first commit of cgmres

This commit is contained in:
Shunichi09 2018-12-17 01:00:20 +09:00
parent 62c16fa0e0
commit e7f5956fc5
1 changed files with 271 additions and 5 deletions

View File

@ -55,7 +55,7 @@ class SampleSystem():
# save
self.history_x_1.append(self.x_1)
self.history_x_2.append(self.x_2)
self.history_x_2.append(self.x_2)
def _func_x_1(self, y_1, y_2, u):
"""
@ -78,20 +78,286 @@ class SampleSystem():
return y_dot
class NMPCSimulatorSystem():
"""SimulatorSystem for nmpc
Attributes
-----------
"""
def __init__(self):
"""
Parameters
-----------
"""
pass
def calc_predict_and_adjoint_state(self, x_1, x_2, us, N, dt):
"""main
Parameters
------------
Returns
--------
x_1s :
x_2s :
ram_1s :
ram_2s :
"""
x_1s, x_2s = self._calc_predict_states(x_1, x_2, us, N, dt)
ram_1s, ram_2s = self._calc_adjoint_states(x_1s, x_2s, us, N, dt)
return x_1s, x_2s, ram_1s, ram_2s
def _calc_predict_states(self, x_1, x_2, us, N, dt):
"""
Parameters
------------
predict_t : float
predict time
dt : float
sampling time
"""
# initial state
x_1s = [x_1]
x_2s = [x_2]
for i in range(N):
temp_x_1, temp_x_2 = self._predict_state_with_oylar(x_1s[i], x_2s[i], us[i], dt)
x_1s.append(temp_x_1)
x_2s.append(temp_x_2)
return x_1s, x_2s
def _calc_adjoint_states(self, x_1s, x_2s, us, N, dt):
"""
Parameters
------------
predict_t : float
predict time
dt : float
sampling time
"""
# final state
# final_state_func
ram_1s = [x_1s[-1]]
ram_2s = [x_2s[-1]]
for i in range(N-1, 0, -1):
temp_ram_1, temp_ram_2 = self._adjoint_state_with_oylar(x_1s[i], x_2s[i], ram_1s[0] ,ram_2s[0], us[i], dt)
ram_1s.insert(0, temp_ram_1)
ram_2s.insert(0, temp_ram_2)
return ram_1s, ram_2s
def final_state_func(self):
"""this func usually need
"""
pass
def _predict_state_with_oylar(self, x_1, x_2, u, dt):
"""in this case this function is the same as simulatoe
Parameters
------------
u : float
input of system in some cases this means the reference
dt : float in seconds
sampling time of simulation, default is 0.01 [s]
"""
# for theta 1, theta 1 dot, theta 2, theta 2 dot
k0 = [0. for _ in range(2)]
functions = [self.func_x_1, self.func_x_2]
# solve Runge-Kutta
for i, func in enumerate(functions):
k0[i] = dt * func(x_1, x_2, u)
next_x_1 = x_1 + k0[0]
next_x_2 = x_2 + k0[1]
return next_x_1, next_x_2
def func_x_1(self, y_1, y_2, u):
"""
Parameters
------------
"""
y_dot = y_2
return y_dot
def func_x_2(self, y_1, y_2, u):
"""
Parameters
------------
"""
y_dot = (1 - y_1**2 - y_2**2) * y_2 - y_1 + u
return y_dot
def _adjoint_state_with_oylar(self, x_1, x_2, ram_1, ram_2, u, dt):
"""
"""
# for theta 1, theta 1 dot, theta 2, theta 2 dot
k0 = [0. for _ in range(2)]
functions = [self._func_ram_1, self._func_ram_2]
# solve Runge-Kutta
for i, func in enumerate(functions):
k0[i] = dt * func(x_1, x_2, ram_1, ram_2, u)
next_ram_1 = ram_1 + k0[0]
next_ram_2 = ram_2 + k0[1]
return next_ram_1, next_ram_2
def _func_ram_1(self, y_1, y_2, y_3, y_4, u):
"""
"""
y_dot = y_1 - 2 * y_1 * y_2 * y_4
return y_dot
