/ss]
|
||||
|
||||
show_animation = True
|
||||
|
||||
|
||||
class State:
|
||||
"""
|
||||
vehicle state class
|
||||
"""
|
||||
|
||||
def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.yaw = yaw
|
||||
self.v = v
|
||||
self.predelta = None
|
||||
|
||||
|
||||
def pi_2_pi(angle):
|
||||
while(angle > math.pi):
|
||||
angle = angle - 2.0 * math.pi
|
||||
|
||||
while(angle < -math.pi):
|
||||
angle = angle + 2.0 * math.pi
|
||||
|
||||
return angle
|
||||
|
||||
|
||||
def get_linear_model_matrix(v, phi, delta):
|
||||
|
||||
A = np.zeros((NX, NX))
|
||||
A[0, 0] = 1.0
|
||||
A[1, 1] = 1.0
|
||||
A[2, 2] = 1.0
|
||||
A[3, 3] = 1.0
|
||||
A[0, 2] = DT * math.cos(phi)
|
||||
A[0, 3] = - DT * v * math.sin(phi)
|
||||
A[1, 2] = DT * math.sin(phi)
|
||||
A[1, 3] = DT * v * math.cos(phi)
|
||||
A[3, 2] = DT * math.tan(delta) / WB
|
||||
|
||||
B = np.zeros((NX, NU))
|
||||
B[2, 0] = DT
|
||||
B[3, 1] = DT * v / (WB * math.cos(delta) ** 2)
|
||||
|
||||
C = np.zeros(NX)
|
||||
C[0] = DT * v * math.sin(phi) * phi
|
||||
C[1] = - DT * v * math.cos(phi) * phi
|
||||
C[3] = - v * delta / (WB * math.cos(delta) ** 2)
|
||||
|
||||
return A, B, C
|
||||
|
||||
|
||||
def plot_car(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k"): # pragma: no cover
|
||||
|
||||
outline = np.array([[-BACKTOWHEEL, (LENGTH - BACKTOWHEEL), (LENGTH - BACKTOWHEEL), -BACKTOWHEEL, -BACKTOWHEEL],
|
||||
[WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
|
||||
|
||||
fr_wheel = np.array([[WHEEL_LEN, -WHEEL_LEN, -WHEEL_LEN, WHEEL_LEN, WHEEL_LEN],
|
||||
[-WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD]])
|
||||
|
||||
rr_wheel = np.copy(fr_wheel)
|
||||
|
||||
fl_wheel = np.copy(fr_wheel)
|
||||
fl_wheel[1, :] *= -1
|
||||
rl_wheel = np.copy(rr_wheel)
|
||||
rl_wheel[1, :] *= -1
|
||||
|
||||
Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
|
||||
[-math.sin(yaw), math.cos(yaw)]])
|
||||
Rot2 = np.array([[math.cos(steer), math.sin(steer)],
|
||||
[-math.sin(steer), math.cos(steer)]])
|
||||
|
||||
fr_wheel = (fr_wheel.T.dot(Rot2)).T
|
||||
fl_wheel = (fl_wheel.T.dot(Rot2)).T
|
||||
fr_wheel[0, :] += WB
|
||||
fl_wheel[0, :] += WB
|
||||
|
||||
fr_wheel = (fr_wheel.T.dot(Rot1)).T
|
||||
fl_wheel = (fl_wheel.T.dot(Rot1)).T
|
||||
|
||||
outline = (outline.T.dot(Rot1)).T
|
||||
rr_wheel = (rr_wheel.T.dot(Rot1)).T
|
||||
rl_wheel = (rl_wheel.T.dot(Rot1)).T
|
||||
|
||||
outline[0, :] += x
|
||||
outline[1, :] += y
|
||||
fr_wheel[0, :] += x
|
||||
fr_wheel[1, :] += y
|
||||
rr_wheel[0, :] += x
|
||||
rr_wheel[1, :] += y
|
||||
fl_wheel[0, :] += x
|
||||
fl_wheel[1, :] += y
|
||||
rl_wheel[0, :] += x
|
||||
rl_wheel[1, :] += y
|
||||
|
||||
plt.plot(np.array(outline[0, :]).flatten(),
|
||||
np.array(outline[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(fr_wheel[0, :]).flatten(),
|
||||
np.array(fr_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(rr_wheel[0, :]).flatten(),
|
||||
np.array(rr_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(fl_wheel[0, :]).flatten(),
|
||||
np.array(fl_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(np.array(rl_wheel[0, :]).flatten(),
|
||||
np.array(rl_wheel[1, :]).flatten(), truckcolor)
|
||||
plt.plot(x, y, "*")
|
||||
|
||||
|
||||
def update_state(state, a, delta):
|
||||
|
||||
# input check
|
||||
if delta >= MAX_STEER:
|
||||
delta = MAX_STEER
|
||||
elif delta <= -MAX_STEER:
|
||||
delta = -MAX_STEER
|
||||
|
||||
state.x = state.x + state.v * math.cos(state.yaw) * DT
|
||||
state.y = state.y + state.v * math.sin(state.yaw) * DT
|
||||
state.yaw = state.yaw + state.v / WB * math.tan(delta) * DT
|
||||
state.v = state.v + a * DT
|
||||
|
||||
