add ACC.py of mpc
This commit is contained in:
parent
665c54bd27
commit
ebfab5e257
|
@ -1,50 +1,95 @@
|
|||
# Model Predictive Control Tool
|
||||
This program is about template, function of linear model predictive control
|
||||
This program is about template, generic function of linear model predictive control
|
||||
|
||||
# Documentation of this function
|
||||
# Documentation of the MPC function
|
||||
Linear model predicitive control should have state equation.
|
||||
So if you want to use this function, you should model the plant as state equation.
|
||||
Therefore, the parameters of this class are as following
|
||||
|
||||
Parameters :
|
||||
**class MpcController()**
|
||||
|
||||
Attributes :
|
||||
|
||||
- A : numpy.ndarray
|
||||
- system matrix
|
||||
- B : numpy.ndarray
|
||||
- input matrix
|
||||
- Q : numpy.ndarray
|
||||
- evaluation function weight
|
||||
- evaluation function weight for states
|
||||
- Qs : numpy.ndarray
|
||||
- concatenated evaluation function weight for states
|
||||
- R : numpy.ndarray
|
||||
- evaluation function weight
|
||||
- evaluation function weight for inputs
|
||||
- Rs : numpy.ndarray
|
||||
- concatenated evaluation function weight for inputs
|
||||
- pre_step : int
|
||||
- prediction step
|
||||
- dt_input_upper : numpy.ndarray
|
||||
- constraints of input dt
|
||||
- dt_input_lower : numpy.ndarray
|
||||
- constraints of input dt
|
||||
- input_upper : numpy.ndarray
|
||||
- constraints of input
|
||||
- input_lower : numpy.ndarray
|
||||
- constraints of input
|
||||
- state_size : int
|
||||
- state size of the plant
|
||||
- input_size : int
|
||||
- input size of the plant
|
||||
- dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
- constraints of input dt, default is None
|
||||
- dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
- constraints of input dt, default is None
|
||||
- input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
- constraints of input, default is None
|
||||
- input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
- constraints of input, default is None
|
||||
|
||||
Methods:
|
||||
|
||||
- initialize_controller() initialize the controller
|
||||
- calc_input(states, references) calculating optimal input
|
||||
|
||||
More details, please look the **mpc_func_with_scipy.py** and **mpc_func_with_cvxopt.py**
|
||||
|
||||
We have two function, mpc_func_with_cvxopt.py and mpc_func_with_scipy.py
|
||||
Both function have same variable and member function. however the solver is different.
|
||||
Plese choose the right method for your environment
|
||||
Both functions have same variable and member function. However the solver is different.
|
||||
Plese choose the right method for your environment.
|
||||
|
||||
## Example
|
||||
# Problem Formulation and Expected results
|
||||
- example of import
|
||||
|
||||
```py
|
||||
from mpc_func_with_scipy import MpcController as MpcController_scipy
|
||||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
```
|
||||
|
||||
# Examples
|
||||
## Problem Formulation
|
||||
|
||||
** updating soon !!
|
||||
|
||||
- first order system
|
||||
|
||||
|
||||
- ACC (Adaptive cruise control)
|
||||
|
||||
|
||||
|
||||
## Expected Results
|
||||
|
||||
- first order system
|
||||
|
||||
|
||||
- ACC (Adaptive cruise control)
|
||||
|
||||
- updating soon!!