def _func_ram_2(self, y_1, y_2, y_3, y_4, u):
"""
"""
y_dot = y_2 + y_3 + (-3 * (y_2**2) - y_1**2 + 1 ) * y_4
return y_dot
class NMPCController_with_CGMRES():
"""
Attributes
------------
"""
def __init__(self):
"""
Parameters
-----------
"""
# parameters
self.zeta = 1000. # 安定化ゲイン
self.ht = 0.001 # 差分近似の幅
self.tf = 1.0 # 最終時間
self.alpha = 0.5 # 時間の上昇ゲイン
self.N = 10 # 分割数
self.threshold = 0.001
self.input_num = 3 # dummyも合わせた入力の数
# simulator
self.simulator = NMPCSimulatorSystem()
# initial
self.us = np.zeros(self.N)
self.dummy_us = np.ones(self.N) * 0.5
self.raws = np.ones(self.N) * 0.01
def calc_input(self, x_1, x_2, dt):
"""
"""
# x_dot
x_1_dot = self.simulator.func_x_1(x_1, x_2, self.us[0])
x_2_dot = self.simulator.func_x_2(x_1, x_2, self.us[0])
dx_1 = x_1_dot * self.ht
dx_2 = x_2_dot * self.ht
x_1s, x_2s, ram_1s, ram_2s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, self.us, self.N, dt)
# Fxt
Fxt = self.calc_f(x_1s, x_2s, ram_1s, ram_2s, self.us, self.dummy_us,
self.raws, self.N, dt)
# F
x_1s, x_2s, ram_1s, ram_2s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, self.us, self.N, dt)
F = self.calc_f(x_1s, x_2s, ram_1s, ram_2s, self.us, self.dummy_us,
self.raws, self.N, dt)
right = -self.zeta * F - ((Fxt - F) / self.ht)
# dus
du = self.us[0] * dt
ddummy_u = self.dummy_us[0] * self.ht
draw = self.raws[0] * self.ht
x_1s, x_2s, ram_1s, ram_2s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, self.us + du, self.N, dt)
Fuxt = self.calc_f(x_1s, x_2s, ram_1s, ram_2s, self.us + du, self.dummy_us + ddummy_u,
self.raws + draw, self.N, dt)
left = ((Fuxt - Fxt) / self.ht)
# calculationg cgmres
r0 = right - left
r0_norm = np.linalg.norm(r0)
print(r0)
vs = np.zeros(int(self.N * self.input_num), 2)
# [r0 / r0_norm]
h = []
e = np.zeros(int(self.N * self.input_num)) # in this case the state is 2(u and dummy_u)
e[0] = 1.
"""
for i in range(int(N * self.input_num)):
du = self.vs[i, ::3] * self.dt
ddummy_u = self.vs[i, 1::3] * self.ht
draw = self.vs[i, 2::3] * self.ht
x_1s, x_2s, ram_1s, ram_2s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, self.us + du, self.N, dt)
Fuxt = self.calc_f(x_1s, x_2s, ram_1s, ram_2s, self.us + du, self.dummy_us + ddummy_u,
self.raws + draw, self.N, dt)
"""
return self.us
def calc_f(self, x_1s, x_2s, ram_1s, ram_2s, us, dummy_us, raws, N, dt):
"""ここはケースによって変えるめっちゃ使う
"""
F = []
for i in range(N):
F.append(us[i] + ram_2s[i] + 2. * raws[i] * us[i])
F.append(-0.01 + 2. * raws[i] * dummy_us[i])
F.append(us[i]**2 + dummy_us[i]**2 - 0.5**2)
return np.array(F)
def main():
# simulation time
dt = 0.01
iteration_time = 20.
iteration_time = 1.
iteration_num = int(iteration_time/dt)
# plant
plant_system = SampleSystem(init_x_1=2., init_x_2=0.)
# controller
controller = NMPCController_with_CGMRES()
for i in range(iteration_num):
u = 1.0
plant_system.update_state(u)
# for i in range(iteration_num):
x_1 = plant_system.x_1
x_2 = plant_system.x_2
us = controller.calc_input(x_1, x_2, dt)
u = 1.0
plant_system.update_state(u)
# figure
fig = plt.figure()