if state. v > MAX_SPEED:
|
||||
state.v = MAX_SPEED
|
||||
elif state. v < MIN_SPEED:
|
||||
state.v = MIN_SPEED
|
||||
|
||||
return state
|
||||
|
||||
|
||||
def get_nparray_from_matrix(x):
|
||||
return np.array(x).flatten()
|
||||
|
||||
|
||||
def calc_nearest_index(state, cx, cy, cyaw, pind):
|
||||
|
||||
dx = [state.x - icx for icx in cx[pind:(pind + N_IND_SEARCH)]]
|
||||
dy = [state.y - icy for icy in cy[pind:(pind + N_IND_SEARCH)]]
|
||||
|
||||
d = [idx ** 2 + idy ** 2 for (idx, idy) in zip(dx, dy)]
|
||||
|
||||
mind = min(d)
|
||||
|
||||
ind = d.index(mind) + pind
|
||||
|
||||
mind = math.sqrt(mind)
|
||||
|
||||
dxl = cx[ind] - state.x
|
||||
dyl = cy[ind] - state.y
|
||||
|
||||
angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
|
||||
if angle < 0:
|
||||
mind *= -1
|
||||
|
||||
return ind, mind
|
||||
|
||||
|
||||
def predict_motion(x0, oa, od, xref):
|
||||
xbar = xref * 0.0
|
||||
for i, _ in enumerate(x0):
|
||||
xbar[i, 0] = x0[i]
|
||||
|
||||
state = State(x=x0[0], y=x0[1], yaw=x0[3], v=x0[2])
|
||||
for (ai, di, i) in zip(oa, od, range(1, T + 1)):
|
||||
state = update_state(state, ai, di)
|
||||
xbar[0, i] = state.x
|
||||
xbar[1, i] = state.y
|
||||
xbar[2, i] = state.v
|
||||
xbar[3, i] = state.yaw
|
||||
|
||||
return xbar
|
||||
|
||||
|
||||
def iterative_linear_mpc_control(xref, x0, dref, oa, od):
|
||||
"""
|
||||
MPC contorl with updating operational point iteraitvely
|
||||
"""
|
||||
|
||||
if oa is None or od is None:
|
||||
oa = [0.0] * T
|
||||
od = [0.0] * T
|
||||
|
||||
for i in range(MAX_ITER):
|
||||
xbar = predict_motion(x0, oa, od, xref)
|
||||
poa, pod = oa[:], od[:]
|
||||
oa, od, ox, oy, oyaw, ov = linear_mpc_control(xref, xbar, x0, dref)
|
||||
du = sum(abs(oa - poa)) + sum(abs(od - pod)) # calc u change value
|
||||
if du <= DU_TH:
|
||||
break
|
||||
else:
|
||||
print("Iterative is max iter")
|
||||
|
||||
return oa, od, ox, oy, oyaw, ov
|
||||
|
||||
|
||||
def linear_mpc_control(xref, xbar, x0, dref):
|
||||
"""
|
||||
linear mpc control
|
||||
xref: reference point
|
||||
xbar: operational point
|
||||
x0: initial state
|
||||
dref: reference steer angle
|
||||
"""
|
||||
|
||||
x = cvxpy.Variable((NX, T + 1))
|
||||
u = cvxpy.Variable((NU, T))
|
||||
|
||||
cost = 0.0
|
||||
constraints = []
|
||||
|
||||
for t in range(T):
|
||||
cost += cvxpy.quad_form(u[:, t], R)
|
||||
|
||||
if t != 0:
|
||||
cost += cvxpy.quad_form(xref[:, t] - x[:, t], Q)
|
||||
|
||||
A, B, C = get_linear_model_matrix(
|
||||
xbar[2, t], xbar[3, t], dref[0, t])
|
||||
constraints += [x[:, t + 1] == A * x[:, t] + B * u[:, t] + C]
|
||||
|
||||
if t < (T - 1):
|
||||
cost += cvxpy.quad_form(u[:, t + 1] - u[:, t], Rd)
|
||||
constraints += [cvxpy.abs(u[1, t + 1] - u[1, t]) <=
|
||||
MAX_DSTEER * DT]
|
||||
|
||||
cost += cvxpy.quad_form(xref[:, T] - x[:, T], Qf)
|
||||
|
||||
constraints += [x[:, 0] == x0]
|
||||
constraints += [x[2, :] <= MAX_SPEED]
|
||||
constraints += [x[2, :] >= MIN_SPEED]
|
||||
constraints += [cvxpy.abs(u[0, :]) <= MAX_ACCEL]
|
||||
constraints += [cvxpy.abs(u[1, :]) <= MAX_STEER]
|
||||
|
||||
prob = cvxpy.Problem(cvxpy.Minimize(cost), constraints)
|
||||
prob.solve(solver=cvxpy.ECOS, verbose=False)
|
||||
|
||||
if prob.status == cvxpy.OPTIMAL or prob.status == cvxpy.OPTIMAL_INACCURATE:
|
||||
ox = get_nparray_from_matrix(x.value[0, :])
|
||||
oy = get_nparray_from_matrix(x.value[1, :])
|
||||
ov = get_nparray_from_matrix(x.value[2, :])
|
||||
oyaw = get_nparray_from_matrix(x.value[3, :])
|
||||
oa = get_nparray_from_matrix(u.value[0, :])
|
||||
odelta = get_nparray_from_matrix(u.value[1, :])
|
||||
|
||||
else:
|
||||
print("Error: Cannot solve mpc..")