|
||||
|
||||
# Usage
|
||||
|
||||
- for example
|
||||
- for example(first order system)
|
||||
|
||||
```
|
||||
$ python main_example.py
|
||||
```
|
||||
|
||||
- for comparing two methods
|
||||
- for example(ACC (Adaptive cruise control))
|
||||
|
||||
```
|
||||
$ python main_ACC.py
|
||||
```
|
||||
|
||||
- for comparing two methods of optimization solvers
|
||||
|
||||
```
|
||||
$ python test_compare_methods.py
|
||||
|
@ -57,6 +102,7 @@ $ python test_compare_methods.py
|
|||
- matplotlib
|
||||
- cvxopt
|
||||
- scipy1.2.0 or more
|
||||
- python-control
|
||||
|
||||
# Reference
|
||||
I`m sorry that main references are written in Japanese
|
||||
|
|
|
@ -0,0 +1,233 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as ani
|
||||
import matplotlib.font_manager as fon
|
||||
import sys
|
||||
import math
|
||||
|
||||
# default setting of figures
|
||||
plt.rcParams["mathtext.fontset"] = 'stix' # math fonts
|
||||
plt.rcParams['xtick.direction'] = 'in' # x axis in
|
||||
plt.rcParams['ytick.direction'] = 'in' # y axis in
|
||||
plt.rcParams["font.size"] = 10
|
||||
plt.rcParams['axes.linewidth'] = 1.0 # axis line width
|
||||
plt.rcParams['axes.grid'] = True # make grid
|
||||
|
||||
def coordinate_transformation_in_angle(positions, base_angle):
|
||||
'''
|
||||
Transformation the coordinate in the angle
|
||||
|
||||
Parameters
|
||||
-------
|
||||
positions : numpy.ndarray
|
||||
this parameter is composed of xs, ys
|
||||
should have (2, N) shape
|
||||
base_angle : float [rad]
|
||||
|
||||
Returns
|
||||
-------
|
||||
traslated_positions : numpy.ndarray
|
||||
the shape is (2, N)
|
||||
|
||||
'''
|
||||
if positions.shape[0] != 2:
|
||||
raise ValueError('the input data should have (2, N)')
|
||||
|
||||
positions = np.array(positions)
|
||||
positions = positions.reshape(2, -1)
|
||||
|
||||
rot_matrix = [[np.cos(base_angle), np.sin(base_angle)],
|
||||
[-1*np.sin(base_angle), np.cos(base_angle)]]
|
||||
|
||||
rot_matrix = np.array(rot_matrix)
|
||||
|
||||
translated_positions = np.dot(rot_matrix, positions)
|
||||
|
||||
return translated_positions
|
||||
|
||||
def square_make_with_angles(center_x, center_y, size, angle):
|
||||
'''
|
||||
Create square matrix with angle line matrix(2D)
|
||||
|
||||
Parameters
|
||||
-------
|
||||
center_x : float in meters
|
||||
the center x position of the square
|
||||
center_y : float in meters
|
||||
the center y position of the square
|
||||
size : float in meters
|
||||
the square's half-size
|
||||
angle : float in radians
|
||||
|
||||
Returns
|
||||
-------
|
||||
square xs : numpy.ndarray
|
||||
lenght is 5 (counterclockwise from right-up)
|
||||
square ys : numpy.ndarray
|
||||
length is 5 (counterclockwise from right-up)
|
||||
angle line xs : numpy.ndarray
|
||||
angle line ys : numpy.ndarray
|
||||
'''
|
||||
|
||||
# start with the up right points
|
||||
# create point in counterclockwise
|
||||
square_xys = np.array([[size, 0.5 * size], [-size, 0.5 * size], [-size, -0.5 * size], [size, -0.5 * size], [size, 0.5 * size]])
|
||||
trans_points = coordinate_transformation_in_angle(square_xys.T, -angle) # this is inverse type
|
||||
trans_points += np.array([[center_x], [center_y]])
|
||||
|
||||
square_xs = trans_points[0, :]
|
||||
square_ys = trans_points[1, :]
|
||||
|
||||
angle_line_xs = [center_x, center_x + math.cos(angle) * size]
|
||||
angle_line_ys = [center_y, center_y + math.sin(angle) * size]
|
||||
|
||||
return square_xs, square_ys, np.array(angle_line_xs), np.array(angle_line_ys)
|
||||
|
||||
|
||||
class AnimDrawer():
|
||||
"""create animation of path and robot
|
||||
|
||||
Attributes
|
||||
------------
