add ACC.py of mpc
This commit is contained in:
parent
665c54bd27
commit
ebfab5e257
|
@ -1,50 +1,95 @@
|
||||||
# Model Predictive Control Tool
|
# Model Predictive Control Tool
|
||||||
This program is about template, function of linear model predictive control
|
This program is about template, generic function of linear model predictive control
|
||||||
|
|
||||||
# Documentation of this function
|
# Documentation of the MPC function
|
||||||
Linear model predicitive control should have state equation.
|
Linear model predicitive control should have state equation.
|
||||||
So if you want to use this function, you should model the plant as state equation.
|
So if you want to use this function, you should model the plant as state equation.
|
||||||
Therefore, the parameters of this class are as following
|
Therefore, the parameters of this class are as following
|
||||||
|
|
||||||
Parameters :
|
**class MpcController()**
|
||||||
|
|
||||||
|
Attributes :
|
||||||
|
|
||||||
- A : numpy.ndarray
|
- A : numpy.ndarray
|
||||||
- system matrix
|
- system matrix
|
||||||
- B : numpy.ndarray
|
- B : numpy.ndarray
|
||||||
- input matrix
|
- input matrix
|
||||||
- Q : numpy.ndarray
|
- Q : numpy.ndarray
|
||||||
- evaluation function weight
|
- evaluation function weight for states
|
||||||
|
- Qs : numpy.ndarray
|
||||||
|
- concatenated evaluation function weight for states
|
||||||
- R : numpy.ndarray
|
- R : numpy.ndarray
|
||||||
- evaluation function weight
|
- evaluation function weight for inputs
|
||||||
|
- Rs : numpy.ndarray
|
||||||
|
- concatenated evaluation function weight for inputs
|
||||||
- pre_step : int
|
- pre_step : int
|
||||||
- prediction step
|
- prediction step
|
||||||
- dt_input_upper : numpy.ndarray
|
- state_size : int
|
||||||
- constraints of input dt
|
- state size of the plant
|
||||||
- dt_input_lower : numpy.ndarray
|
- input_size : int
|
||||||
- constraints of input dt
|
- input size of the plant
|
||||||
- input_upper : numpy.ndarray
|
- dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
- constraints of input
|
- constraints of input dt, default is None
|
||||||
- input_lower : numpy.ndarray
|
- dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
- constraints of input
|
- constraints of input dt, default is None
|
||||||
|
- input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
- constraints of input, default is None
|
||||||
|
- input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
- constraints of input, default is None
|
||||||
|
|
||||||
|
Methods:
|
||||||
|
|
||||||
|
- initialize_controller() initialize the controller
|
||||||
|
- calc_input(states, references) calculating optimal input
|
||||||
|
|
||||||
|
More details, please look the **mpc_func_with_scipy.py** and **mpc_func_with_cvxopt.py**
|
||||||
|
|
||||||
We have two function, mpc_func_with_cvxopt.py and mpc_func_with_scipy.py
|
We have two function, mpc_func_with_cvxopt.py and mpc_func_with_scipy.py
|
||||||
Both function have same variable and member function. however the solver is different.
|
Both functions have same variable and member function. However the solver is different.
|
||||||
Plese choose the right method for your environment
|
Plese choose the right method for your environment.
|
||||||
|
|
||||||
## Example
|
- example of import
|
||||||
# Problem Formulation and Expected results
|
|
||||||
|
```py
|
||||||
|
from mpc_func_with_scipy import MpcController as MpcController_scipy
|
||||||
|
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||||
|
```
|
||||||
|
|
||||||
|
# Examples
|
||||||
|
## Problem Formulation
|
||||||
|
|
||||||
|
** updating soon !!
|
||||||
|
|
||||||
|
- first order system
|
||||||
|
|
||||||
|
|
||||||
|
- ACC (Adaptive cruise control)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Expected Results
|
||||||
|
|
||||||
|
- first order system
|
||||||
|
|
||||||
|
|
||||||
|
- ACC (Adaptive cruise control)
|
||||||
|
|
||||||
- updating soon!!