|
||||
oa, odelta, ox, oy, oyaw, ov = None, None, None, None, None, None
|
||||
|
||||
return oa, odelta, ox, oy, oyaw, ov
|
||||
|
||||
|
||||
def calc_ref_trajectory(state, cx, cy, cyaw, ck, sp, dl, pind):
|
||||
xref = np.zeros((NX, T + 1))
|
||||
dref = np.zeros((1, T + 1))
|
||||
ncourse = len(cx)
|
||||
|
||||
ind, _ = calc_nearest_index(state, cx, cy, cyaw, pind)
|
||||
|
||||
if pind >= ind:
|
||||
ind = pind
|
||||
|
||||
xref[0, 0] = cx[ind]
|
||||
xref[1, 0] = cy[ind]
|
||||
xref[2, 0] = sp[ind]
|
||||
xref[3, 0] = cyaw[ind]
|
||||
dref[0, 0] = 0.0 # steer operational point should be 0
|
||||
|
||||
travel = 0.0
|
||||
|
||||
for i in range(T + 1):
|
||||
travel += abs(state.v) * DT
|
||||
dind = int(round(travel / dl))
|
||||
|
||||
if (ind + dind) < ncourse:
|
||||
xref[0, i] = cx[ind + dind]
|
||||
xref[1, i] = cy[ind + dind]
|
||||
xref[2, i] = sp[ind + dind]
|
||||
xref[3, i] = cyaw[ind + dind]
|
||||
dref[0, i] = 0.0
|
||||
else:
|
||||
xref[0, i] = cx[ncourse - 1]
|
||||
xref[1, i] = cy[ncourse - 1]
|
||||
xref[2, i] = sp[ncourse - 1]
|
||||
xref[3, i] = cyaw[ncourse - 1]
|
||||
dref[0, i] = 0.0
|
||||
|
||||
return xref, ind, dref
|
||||
|
||||
|
||||
def check_goal(state, goal, tind, nind):
|
||||
|
||||
# check goal
|
||||
dx = state.x - goal[0]
|
||||
dy = state.y - goal[1]
|
||||
d = math.sqrt(dx ** 2 + dy ** 2)
|
||||
|
||||
isgoal = (d <= GOAL_DIS)
|
||||
|
||||
if abs(tind - nind) >= 5:
|
||||
isgoal = False
|
||||
|
||||
isstop = (abs(state.v) <= STOP_SPEED)
|
||||
|
||||
if isgoal and isstop:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def do_simulation(cx, cy, cyaw, ck, sp, dl, initial_state):
|
||||
"""
|
||||
Simulation
|
||||
cx: course x position list
|
||||
cy: course y position list
|
||||
cy: course yaw position list
|
||||
ck: course curvature list
|
||||
sp: speed profile
|
||||
dl: course tick [m]
|
||||
"""
|
||||
|
||||
goal = [cx[-1], cy[-1]]
|
||||
|
||||
state = initial_state
|
||||
|
||||
# initial yaw compensation
|
||||
if state.yaw - cyaw[0] >= math.pi:
|
||||
state.yaw -= math.pi * 2.0
|
||||
elif state.yaw - cyaw[0] <= -math.pi:
|
||||
state.yaw += math.pi * 2.0
|
||||
|
||||
time = 0.0
|
||||
x = [state.x]
|
||||
y = [state.y]
|
||||
yaw = [state.yaw]
|
||||
v = [state.v]
|
||||
t = [0.0]
|
||||
d = [0.0]
|
||||
a = [0.0]
|
||||
target_ind, _ = calc_nearest_index(state, cx, cy, cyaw, 0)
|
||||
|
||||
odelta, oa = None, None
|
||||
|
||||
cyaw = smooth_yaw(cyaw)
|
||||
|
||||
while MAX_TIME >= time:
|
||||
xref, target_ind, dref = calc_ref_trajectory(
|
||||
state, cx, cy, cyaw, ck, sp, dl, target_ind)
|
||||
|
||||
x0 = [state.x, state.y, state.v, state.yaw] # current state
|
||||
|
||||
oa, odelta, ox, oy, oyaw, ov = iterative_linear_mpc_control(
|
||||
xref, x0, dref, oa, odelta)
|
||||
|
||||
if odelta is not None:
|
||||
di, ai = odelta[0], oa[0]
|
||||
|
||||
state = update_state(state, ai, di)
|
||||
time = time + DT
|
||||
|
||||
x.append(state.x)
|
||||
y.append(state.y)
|
||||
yaw.append(state.yaw)
|
||||
v.append(state.v)
|
||||
t.append(time)
|
||||
d.append(di)
|
||||
a.append(ai)
|
||||
|
||||
if check_goal(state, goal, target_ind, len(cx)):
|
||||
print("Goal")
|
||||
break
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.cla()
|
||||
if ox is not None:
|
||||
plt.plot(ox, oy, "xr", label="MPC")
|
||||
plt.plot(cx, cy, "-r", label="course")
|
||||
plt.plot(x, y, "ob", label="trajectory")
|
||||
plt.plot(xref[0, :], xref[1, :], "xk", label="xref")
|
||||
plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
|
||||
plot_car(state.x, state.y, state.yaw, steer=di)
|
||||
plt.axis("equal")
|
||||
plt.grid(True)
|
||||
plt.title("Time[s]:" + str(round(time, 2))
|
||||
+ ", speed[km/h]:" + str(round(state.v * 3.6, 2)))
|
||||
plt.pause(0.0001)
|
||||
|
||||
return t, x, y, yaw, v, d, a
|
||||
|
||||
|
||||
def calc_speed_profile(cx, cy, cyaw, target_speed):
|
||||
|
||||
speed_profile = [target_speed] * len(cx)
|
||||
direction = 1.0 # forward
|
||||
|
||||
# Set stop point
|
||||
for i in range(len(cx) - 1):
|
||||
dx = cx[i + 1] - cx[i]
|
||||
dy = cy[i + 1] - cy[i]
|
||||
|
||||
move_direction = math.atan2(dy, dx)
|
||||
|
||||
if dx != 0.0 and dy != 0.0:
|
||||
dangle = abs(pi_2_pi(move_direction - cyaw[i]))
|
||||
if dangle >= math.pi / 4.0:
|
||||
direction = -1.0
|
||||
else:
|
||||
direction = 1.0
|
||||
|
||||
if direction != 1.0:
|
||||
speed_profile[i] = - target_speed
|
||||
else:
|
||||
speed_profile[i] = target_speed
|
||||
|
||||
speed_profile[-1] = 0.0
|
||||
|
||||
return speed_profile
|
||||
|
||||
|
||||
def smooth_yaw(yaw):
|
||||
|
||||
for i in range(len(yaw) - 1):
|
||||
dyaw = yaw[i + 1] - yaw[i]
|
||||
|
||||
while dyaw >= math.pi / 2.0:
|
||||
yaw[i + 1] -= math.pi * 2.0
|
||||
dyaw = yaw[i + 1] - yaw[i]
|
||||
|
||||
while dyaw <= -math.pi / 2.0:
|
||||
yaw[i + 1] += math.pi * 2.0
|
||||
dyaw = yaw[i + 1] - yaw[i]
|
||||
|
||||
return yaw
|
||||
|
||||
|
||||
def get_straight_course(dl):
|
||||
ax = [0.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0]
|
||||
ay = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
|
||||
cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
|
||||