|
||||
cars :
|
||||
anim_fig : figure of matplotlib
|
||||
axis : axis of matplotlib
|
||||
|
||||
"""
|
||||
def __init__(self, objects):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
objects : list of objects
|
||||
"""
|
||||
self.lead_car_history_state = objects[0]
|
||||
self.follow_car_history_state = objects[1]
|
||||
|
||||
self.history_xs = [self.lead_car_history_state[:, 0], self.follow_car_history_state[:, 0]]
|
||||
self.history_ys = [self.lead_car_history_state[:, 1], self.follow_car_history_state[:, 1]]
|
||||
self.history_ths = [self.lead_car_history_state[:, 2], self.follow_car_history_state[:, 2]]
|
||||
|
||||
# setting up figure
|
||||
self.anim_fig = plt.figure(dpi=150)
|
||||
self.axis = self.anim_fig.add_subplot(111)
|
||||
|
||||
# imgs
|
||||
self.object_imgs = []
|
||||
self.traj_imgs = []
|
||||
|
||||
def draw_anim(self, interval=50):
|
||||
"""draw the animation and save
|
||||
|
||||
Parameteres
|
||||
-------------
|
||||
interval : int, optional
|
||||
animation's interval time, you should link the sampling time of systems
|
||||
default is 50 [ms]
|
||||
"""
|
||||
self._set_axis()
|
||||
self._set_img()
|
||||
|
||||
self.skip_num = 3
|
||||
frame_num = int((len(self.history_xs[0])-1) / self.skip_num)
|
||||
|
||||
animation = ani.FuncAnimation(self.anim_fig, self._update_anim, interval=interval, frames=frame_num)
|
||||
|
||||
# self.axis.legend()
|
||||
print('save_animation?')
|
||||
shuold_save_animation = int(input())
|
||||
|
||||
if shuold_save_animation:
|
||||
print('animation_number?')
|
||||
num = int(input())
|
||||
animation.save('animation_{0}.mp4'.format(num), writer='ffmpeg')
|
||||
# animation.save("Sample.gif", writer = 'imagemagick') # gif保存
|
||||
|
||||
plt.show()
|
||||
|
||||
def _set_axis(self):
|
||||
""" initialize the animation axies
|
||||
"""
|
||||
# (1) set the axis name
|
||||
self.axis.set_xlabel(r'$\it{x}$ [m]')
|
||||
self.axis.set_ylabel(r'$\it{y}$ [m]')
|
||||
self.axis.set_aspect('equal', adjustable='box')
|
||||
|
||||
# (2) set the xlim and ylim
|
||||
self.axis.set_xlim(-5, 50)
|
||||
self.axis.set_ylim(-2, 5)
|
||||
|
||||
def _set_img(self):
|
||||
""" initialize the imgs of animation
|
||||
this private function execute the make initial imgs for animation
|
||||
"""
|
||||
# object imgs
|
||||
obj_color_list = ["k", "k", "m", "m"]
|
||||
obj_styles = ["solid", "solid", "solid", "solid"]
|
||||
|
||||
for i in range(len(obj_color_list)):
|
||||
temp_img, = self.axis.plot([], [], color=obj_color_list[i], linestyle=obj_styles[i])
|
||||
self.object_imgs.append(temp_img)
|
||||
|
||||
traj_color_list = ["k", "m"]
|
||||
|
||||
for i in range(len(traj_color_list)):
|
||||
temp_img, = self.axis.plot([],[], color=traj_color_list[i], linestyle="dashed")
|
||||
self.traj_imgs.append(temp_img)
|
||||
|
||||
def _update_anim(self, i):
|
||||
"""the update animation
|
||||
this function should be used in the animation functions
|
||||
|
||||
Parameters
|
||||
------------
|
||||
i : int
|
||||
time step of the animation
|
||||
the sampling time should be related to the sampling time of system
|
||||
|
||||
Returns
|
||||
-----------
|
||||
object_imgs : list of img
|
||||
traj_imgs : list of img
|
||||
"""
|
||||
i = int(i * self.skip_num)
|
||||
|
||||
self._draw_objects(i)
|
||||
self._draw_traj(i)
|
||||
|
||||
return self.object_imgs, self.traj_imgs,
|
||||
|
||||
def _draw_objects(self, i):
|
||||
"""
|
||||
This private function is just divided thing of
|
||||
the _update_anim to see the code more clear
|
||||
|
||||
Parameters
|
||||
------------
|
||||
i : int
|
||||
time step of the animation
|
||||