|
|
||||||
|
|
||||||
# Usage
|
# Usage
|
||||||
|
|
||||||
- for example
|
- for example(first order system)
|
||||||
|
|
||||||
```
|
```
|
||||||
$ python main_example.py
|
$ python main_example.py
|
||||||
```
|
```
|
||||||
|
|
||||||
- for comparing two methods
|
- for example(ACC (Adaptive cruise control))
|
||||||
|
|
||||||
|
```
|
||||||
|
$ python main_ACC.py
|
||||||
|
```
|
||||||
|
|
||||||
|
- for comparing two methods of optimization solvers
|
||||||
|
|
||||||
```
|
```
|
||||||
$ python test_compare_methods.py
|
$ python test_compare_methods.py
|
||||||
|
@ -57,6 +102,7 @@ $ python test_compare_methods.py
|
||||||
- matplotlib
|
- matplotlib
|
||||||
- cvxopt
|
- cvxopt
|
||||||
- scipy1.2.0 or more
|
- scipy1.2.0 or more
|
||||||
|
- python-control
|
||||||
|
|
||||||
# Reference
|
# Reference
|
||||||
I`m sorry that main references are written in Japanese
|
I`m sorry that main references are written in Japanese
|
||||||
|
|
|
@ -0,0 +1,233 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import matplotlib.animation as ani
|
||||||
|
import matplotlib.font_manager as fon
|
||||||
|
import sys
|
||||||
|
import math
|
||||||
|
|
||||||
|
# default setting of figures
|
||||||
|
plt.rcParams["mathtext.fontset"] = 'stix' # math fonts
|
||||||
|
plt.rcParams['xtick.direction'] = 'in' # x axis in
|
||||||
|
plt.rcParams['ytick.direction'] = 'in' # y axis in
|
||||||
|
plt.rcParams["font.size"] = 10
|
||||||
|
plt.rcParams['axes.linewidth'] = 1.0 # axis line width
|
||||||
|
plt.rcParams['axes.grid'] = True # make grid
|
||||||
|
|
||||||
|
def coordinate_transformation_in_angle(positions, base_angle):
|
||||||
|
'''
|
||||||
|
Transformation the coordinate in the angle
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
-------
|
||||||
|
positions : numpy.ndarray
|
||||||
|
this parameter is composed of xs, ys
|
||||||
|
should have (2, N) shape
|
||||||
|
base_angle : float [rad]
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
traslated_positions : numpy.ndarray
|
||||||
|
the shape is (2, N)
|
||||||
|
|
||||||
|
'''
|
||||||
|
if positions.shape[0] != 2:
|
||||||
|
raise ValueError('the input data should have (2, N)')
|
||||||
|
|
||||||
|
positions = np.array(positions)
|
||||||
|
positions = positions.reshape(2, -1)
|
||||||
|
|
||||||
|
rot_matrix = [[np.cos(base_angle), np.sin(base_angle)],
|
||||||
|
[-1*np.sin(base_angle), np.cos(base_angle)]]
|
||||||
|
|
||||||
|
rot_matrix = np.array(rot_matrix)
|
||||||
|
|
||||||
|
translated_positions = np.dot(rot_matrix, positions)
|
||||||
|
|
||||||
|
return translated_positions
|
||||||
|
|
||||||
|
def square_make_with_angles(center_x, center_y, size, angle):
|
||||||
|
'''
|
||||||
|
Create square matrix with angle line matrix(2D)
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
-------
|
||||||
|
center_x : float in meters
|
||||||
|
the center x position of the square
|
||||||
|
center_y : float in meters
|
||||||
|
the center y position of the square
|
||||||
|
size : float in meters
|
||||||
|