ax, ay, ds=dl)
|
||||
|
||||
return cx, cy, cyaw, ck
|
||||
|
||||
|
||||
def get_straight_course2(dl):
|
||||
ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
|
||||
ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
|
||||
cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
|
||||
ax, ay, ds=dl)
|
||||
|
||||
return cx, cy, cyaw, ck
|
||||
|
||||
|
||||
def get_straight_course3(dl):
|
||||
ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
|
||||
ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
|
||||
cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
|
||||
ax, ay, ds=dl)
|
||||
|
||||
cyaw = [i - math.pi for i in cyaw]
|
||||
|
||||
return cx, cy, cyaw, ck
|
||||
|
||||
|
||||
def get_forward_course(dl):
|
||||
ax = [0.0, 60.0, 125.0, 50.0, 75.0, 30.0, -10.0]
|
||||
ay = [0.0, 0.0, 50.0, 65.0, 30.0, 50.0, -20.0]
|
||||
cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
|
||||
ax, ay, ds=dl)
|
||||
|
||||
return cx, cy, cyaw, ck
|
||||
|
||||
|
||||
def get_switch_back_course(dl):
|
||||
ax = [0.0, 30.0, 6.0, 20.0, 35.0]
|
||||
ay = [0.0, 0.0, 20.0, 35.0, 20.0]
|
||||
cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
|
||||
ax, ay, ds=dl)
|
||||
ax = [35.0, 10.0, 0.0, 0.0]
|
||||
ay = [20.0, 30.0, 5.0, 0.0]
|
||||
cx2, cy2, cyaw2, ck2, s2 = pathplanner.calc_spline_course(
|
||||
ax, ay, ds=dl)
|
||||
cyaw2 = [i - math.pi for i in cyaw2]
|
||||
cx.extend(cx2)
|
||||
cy.extend(cy2)
|
||||
cyaw.extend(cyaw2)
|
||||
ck.extend(ck2)
|
||||
|
||||
return cx, cy, cyaw, ck
|
||||
|
||||
|
||||
def main():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
dl = 1.0 # course tick
|
||||
# cx, cy, cyaw, ck = get_straight_course(dl)
|
||||
# cx, cy, cyaw, ck = get_straight_course2(dl)
|
||||
cx, cy, cyaw, ck = get_straight_course3(dl)
|
||||
# cx, cy, cyaw, ck = get_forward_course(dl)
|
||||
# CX, cy, cyaw, ck = get_switch_back_course(dl)
|
||||
|
||||
sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
|
||||
|
||||
initial_state = State(x=cx[0], y=cy[0], yaw=cyaw[0], v=0.0)
|
||||
|
||||
t, x, y, yaw, v, d, a = do_simulation(
|
||||
cx, cy, cyaw, ck, sp, dl, initial_state)
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.close("all")
|
||||
plt.subplots()
|
||||
plt.plot(cx, cy, "-r", label="spline")
|
||||
plt.plot(x, y, "-g", label="tracking")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.legend()
|
||||
|
||||
plt.subplots()
|
||||
plt.plot(t, v, "-r", label="speed")
|
||||
plt.grid(True)
|
||||
plt.xlabel("Time [s]")
|
||||
plt.ylabel("Speed [kmh]")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def main2():
|
||||
print(__file__ + " start!!")
|
||||
|
||||
dl = 1.0 # course tick
|
||||
cx, cy, cyaw, ck = get_straight_course3(dl)
|
||||
|
||||
sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
|
||||
|
||||
initial_state = State(x=cx[0], y=cy[0], yaw=0.0, v=0.0)
|
||||
|
||||
t, x, y, yaw, v, d, a = do_simulation(
|
||||
cx, cy, cyaw, ck, sp, dl, initial_state)
|
||||
|
||||
if show_animation: # pragma: no cover
|
||||
plt.close("all")
|
||||
plt.subplots()
|
||||
plt.plot(cx, cy, "-r", label="spline")
|
||||
plt.plot(x, y, "-g", label="tracking")
|
||||
plt.grid(True)
|
||||
plt.axis("equal")
|
||||
plt.xlabel("x[m]")
|
||||
plt.ylabel("y[m]")
|
||||
plt.legend()
|
||||
|
||||
plt.subplots()
|
||||
plt.plot(t, v, "-r", label="speed")
|
||||
plt.grid(True)
|
||||
plt.xlabel("Time [s]")
|
||||
plt.ylabel("Speed [kmh]")
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# main()
|
||||
main2()
|
|
@ -153,8 +153,8 @@ class AnimDrawer():
|
|||
self.axis.set_aspect('equal', adjustable='box')
|
||||
|
||||
# (2) set the xlim and ylim
|
||||
self.axis.set_xlim(-5, 50)
|
||||
self.axis.set_ylim(-2, 5)
|
||||
self.axis.set_xlim(-2, 50)
|
||||
self.axis.set_ylim(-10, 10)
|
||||
|
||||
def _set_img(self):
|
||||
""" initialize the imgs of animation
|
||||
|
|
|
@ -49,7 +49,7 @@ def coordinate_transformation_in_position(positions, base_positions):
|
|||
|
||||
Returns
|
||||
-------
|
||||
traslated_positions : numpy.ndarray
|
||||
traslated_positions : numpy.ndarray, shape(2, N)
|
||||
|
||||
'''
|
||||
|
||||
|
|
|
@ -0,0 +1,295 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import copy
|
||||
|
||||
from cvxopt import matrix, solvers
|
||||
|
||||
class IterativeMpcController():
|
||||
"""
|
||||
Attributes
|
||||
------------
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
input matrix
|
||||
W_D : numpy.ndarray
|
||||
distubance matrix in state equation
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight for states
|
||||
Qs : numpy.ndarray
|
||||
concatenated evaluation function weight for states
|
||||
R : numpy.ndarray
|
||||
evaluation function weight for inputs
|
||||
Rs : numpy.ndarray
|
||||
concatenated evaluation function weight for inputs
|
||||
pre_step : int
|
||||
prediction step
|
||||
state_size : int
|
||||
state size of the plant
|
||||
input_size : int
|
||||
input size of the plant
|
||||
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
"""
|
||||
def __init__(self, system_model, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
system_model : SystemModel class
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight for states