the sampling time should be related to the sampling time of system
|
||||
"""
|
||||
# cars
|
||||
for j in range(2):
|
||||
fix_j = j * 2
|
||||
object_x, object_y, angle_x, angle_y = square_make_with_angles(self.history_xs[j][i],
|
||||
self.history_ys[j][i],
|
||||
1.0,
|
||||
self.history_ths[j][i])
|
||||
|
||||
self.object_imgs[fix_j].set_data([object_x, object_y])
|
||||
self.object_imgs[fix_j + 1].set_data([angle_x, angle_y])
|
||||
|
||||
def _draw_traj(self, i):
|
||||
"""
|
||||
This private function is just divided thing of
|
||||
the _update_anim to see the code more clear
|
||||
|
||||
Parameters
|
||||
------------
|
||||
i : int
|
||||
time step of the animation
|
||||
the sampling time should be related to the sampling time of system
|
||||
"""
|
||||
for j in range(2):
|
||||
self.traj_imgs[j].set_data(self.history_xs[j][:i], self.history_ys[j][:i])
|
|
@ -0,0 +1,247 @@
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import copy
|
||||
|
||||
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||
from animation import AnimDrawer
|
||||
from control import matlab
|
||||
|
||||
class TwoWheeledSystem():
|
||||
"""SampleSystem, this is the simulator
|
||||
Attributes
|
||||
-----------
|
||||
xs : numpy.ndarray
|
||||
system states, [x, y, theta]
|
||||
history_xs : list
|
||||
time history of state
|
||||
"""
|
||||
def __init__(self, init_states=None):
|
||||
"""
|
||||
Palameters
|
||||
-----------
|
||||
init_state : float, optional, shape(3, )
|
||||
initial state of system default is None
|
||||
"""
|
||||
self.xs = np.zeros(3)
|
||||
|
||||
if init_states is not None:
|
||||
self.xs = copy.deepcopy(init_states)
|
||||
|
||||
self.history_xs = [init_states]
|
||||
|
||||
def update_state(self, us, dt=0.01):
|
||||
"""
|
||||
Palameters
|
||||
------------
|
||||
u : numpy.ndarray
|
||||
inputs of system in some cases this means the reference
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
||||
k0 = [0.0 for _ in range(3)]
|
||||
k1 = [0.0 for _ in range(3)]
|
||||
k2 = [0.0 for _ in range(3)]
|
||||
k3 = [0.0 for _ in range(3)]
|
||||
|
||||
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
|
||||
|
||||
# solve Runge-Kutta
|
||||
for i, func in enumerate(functions):
|
||||
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], us[0], us[1])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k2[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], us[0], us[1])
|
||||
|
||||
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
||||
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
||||
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
||||
|
||||
# save
|
||||
save_states = copy.deepcopy(self.xs)
|
||||
self.history_xs.append(save_states)
|
||||
print(self.xs)
|
||||
|
||||
def _func_x_1(self, y_1, y_2, y_3, u_1, u_2):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = math.cos(y_3) * u_1
|
||||
return y_dot
|
||||
|
||||
def _func_x_2(self, y_1, y_2, y_3, u_1, u_2):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = math.sin(y_3) * u_1
|
||||
return y_dot
|
||||
|
||||
def _func_x_3(self, y_1, y_2, y_3, u_1, u_2):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
y_1 : float
|
||||
y_2 : float
|
||||
y_3 : float
|
||||
u_1 : float
|
||||
system input
|
||||
u_2 : float
|
||||
system input
|
||||
"""
|
||||
y_dot = u_2
|
||||
return y_dot
|
||||
|
||||
def main():
|
||||
dt = 0.05
|
||||
simulation_time = 10 # in seconds
|
||||
iteration_num = int(simulation_time / dt)
|
||||
|
||||
# you must be care about this matrix
|
||||
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||
# lineared car system
|
||||
V = 5.0
|
||||
A = np.array([[0., V], [0., 0.]])