the square's half-size
|
||||||
|
angle : float in radians
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
square xs : numpy.ndarray
|
||||||
|
lenght is 5 (counterclockwise from right-up)
|
||||||
|
square ys : numpy.ndarray
|
||||||
|
length is 5 (counterclockwise from right-up)
|
||||||
|
angle line xs : numpy.ndarray
|
||||||
|
angle line ys : numpy.ndarray
|
||||||
|
'''
|
||||||
|
|
||||||
|
# start with the up right points
|
||||||
|
# create point in counterclockwise
|
||||||
|
square_xys = np.array([[size, 0.5 * size], [-size, 0.5 * size], [-size, -0.5 * size], [size, -0.5 * size], [size, 0.5 * size]])
|
||||||
|
trans_points = coordinate_transformation_in_angle(square_xys.T, -angle) # this is inverse type
|
||||||
|
trans_points += np.array([[center_x], [center_y]])
|
||||||
|
|
||||||
|
square_xs = trans_points[0, :]
|
||||||
|
square_ys = trans_points[1, :]
|
||||||
|
|
||||||
|
angle_line_xs = [center_x, center_x + math.cos(angle) * size]
|
||||||
|
angle_line_ys = [center_y, center_y + math.sin(angle) * size]
|
||||||
|
|
||||||
|
return square_xs, square_ys, np.array(angle_line_xs), np.array(angle_line_ys)
|
||||||
|
|
||||||
|
|
||||||
|
class AnimDrawer():
|
||||||
|
"""create animation of path and robot
|
||||||
|
|
||||||
|
Attributes
|
||||||
|
------------
|
||||||
|
cars :
|
||||||
|
anim_fig : figure of matplotlib
|
||||||
|
axis : axis of matplotlib
|
||||||
|
|
||||||
|
"""
|
||||||
|
def __init__(self, objects):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
objects : list of objects
|
||||||
|
"""
|
||||||
|
self.lead_car_history_state = objects[0]
|
||||||
|
self.follow_car_history_state = objects[1]
|
||||||
|
|
||||||
|
self.history_xs = [self.lead_car_history_state[:, 0], self.follow_car_history_state[:, 0]]
|
||||||
|
self.history_ys = [self.lead_car_history_state[:, 1], self.follow_car_history_state[:, 1]]
|
||||||
|
self.history_ths = [self.lead_car_history_state[:, 2], self.follow_car_history_state[:, 2]]
|
||||||
|
|
||||||
|
# setting up figure
|
||||||
|
self.anim_fig = plt.figure(dpi=150)
|
||||||
|
self.axis = self.anim_fig.add_subplot(111)
|
||||||
|
|
||||||
|
# imgs
|
||||||
|
self.object_imgs = []
|
||||||
|
self.traj_imgs = []
|
||||||
|
|
||||||
|
def draw_anim(self, interval=50):
|
||||||
|
"""draw the animation and save
|
||||||
|
|
||||||
|
Parameteres
|
||||||
|
-------------
|
||||||
|
interval : int, optional
|
||||||
|
animation's interval time, you should link the sampling time of systems
|
||||||
|
default is 50 [ms]
|
||||||
|
"""
|
||||||
|
self._set_axis()
|
||||||
|
self._set_img()
|
||||||
|
|
||||||
|
self.skip_num = 3
|
||||||
|
frame_num = int((len(self.history_xs[0])-1) / self.skip_num)
|
||||||
|
|
||||||
|
animation = ani.FuncAnimation(self.anim_fig, self._update_anim, interval=interval, frames=frame_num)
|
||||||
|
|
||||||
|
# self.axis.legend()
|
||||||
|
print('save_animation?')
|
||||||
|
shuold_save_animation = int(input())
|
||||||
|
|
||||||
|
if shuold_save_animation:
|
||||||
|
print('animation_number?')