|
||||
R : numpy.ndarray
|
||||
evaluation function weight for inputs
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
history_us : list
|
||||
time history of optimal input us(numpy.ndarray)
|
||||
"""
|
||||
self.Ad_s = system_model.Ad_s
|
||||
self.Bd_s = system_model.Bd_s
|
||||
self.W_D_s = system_model.W_D_s
|
||||
self.Q = np.array(Q)
|
||||
self.R = np.array(R)
|
||||
self.pre_step = pre_step
|
||||
|
||||
self.Qs = None
|
||||
self.Rs = None
|
||||
|
||||
self.state_size = self.Ad_s[0].shape[0]
|
||||
self.input_size = self.Bd_s[0].shape[1]
|
||||
|
||||
self.history_us = [np.zeros(self.input_size)]
|
||||
|
||||
# initial state
|
||||
if initial_input is not None:
|
||||
self.history_us = [initial_input]
|
||||
|
||||
# constraints
|
||||
self.dt_input_lower = dt_input_lower
|
||||
self.dt_input_upper = dt_input_upper
|
||||
self.input_upper = input_upper
|
||||
self.input_lower = input_lower
|
||||
|
||||
# about mpc matrix
|
||||
self.W = None
|
||||
self.omega = None
|
||||
self.F = None
|
||||
self.f = None
|
||||
|
||||
def initialize_controller(self):
|
||||
"""
|
||||
make matrix to calculate optimal control input
|
||||
"""
|
||||
A_factorials = [self.Ad_s[0]]
|
||||
|
||||
self.phi_mat = copy.deepcopy(self.Ad_s[0])
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_mat = np.dot(A_factorials[-1], self.Ad_s[i + 1])
|
||||
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
|
||||
|
||||
A_factorials.append(temp_mat) # after we use this factorials
|
||||
|
||||
print("phi_mat = \n{0}".format(self.phi_mat))
|
||||
|
||||
self.gamma_mat = copy.deepcopy(self.Bd_s[0])
|
||||
gammma_mat_temp = copy.deepcopy(self.Bd_s[0])
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_1_mat = np.dot(A_factorials[i], self.Bd_s[i + 1])
|
||||
gammma_mat_temp = temp_1_mat + gammma_mat_temp
|
||||
self.gamma_mat = np.vstack((self.gamma_mat, gammma_mat_temp))
|
||||
|
||||
print("gamma_mat = \n{0}".format(self.gamma_mat))
|
||||
|
||||
self.theta_mat = copy.deepcopy(self.gamma_mat)
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_mat = np.zeros_like(self.gamma_mat)
|
||||
temp_mat[int((i + 1)*self.state_size): , :] = self.gamma_mat[:-int((i + 1)*self.state_size) , :]
|
||||
|
||||
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
|
||||
|
||||
print("theta_mat = \n{0}".format(self.theta_mat))
|
||||
|
||||
# disturbance
|
||||
print("A_factorials_mat = \n{0}".format(A_factorials))
|
||||
A_factorials_mat = np.array(A_factorials).reshape(-1, self.state_size)
|
||||
print("A_factorials_mat = \n{0}".format(A_factorials_mat))
|
||||
|
||||
eye = np.eye(self.state_size)
|
||||
self.dist_mat = np.vstack((eye, A_factorials_mat[:-self.state_size, :]))
|
||||
base_mat = copy.deepcopy(self.dist_mat)
|
||||
|
||||
print("base_mat = \n{0}".format(base_mat))
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_mat = np.zeros_like(A_factorials_mat)
|
||||
temp_mat[int((i + 1)*self.state_size): , :] = base_mat[:-int((i + 1)*self.state_size) , :]
|
||||
self.dist_mat = np.hstack((self.dist_mat, temp_mat))
|
||||
|
||||
print("dist_mat = \n{0}".format(self.dist_mat))
|
||||
|
||||
W_Ds = copy.deepcopy(self.W_D_s[0])
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
W_Ds = np.vstack((W_Ds, self.W_D_s[i + 1]))
|
||||
|
||||
self.dist_mat = np.dot(self.dist_mat, W_Ds)
|
||||
|
||||
print("dist_mat = \n{0}".format(self.dist_mat))
|
||||
|
||||
# evaluation function weight
|
||||
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
|
||||
diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)])
|
||||
|
||||
self.Qs = np.diag(diag_Qs.flatten())
|
||||
self.Rs = np.diag(diag_Rs.flatten())
|
||||
|
||||
print("Qs = \n{0}".format(self.Qs))
|
||||
print("Rs = \n{0}".format(self.Rs))
|
||||
|
||||
# constraints
|
||||
# about dt U
|
||||
if self.input_lower is not None:
|
||||
# initialize
|
||||
self.F = np.zeros((self.input_size * 2, self.pre_step * self.input_size))
|
||||
for i in range(self.input_size):
|
||||
self.F[i * 2: (i + 1) * 2, i] = np.array([1., -1.])
|
||||
temp_F = copy.deepcopy(self.F)
|
||||
|
||||
print("F = \n{0}".format(self.F))
|
||||
|
||||
for i in range(self.pre_step - 1):
|
||||
temp_F = copy.deepcopy(temp_F)
|
||||
|
||||
for j in range(self.input_size):
|
||||
temp_F[j * 2: (j + 1) * 2, ((i+1) * self.input_size) + j] = np.array([1., -1.])
|
||||
|
||||
self.F = np.vstack((self.F, temp_F))
|
||||
|
||||
self.F1 = self.F[:, :self.input_size]
|
||||
|
||||
temp_f = []
|
||||
|
||||
for i in range(self.input_size):
|
||||
temp_f.append(-1 * self.input_upper[i])
|
||||
temp_f.append(self.input_lower[i])
|
||||
|
||||
self.f = np.array([temp_f for _ in range(self.pre_step)]).flatten()
|
||||
|
||||
print("F = \n{0}".format(self.F))
|
||||
print("F1 = \n{0}".format(self.F1))
|
||||
print("f = \n{0}".format(self.f))
|
||||
|
||||
# about dt_u
|
||||
if self.dt_input_lower is not None:
|
||||
self.W = np.zeros((2, self.pre_step * self.input_size))
|
||||
self.W[:, 0] = np.array([1., -1.])
|
||||
|
||||
for i in range(self.pre_step * self.input_size - 1):
|
||||
temp_W = np.zeros((2, self.pre_step * self.input_size))
|
||||
temp_W[:, i+1] = np.array([1., -1.])