|
||||
B = np.array([[0.], [1.]])
|
||||
|
||||
C = np.eye(2)
|
||||
D = np.zeros((2, 1))
|
||||
|
||||
# make simulator with coninuous matrix
|
||||
init_xs_lead = np.array([5., 0., 0.])
|
||||
init_xs_follow = np.array([0., 0., 0.])
|
||||
lead_car = TwoWheeledSystem(init_states=init_xs_lead)
|
||||
follow_car = TwoWheeledSystem(init_states=init_xs_follow)
|
||||
|
||||
# create system
|
||||
sysc = matlab.ss(A, B, C, D)
|
||||
# discrete system
|
||||
sysd = matlab.c2d(sysc, dt)
|
||||
|
||||
Ad = sysd.A
|
||||
Bd = sysd.B
|
||||
|
||||
# evaluation function weight
|
||||
Q = np.diag([1., 1.])
|
||||
R = np.diag([5.])
|
||||
pre_step = 15
|
||||
|
||||
# make controller with discreted matrix
|
||||
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||
lead_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||
|
||||
follow_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||
|
||||
lead_controller.initialize_controller()
|
||||
follow_controller.initialize_controller()
|
||||
|
||||
# reference
|
||||
lead_reference = np.array([[0., 0.] for _ in range(pre_step)]).flatten()
|
||||
|
||||
for i in range(iteration_num):
|
||||
print("simulation time = {0}".format(i))
|
||||
# make lead car's move
|
||||
if i > int(iteration_num / 3):
|
||||
lead_reference = np.array([[4., 0.] for _ in range(pre_step)]).flatten()
|
||||
|
||||
lead_states = lead_car.xs
|
||||
lead_opt_u = lead_controller.calc_input(lead_states[1:], lead_reference)
|
||||
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
|
||||
|
||||
# make follow car
|
||||
follow_reference = np.array([lead_states[1:] for _ in range(pre_step)]).flatten()
|
||||
follow_states = follow_car.xs
|
||||
|
||||
follow_opt_u = follow_controller.calc_input(follow_states[1:], follow_reference)
|
||||
follow_opt_u = np.hstack((np.array([V]), follow_opt_u))
|
||||
|
||||
lead_car.update_state(lead_opt_u, dt=dt)
|
||||
follow_car.update_state(follow_opt_u, dt=dt)
|
||||
|
||||
# figures and animation
|
||||
lead_history_states = np.array(lead_car.history_xs)
|
||||
follow_history_states = np.array(follow_car.history_xs)
|
||||
|
||||
time_history_fig = plt.figure()
|
||||
x_fig = time_history_fig.add_subplot(311)
|
||||
y_fig = time_history_fig.add_subplot(312)
|
||||
theta_fig = time_history_fig.add_subplot(313)
|
||||
|
||||
car_traj_fig = plt.figure()
|
||||
traj_fig = car_traj_fig.add_subplot(111)
|
||||
traj_fig.set_aspect('equal')
|
||||
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 0], label="lead")
|
||||
x_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 0], label="follow")
|
||||
x_fig.set_xlabel("time [s]")
|
||||
x_fig.set_ylabel("x")
|
||||
x_fig.legend()
|
||||
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 1], label="lead")
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 1], label="follow")
|
||||
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [4. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
y_fig.set_xlabel("time [s]")
|
||||
y_fig.set_ylabel("y")
|
||||
y_fig.legend()
|
||||
|
||||
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 2], label="lead")
|
||||
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 2], label="follow")
|
||||
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||
theta_fig.set_xlabel("time [s]")
|
||||
theta_fig.set_ylabel("theta")
|
||||
theta_fig.legend()
|
||||
|
||||
time_history_fig.tight_layout()
|
||||
time_history_fig.legend()
|
||||
|
||||
traj_fig.plot(lead_history_states[:, 0], lead_history_states[:, 1], label="lead")
|
||||
traj_fig.plot(follow_history_states[:, 0], follow_history_states[:, 1], label="follow")
|
||||
traj_fig.set_xlabel("x")
|
||||
traj_fig.set_ylabel("y")
|
||||
traj_fig.legend()
|
||||
plt.show()
|
||||
|
||||
lead_history_us = np.array(lead_controller.history_us)
|
||||
follow_history_us = np.array(follow_controller.history_us)
|
||||
input_history_fig = plt.figure()
|
||||
u_1_fig = input_history_fig.add_subplot(111)
|
||||
|
||||
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_us[:, 0], label="lead")
|
||||
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_us[:, 0], label="follow")
|
||||
u_1_fig.set_xlabel("time [s]")
|
||||
u_1_fig.set_ylabel("u_omega")
|
||||
|
||||
input_history_fig.tight_layout()
|
||||
plt.show()
|
||||
|
||||
animdrawer = AnimDrawer([lead_history_states, follow_history_states])
|
||||
animdrawer.draw_anim()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -12,7 +12,7 @@ class FirstOrderSystem():
|
|||
|
||||
Attributes
|
||||
-----------
|
||||
states : float
|
||||
xs : numpy.ndarray
|
||||
system states
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
|
@ -20,7 +20,7 @@ class FirstOrderSystem():
|
|||
control matrix
|
||||
C : numpy.ndarray
|
||||
observation matrix
|
||||
history_state : list
|
||||
history_xs : list
|
||||
time history of state
|
||||
"""
|
||||
def __init__(self, A, B, C, D=None, init_states=None):
|
||||
|
@ -33,7 +33,7 @@ class FirstOrderSystem():
|
|||
control matrix
|
||||
C : numpy.ndarray
|
||||
observation matrix
|
||||
C : numpy.ndarray
|
||||
D : numpy.ndarray
|
||||
directly matrix
|
||||
init_state : float, optional
|
||||
initial state of system default is None
|
||||
|
@ -59,8 +59,8 @@ class FirstOrderSystem():
|
|||
"""calculating input
|
||||
Parameters
|
||||
------------
|
||||
u : float
|
||||
input of system in some cases this means the reference
|
||||
u : numpy.ndarray
|
||||
inputs of system in some cases this means the reference
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
|
@ -77,13 +77,11 @@ class FirstOrderSystem():
|
|||
|
||||
# for oylar
|
||||
# self.xs += k0.flatten()
|
||||
|
||||
# print("xs = {0}".format(self.xs))
|
||||
# a = input()
|
||||
|
||||
# save
|
||||
save_states = copy.deepcopy(self.xs)
|
||||
self.history_xs.append(save_states)
|
||||
# print(self.history_xs)
|
||||
|
||||
def main():
|
||||
dt = 0.05
|
||||
|
@ -135,7 +133,7 @@ def main():
|
|||
reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten()
|
||||
states = plant.xs
|
||||
opt_u = controller.calc_input(states, reference)
|
||||
plant.update_state(opt_u)
|
||||
plant.update_state(opt_u, dt=dt)
|
||||
|
||||
history_states = np.array(plant.history_xs)
|
||||
|
||||
|
|
|
@ -14,41 +14,52 @@ class MpcController():
|
|||
B : numpy.ndarray
|
||||
input matrix
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for states
|
||||
Qs : numpy.ndarray
|
||||
concatenated evaluation function weight for states
|
||||
R : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for inputs
|