|
||||
self.W = np.vstack((self.W, temp_W))
|
||||
|
||||
temp_omega = []
|
||||
|
||||
for i in range(self.input_size):
|
||||
temp_omega.append(self.dt_input_upper[i])
|
||||
temp_omega.append(-1. * self.dt_input_lower[i])
|
||||
|
||||
self.omega = np.array([temp_omega for _ in range(self.pre_step)]).flatten()
|
||||
|
||||
print("W = \n{0}".format(self.W))
|
||||
print("omega = \n{0}".format(self.omega))
|
||||
|
||||
# about state
|
||||
print("check the matrix!! if you think rite, plese push enter")
|
||||
# input()
|
||||
|
||||
def calc_input(self, states, references):
|
||||
"""calculate optimal input
|
||||
Parameters
|
||||
-----------
|
||||
states : numpy.ndarray, shape(state length, )
|
||||
current state of system
|
||||
references : numpy.ndarray, shape(state length * pre_step, )
|
||||
reference of the system, you should set this value as reachable goal
|
||||
|
||||
References
|
||||
------------
|
||||
opt_input : numpy.ndarray, shape(input_length, )
|
||||
optimal input
|
||||
"""
|
||||
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||
|
||||
error = references.reshape(-1, 1) - temp_1 - temp_2 - self.dist_mat
|
||||
|
||||
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error))
|
||||
|
||||
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
|
||||
|
||||
# constraints
|
||||
A = []
|
||||
b = []
|
||||
|
||||
if self.W is not None:
|
||||
A.append(self.W)
|
||||
b.append(self.omega.reshape(-1, 1))
|
||||
|
||||
if self.F is not None:
|
||||
b_F = - np.dot(self.F1, self.history_us[-1].reshape(-1, 1)) - self.f.reshape(-1, 1)
|
||||
A.append(self.F)
|
||||
b.append(b_F)
|
||||
|
||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||
|
||||
ub = np.array(b).flatten()
|
||||
|
||||
# make cvxpy problem formulation
|
||||
P = 2*matrix(H)
|
||||
q = matrix(-1 * G)
|
||||
A = matrix(A)
|
||||
b = matrix(ub)
|
||||
|
||||
# constraint
|
||||
if self.W is not None or self.F is not None :
|
||||
opt_result = solvers.qp(P, q, G=A, h=b)
|
||||
|
||||
opt_dt_us = list(opt_result['x'])
|
||||
|
||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||
|
||||
# save
|
||||
self.history_us.append(opt_u)
|
||||
|
||||
return opt_u
|
||||
|
||||
def update_system_model(self, system_model):
|
||||
"""update system model
|
||||
Parameters
|
||||
-----------
|
||||
system_model : SystemModel class
|
||||
"""
|
||||
|
||||
self.Ad_s = system_model.Ad_s
|
||||
self.Bd_s = system_model.Bd_s
|
||||
self.W_D_s = system_model.W_D_s
|
||||
|
||||
self.initialize_controller()
|
|
@ -3,10 +3,12 @@ import matplotlib.pyplot as plt
|
|||
import math
|
||||
import copy
|
||||
|
||||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
# from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
from iterative_MPC import IterativeMpcController
|
||||
from animation import AnimDrawer
|
||||
from control import matlab
|
||||
# from control import matlab
|
||||
from coordinate_trans import coordinate_transformation_in_angle, coordinate_transformation_in_position
|
||||
from traj_func import make_sample_traj
|
||||
|
||||
class WheeledSystem():
|
||||
"""SampleSystem, this is the simulator
|
||||
|
@ -29,6 +31,8 @@ class WheeledSystem():
|
|||
self.NUM_STATE = 4
|
||||
self.xs = np.zeros(self.NUM_STATE)
|
||||
|
||||
self.tau = 0.01
|
||||
|
||||
self.FRONT_WHEELE_BASE = 1.0
|
||||
self.REAR_WHEELE_BASE = 1.0
|
||||
|
||||
|
@ -89,7 +93,9 @@ class WheeledSystem():
|
|||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = u_1 * math.cos(y_3 + y_4)
|
||||
# y_dot = u_1 * math.cos(y_3 + y_4)
|
||||
y_dot = u_1 * math.cos(y_3)
|
||||
|
||||
return y_dot
|
||||
|
||||
def _func_x_2(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||
|
@ -104,7 +110,9 @@ class WheeledSystem():
|
|||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = u_1 * math.sin(y_3 + y_4)
|
||||
# y_dot = u_1 * math.sin(y_3 + y_4)
|
||||
y_dot = u_1 * math.sin(y_3)
|
||||
|
||||
return y_dot
|
||||
|
||||
def _func_x_3(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||
|
@ -119,135 +127,245 @@ class WheeledSystem():
|
|||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = u_1 / self.REAR_WHEELE_BASE * math.sin(y_4)
|
||||
# y_dot = u_1 / self.REAR_WHEELE_BASE * math.sin(y_4)
|
||||
y_dot = u_1 * math.tan(y_4) / (self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE)
|
||||
|
||||
return y_dot
|
||||
|
||||
def _func_x_4(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
||||
"""Ad, Bd, W_D, Q, R
|
||||
ParAd, Bd, W_D, Q, R
|
||||
---Ad, Bd, W_D, Q, R
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
"""
|
||||
y_dot = math.atan2(self.REAR_WHEELE_BASE * math.tan(u_2) ,self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE)
|
||||
# y_dot = math.atan2(self.REAR_WHEELE_BASE * math.tan(u_2) ,self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE)
|
||||
y_dot = - 1. / self.tau * (y_4 - u_2)
|
||||
|
||||
return y_dot
|
||||
|
||||
class SystemModel():
|
||||
"""
|
||||
Attributes
|
||||
-----------
|
||||
WHEEL_BASE : float
|
||||
wheel base of the car
|
||||
Ad_s : list
|
||||
list of system model matrix Ad
|
||||
Bd_s : list
|
||||
list of system model matrix Bd
|
||||
W_D_s : list
|
||||
list of system model matrix W_D_s
|
||||
Q : numpy.ndarray
|
||||
R : numpy.ndarray
|
||||
"""
|
||||
def __init__(self, tau = 0.15, dt = 0.016):
|
||||
"""
|
||||
Parameters
|
||||
-----------
|
||||