||||
Rs : numpy.ndarray
|
||||
concatenated evaluation function weight for inputs
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray
|
||||
constraints of input dt
|
||||
dt_input_lower : numpy.ndarray
|
||||
constraints of input dt
|
||||
input_upper : numpy.ndarray
|
||||
constraints of input
|
||||
input_lower : numpy.ndarray
|
||||
constraints of input
|
||||
history_
|
||||
state_size : int
|
||||
state size of the plant
|
||||
input_size : int
|
||||
input size of the plant
|
||||
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
"""
|
||||
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
input matrix
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for states
|
||||
R : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for inputs
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray
|
||||
constraints of input dt
|
||||
dt_input_lower : numpy.ndarray
|
||||
constraints of input dt
|
||||
input_upper : numpy.ndarray
|
||||
constraints of input
|
||||
input_lower : numpy.ndarray
|
||||
constraints of input
|
||||
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
history_us : list
|
||||
time history of optimal input us(numpy.ndarray)
|
||||
"""
|
||||
self.A = np.array(A)
|
||||
self.B = np.array(B)
|
||||
|
@ -73,7 +84,8 @@ class MpcController():
|
|||
self.dt_input_upper = dt_input_upper
|
||||
self.input_upper = input_upper
|
||||
self.input_lower = input_lower
|
||||
|
||||
|
||||
# about mpc matrix
|
||||
self.W = None
|
||||
self.omega = None
|
||||
self.F = None
|
||||
|
@ -82,6 +94,7 @@ class MpcController():
|
|||
def initialize_controller(self):
|
||||
"""
|
||||
make matrix to calculate optimal control input
|
||||
|
||||
"""
|
||||
A_factorials = [self.A]
|
||||
|
||||
|
@ -187,22 +200,22 @@ class MpcController():
|
|||
"""calculate optimal input
|
||||
Parameters
|
||||
-----------
|
||||
states : numpy.array
|
||||
the size should have (state length * 1)
|
||||
references :
|
||||
the size should have (state length * pre_step)
|
||||
states : numpy.ndarray, shape(state length, )
|
||||
current state of system
|
||||
references : numpy.ndarray, shape(state length * pre_step, )
|
||||
reference of the system, you should set this value as reachable goal
|
||||
|
||||
References
|
||||
------------
|
||||
opt_input : numpy.ndarray
|
||||
optimal input, size is (1, input_length)
|
||||
opt_input : numpy.ndarray, shape(input_length, )
|
||||
optimal input
|
||||
"""
|
||||
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||
|
||||
error = references.reshape(-1, 1) - temp_1 - temp_2
|
||||
|
||||
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error) )
|
||||
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error))
|
||||
|
||||
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
|
||||
|
||||
|
@ -220,9 +233,8 @@ class MpcController():
|
|||
b.append(b_F)
|
||||
|
||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||
# b = np.array(b).reshape(-1, 1)
|
||||
|
||||
ub = np.array(b).flatten()
|
||||
# print(np.dot(self.F1, self.history_us[-1].reshape(-1, 1)))
|
||||
|
||||
# make cvxpy problem formulation
|
||||
P = 2*matrix(H)
|
||||
|
@ -232,26 +244,13 @@ class MpcController():
|
|||
|
||||
# constraint
|
||||
if self.W is not None or self.F is not None :
|
||||
# print("consider constraint!")
|
||||
opt_result = solvers.qp(P, q, G=A, h=b)
|
||||
|
||||
# print(list(opt_result['x']))
|
||||
opt_dt_us = list(opt_result['x'])
|
||||
# print("current_u = {0}".format(self.history_us[-1]))
|
||||
# print("opt_dt_u = {0}".format(np.round(opt_dt_us, 5)))
|
||||
|
||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||
# print("opt_u = {0}".format(np.round(opt_u, 5)))
|
||||
|
||||
# save
|
||||
self.history_us.append(opt_u)
|
||||
# a = input()
|
||||
return opt_u
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
constraint = []
|
||||
for i in range(self.pre_step * self.input_size):
|
||||
sums = -1. * (np.dot(A[i], init_dt_us) - b[i])[0]
|
||||
constraint.append(sums)
|
||||
"""
|
||||
return opt_u
|
|
@ -15,41 +15,52 @@ class MpcController():
|
|||
B : numpy.ndarray
|
||||
input matrix
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for states
|
||||
Qs : numpy.ndarray
|
||||
concatenated evaluation function weight for states
|
||||
R : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for inputs
|
||||
Rs : numpy.ndarray
|
||||
concatenated evaluation function weight for inputs
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray
|
||||
constraints of input dt
|
||||
dt_input_lower : numpy.ndarray
|
||||
constraints of input dt
|
||||
input_upper : numpy.ndarray
|
||||
constraints of input
|
||||
input_lower : numpy.ndarray
|
||||
constraints of input
|
||||
history_
|
||||
state_size : int
|
||||
state size of the plant
|
||||
input_size : int
|
||||
input size of the plant
|
||||
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
"""
|
||||
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
A : numpy.ndarray
|
||||
system matrix
|
||||
B : numpy.ndarray
|
||||
input matrix
|
||||
Q : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for states
|
||||
R : numpy.ndarray
|
||||
evaluation function weight
|
||||
evaluation function weight for inputs
|
||||
pre_step : int
|
||||
prediction step
|
||||
dt_input_upper : numpy.ndarray
|
||||
constraints of input dt
|
||||
dt_input_lower : numpy.ndarray
|
||||
constraints of input dt
|
||||
input_upper : numpy.ndarray
|
||||
constraints of input
|
||||
input_lower : numpy.ndarray
|
||||
constraints of input
|
||||
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input dt, default is None
|
||||
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||
constraints of input, default is None
|
||||
history_us : list
|
||||
time history of optimal input us(numpy.ndarray)
|
||||
"""
|
||||
self.A = np.array(A)
|
||||
self.B = np.array(B)
|
||||
|
@ -188,15 +199,15 @@ class MpcController():
|
|||
"""calculate optimal input
|
||||
Parameters
|
||||
-----------
|
||||
states : numpy.array
|
||||
the size should have (state length * 1)
|
||||
references :
|
||||
the size should have (state length * pre_step)
|
||||
states : numpy.ndarray, shape(state length, )
|
||||
current state of system
|
||||
references : numpy.ndarray, shape(state length * pre_step, )
|
||||
reference of the system, you should set this value as reachable goal
|
||||
|
||||
References
|
||||
------------
|
||||
opt_input : numpy.ndarray
|
||||
optimal input, size is (1, input_length)
|
||||
opt_input : numpy.ndarray, shape(input_length, )
|
||||
optimal input
|
||||
"""
|
||||
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||
|
@ -221,9 +232,8 @@ class MpcController():
|
|||
b.append(b_F)
|
||||
|
||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||
# b = np.array(b).reshape(-1, 1)
|
||||
|
||||
ub = np.array(b).flatten()
|
||||
# print(np.dot(self.F1, self.history_us[-1].reshape(-1, 1)))
|
||||
|
||||
def optimized_func(dt_us):
|
||||
"""
|
||||
|
@ -240,25 +250,13 @@ class MpcController():
|
|||
|
||||
# constraint
|
||||
if self.W is not None or self.F is not None :
|
||||
# print("consider constraint!")
|
||||
opt_result = minimize(optimized_func, init_dt_us, constraints=[linear_cons])
|
||||
|
||||
opt_dt_us = opt_result.x
|
||||
# print("current_u = {0}".format(self.history_us[-1]))
|
||||
# print("opt_dt_u = {0}".format(np.round(opt_dt_us, 5)))
|
||||
|
||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||
# print("opt_u = {0}".format(np.round(opt_u, 5)))
|
||||
|
||||
# save
|
||||
self.history_us.append(opt_u)
|
||||
|
||||
return opt_u
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
||||
constraint = []
|
||||
for i in range(self.pre_step * self.input_size):
|
||||
sums = -1. * (np.dot(A[i], init_dt_us) - b[i])[0]
|
||||
constraint.append(sums)
|
||||
"""
|
||||
return opt_u
|
Loading…
Reference in New Issue