tau : time constant, optional
|
||||
dt : sampling time, optional
|
||||
"""
|
||||
self.dt = dt
|
||||
self.tau = tau
|
||||
self.WHEEL_BASE = 2.2
|
||||
|
||||
self.Ad_s = []
|
||||
self.Bd_s = []
|
||||
self.W_D_s = []
|
||||
|
||||
def calc_predict_sytem_model(self, V, curvatures, predict_step):
|
||||
"""
|
||||
calc next predict systemo models
|
||||
V : float
|
||||
curvatures : list
|
||||
this is the next curvature's list
|
||||
predict_step : int
|
||||
predict step of MPC
|
||||
"""
|
||||
for i in range(predict_step):
|
||||
delta_r = math.atan2(self.WHEEL_BASE, 1. / curvatures[i])
|
||||
|
||||
A12 = (V / self.WHEEL_BASE) / math.cos(delta_r)
|
||||
A22 = (1. - 1. / self.tau * self.dt)
|
||||
|
||||
Ad = np.array([[1., V * self.dt, 0.],
|
||||
[0., 1., A12 * self.dt],
|
||||
[0., 0., A22]])
|
||||
|
||||
Bd = np.array([[0.], [0.], [1. / self.tau]]) * self.dt
|
||||
|
||||
W_D_0 = (V / self.WHEEL_BASE) * delta_r / (math.cos(delta_r)**2) - V * curvatures[i]
|
||||
|
||||
W_D = np.array([[0.], [W_D_0], [0.]]) * self.dt
|
||||
|
||||
self.Ad_s.append(Ad)
|
||||
self.Bd_s.append(Bd)
|
||||
self.W_D_s.append(W_D)
|
||||
|
||||
# return self.Ad_s, self.Bd_s, self.W_D_s
|
||||
|
||||
def search_nearest_point(points, base_point):
|
||||
"""
|
||||
Parameters
|
||||
-----------
|
||||
points : numpy.ndarray, shape is (2, N)
|
||||
base_point : numpy.ndarray, shape is (2, 1)
|
||||
|
||||
Returns
|
||||
-------
|
||||
nearest_index :
|
||||
nearest_point :
|
||||
"""
|
||||
distance_mat = np.sqrt(np.sum((points - base_point)**2, axis=0))
|
||||
|
||||
index_min = np.argmin(distance_mat)
|
||||
|
||||
return index_min, points[:, index_min]
|
||||
|
||||
def calc_curvatures(traj_ref, predict_step, num_skip):
|
||||
"""
|
||||
Parameters
|
||||
-----------
|
||||
points : numpy.ndarray, shape is (2, predict_step + num_skip)
|
||||
predict_step : int
|
||||
num_skip : int
|
||||
|
||||
Returns
|
||||
-------
|
||||
angles : list
|
||||
list of angle
|
||||
curvatures : list
|
||||
list of curvature
|
||||
"""
|
||||
angles = []
|
||||
curvatures = []
|
||||
|
||||
for i in range(predict_step):
|
||||
|
||||
temp = traj_ref[:, i + num_skip] - traj_ref[:, i]
|
||||
alpha = math.atan2(temp[1], temp[0])
|
||||
|
||||
angles.append(alpha)
|
||||
|
||||
distance = np.linalg.norm(temp)
|
||||
R = distance / (2. * math.sin(alpha))
|
||||
curvatures.append(1. / R)
|
||||
|
||||
# print("curvatures = {}".format(curvatures))
|
||||
|
||||
return angles, curvatures
|
||||
|
||||
def main():
|
||||
dt = 0.016
|
||||
# parameters
|
||||
dt = 0.01
|
||||
simulation_time = 10 # in seconds
|
||||
PREDICT_STEP = 15
|
||||
iteration_num = int(simulation_time / dt)
|
||||
|
||||
# you must be care about this matrix
|
||||
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||
# lineared car system
|
||||
WHEEL_BASE = 2.2
|
||||
tau = 0.01
|
||||
|
||||
V = 5.0 # initialize
|
||||
|
||||
|
||||
delta_r = 0.
|
||||
|
||||
A12 = (V / WHEEL_BASE) / (math.cos(delta_r)**2)
|
||||
A22 = (1. - 1. / tau)
|
||||
|
||||
Ad = np.array([[1., V, 0.],
|
||||
[0., 1., A12],
|
||||
[0., 0., A22]]) * dt
|
||||
|
||||
Bd = np.array([[0.], [0.], [1. / tau]]) * dt
|
||||
|
||||
W_D_0 = - (V / WHEEL_BASE) * delta_r / (math.cos(delta_r)**2)
|
||||
|
||||
W_D = np.array([[0.], [W_D_0], [0.]]) * dt
|
||||
|
||||
# make simulator with coninuous matrix
|
||||
init_xs_lead = np.array([5., 0., 0. ,0.])
|
||||
init_xs_lead = np.array([0., 0., 0. ,0.])
|
||||
init_xs_follow = np.array([0., 0., 0., 0.])
|
||||
lead_car = WheeledSystem(init_states=init_xs_lead)
|
||||
follow_car = WheeledSystem(init_states=init_xs_follow)
|
||||
|
||||
# make system model
|
||||
lead_car_system_model = SystemModel()
|
||||
follow_car_system_model = SystemModel()
|
||||
|
||||
# reference
|
||||
traj_ref_xs, traj_ref_ys = make_sample_traj(int(simulation_time/dt))
|
||||
traj_ref = np.array([traj_ref_xs, traj_ref_ys])
|
||||
|
||||
# nearest point
|
||||
index_min, nearest_point = search_nearest_point(traj_ref, lead_car.xs[:2].reshape(2, 1))
|
||||
|
||||
# get traj's curvature
|
||||
NUM_SKIP = 5
|
||||
angles, curvatures = calc_curvatures(traj_ref[:, index_min:index_min + PREDICT_STEP + NUM_SKIP], PREDICT_STEP, NUM_SKIP)
|
||||
|
||||
# evaluation function weight
|
||||
Q = np.diag([1., 1., 1.])
|
||||
R = np.diag([5.])
|
||||
pre_step = 15
|
||||
|
||||
# System model update
|
||||
V = 4.0 # in pratical we should calc from the state
|
||||
lead_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
|
||||
follow_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
|
||||
|
||||
# make controller with discreted matrix
|
||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||
lead_controller = MpcController_cvxopt(Ad, Bd, W_D, Q, R, pre_step,
|
||||
lead_controller = IterativeMpcController(lead_car_system_model, Q, R, PREDICT_STEP,
|
||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||
|
||||
follow_controller = MpcController_cvxopt(Ad, Bd, W_D, Q, R, pre_step,
|
||||
follow_controller = IterativeMpcController(follow_car_system_model, Q, R, PREDICT_STEP,
|
||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||
|
||||
# initialize
|
||||
lead_controller.initialize_controller()
|
||||
follow_controller.initialize_controller()
|
||||
|
||||
# reference
|
||||
lead_reference = np.array([[0., 0., 0.] for _ in range(pre_step)]).flatten()
|
||||
ref = np.array([[0.], [0.]])
|
||||
|
||||
for i in range(iteration_num):
|
||||
print("simulation time = {0}".format(i))
|
||||
|
||||
# make lead car's move
|
||||
if i > int(iteration_num / 3):
|
||||
ref = np.array([[0.], [4.]])
|
||||
|
||||
## lead
|
||||
# world traj
|
||||
lead_states = lead_car.xs
|
||||
|
||||
# nearest point
|
||||
index_min, nearest_point = search_nearest_point(traj_ref, lead_car.xs[:2].reshape(2, 1))
|
||||
# end check
|
||||
if len(traj_ref_ys) <= index_min + 10:
|
||||
print("break")
|
||||
break
|
||||
|
||||
# get traj's curvature
|
||||
NUM_SKIP = 2
|
||||
angles, curvatures = calc_curvatures(traj_ref[:, index_min:index_min + PREDICT_STEP + NUM_SKIP], PREDICT_STEP, NUM_SKIP)
|
||||
|
||||
# System model update
|
||||
V = 4.0 # in pratical we should calc from the state
|
||||
lead_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
|
||||
|
||||
# transformation
|
||||
relative_ref = coordinate_transformation_in_position(ref, lead_states[:2])
|
||||
relative_ref = coordinate_transformation_in_angle(relative_ref, lead_states[2])
|
||||
# car
|
||||
relative_car_position = coordinate_transformation_in_position(lead_states[:2].reshape(2, 1), nearest_point)
|
||||
relative_car_position = coordinate_transformation_in_angle(relative_car_position, angles[0])
|
||||
|
||||
relative_car_angle = lead_states[2] - angles[0]
|
||||
relative_car_state = np.hstack((relative_car_position[1], relative_car_angle, lead_states[-1]))
|
||||
|
||||
# make ref
|
||||
lead_reference = np.array([[ref[1, 0], 0., 0.] for _ in range(pre_step)]).flatten()
|
||||
lead_reference = np.array([[0., 0., 0.] for i in range(PREDICT_STEP)]).flatten()
|
||||
|
||||
alpha = math.atan2(relative_ref[1], relative_ref[0])
|
||||
R = np.linalg.norm(relative_ref) / 2 * math.sin(alpha)
|
||||
|
||||
print(R)
|
||||
input()
|
||||
|
||||
V = 7.0
|
||||
delta_r = math.atan2(WHEEL_BASE, R)
|
||||
|
||||
A12 = (V / WHEEL_BASE) / (math.cos(delta_r)**2)
|
||||
A22 = (1. - 1. / tau)
|
||||
|
||||
Ad = np.array([[1., V, 0.],
|
||||
[0., 1., A12],
|
||||
[0., 0., A22]]) * dt
|
||||
|
||||
Bd = np.array([[0.], [0.], [1. / tau]]) * dt
|
||||
|
||||
W_D_0 = - (V / WHEEL_BASE) * delta_r / (math.cos(delta_r)**2)
|
||||
|
||||
W_D = np.array([[0.], [W_D_0], [0.]]) * dt
|
||||
print("relative car state = {}".format(relative_car_state))
|
||||
print("nearest point = {}".format(nearest_point))
|
||||
# input()
|
||||
|
||||
# update system matrix
|
||||
lead_controller.update_system_model(Ad, Bd, W_D)
|
||||
lead_controller.update_system_model(lead_car_system_model)
|
||||
|
||||
lead_opt_u = lead_controller.calc_input(relative_car_state, lead_reference)
|
||||
|
||||
lead_opt_u = lead_controller.calc_input(np.zeros(3), lead_reference)
|
||||
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
|
||||
|
||||
|
||||
## follow
|
||||
# make follow car
|
||||
follow_reference = np.array([lead_states[1:] for _ in range(pre_step)]).flatten()
|
||||
follow_states = follow_car.xs
|
||||
|
||||
follow_opt_u = follow_controller.calc_input(follow_states[1:], follow_reference)
|
||||
follow_opt_u = np.hstack((np.array([V]), follow_opt_u))
|
||||
print("opt_u = {}".format(lead_opt_u))
|
||||
# input()
|
||||
|
||||
lead_car.update_state(lead_opt_u, dt=dt)
|
||||
follow_car.update_state(follow_opt_u, dt=dt)
|
||||
follow_car.update_state(lead_opt_u, dt=dt)
|
||||
|
||||
# figures and animation
|
||||
lead_history_states = np.array(lead_car.history_xs)
|
||||
follow_history_states = np.array(follow_car.history_xs)
|
||||
|
||||
"""
|
||||
time_history_fig = plt.figure()
|
||||
x_fig = time_history_fig.add_subplot(311)
|
||||
y_fig = time_history_fig.add_subplot(312)
|
||||
|
@ -298,6 +416,7 @@ def main():
|
|||
|
||||
input_history_fig.tight_layout()
|
||||
plt.show()
|
||||
"""
|
||||
|
||||
animdrawer = AnimDrawer([lead_history_states, follow_history_states])
|
||||
animdrawer.draw_anim()
|
||||
|
|
|
@ -0,0 +1,32 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
|
||||
def make_sample_traj(NUM, dt=0.01, a=1.):
|
||||
"""
|
||||
make sample trajectory
|
||||
Parameters
|
||||
------------
|
||||
NUM : int
|
||||
dt : float
|
||||
a : float
|
||||
|
||||
Returns
|
||||
----------
|
||||
traj_xs : list
|
||||
traj_ys : list
|
||||
"""
|
||||
DELAY = 2.
|
||||
traj_xs = []
|
||||
traj_ys = []
|
||||
|
||||
for i in range(NUM):
|
||||
traj_xs.append(dt * i)
|
||||
traj_ys.append(a * math.sin(dt * i / DELAY))
|
||||
|
||||
|
||||
plt.plot(traj_xs, traj_ys)
|
||||
plt.show()
|
||||
|
||||
return traj_xs, traj_ys
|
||||
|
Loading…
Reference in New Issue