|
||||||
|
num = int(input())
|
||||||
|
animation.save('animation_{0}.mp4'.format(num), writer='ffmpeg')
|
||||||
|
# animation.save("Sample.gif", writer = 'imagemagick') # gif保存
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
def _set_axis(self):
|
||||||
|
""" initialize the animation axies
|
||||||
|
"""
|
||||||
|
# (1) set the axis name
|
||||||
|
self.axis.set_xlabel(r'$\it{x}$ [m]')
|
||||||
|
self.axis.set_ylabel(r'$\it{y}$ [m]')
|
||||||
|
self.axis.set_aspect('equal', adjustable='box')
|
||||||
|
|
||||||
|
# (2) set the xlim and ylim
|
||||||
|
self.axis.set_xlim(-5, 50)
|
||||||
|
self.axis.set_ylim(-2, 5)
|
||||||
|
|
||||||
|
def _set_img(self):
|
||||||
|
""" initialize the imgs of animation
|
||||||
|
this private function execute the make initial imgs for animation
|
||||||
|
"""
|
||||||
|
# object imgs
|
||||||
|
obj_color_list = ["k", "k", "m", "m"]
|
||||||
|
obj_styles = ["solid", "solid", "solid", "solid"]
|
||||||
|
|
||||||
|
for i in range(len(obj_color_list)):
|
||||||
|
temp_img, = self.axis.plot([], [], color=obj_color_list[i], linestyle=obj_styles[i])
|
||||||
|
self.object_imgs.append(temp_img)
|
||||||
|
|
||||||
|
traj_color_list = ["k", "m"]
|
||||||
|
|
||||||
|
for i in range(len(traj_color_list)):
|
||||||
|
temp_img, = self.axis.plot([],[], color=traj_color_list[i], linestyle="dashed")
|
||||||
|
self.traj_imgs.append(temp_img)
|
||||||
|
|
||||||
|
def _update_anim(self, i):
|
||||||
|
"""the update animation
|
||||||
|
this function should be used in the animation functions
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
i : int
|
||||||
|
time step of the animation
|
||||||
|
the sampling time should be related to the sampling time of system
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-----------
|
||||||
|
object_imgs : list of img
|
||||||
|
traj_imgs : list of img
|
||||||
|
"""
|
||||||
|
i = int(i * self.skip_num)
|
||||||
|
|
||||||
|
self._draw_objects(i)
|
||||||
|
self._draw_traj(i)
|
||||||
|
|
||||||
|
return self.object_imgs, self.traj_imgs,
|
||||||
|
|
||||||
|
def _draw_objects(self, i):
|
||||||
|
"""
|
||||||
|
This private function is just divided thing of
|
||||||
|
the _update_anim to see the code more clear
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
i : int
|
||||||
|
time step of the animation
|
||||||
|
the sampling time should be related to the sampling time of system
|
||||||
|
"""
|
||||||
|
# cars
|
||||||
|
for j in range(2):
|
||||||
|
fix_j = j * 2
|
||||||
|
object_x, object_y, angle_x, angle_y = square_make_with_angles(self.history_xs[j][i],
|
||||||
|
self.history_ys[j][i],
|
||||||
|
1.0,
|
||||||
|
self.history_ths[j][i])
|
||||||
|
|
||||||
|
self.object_imgs[fix_j].set_data([object_x, object_y])
|
||||||
|
self.object_imgs[fix_j + 1].set_data([angle_x, angle_y])
|
||||||
|
|
||||||
|
def _draw_traj(self, i):
|
||||||
|
"""
|
||||||
|
This private function is just divided thing of
|
||||||
|
the _update_anim to see the code more clear
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
i : int
|
||||||
|
time step of the animation
|
||||||
|
the sampling time should be related to the sampling time of system
|
||||||
|
"""
|
||||||
|
for j in range(2):
|
||||||
|
self.traj_imgs[j].set_data(self.history_xs[j][:i], self.history_ys[j][:i])
|
|
@ -0,0 +1,247 @@
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import math
|
||||||
|
import copy
|
||||||
|
|
||||||
|
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
||||||
|
from animation import AnimDrawer
|
||||||
|
from control import matlab
|
||||||
|
|
||||||
|
class TwoWheeledSystem():
|
||||||
|
"""SampleSystem, this is the simulator
|
||||||
|
Attributes
|
||||||
|
-----------
|
||||||
|
xs : numpy.ndarray
|
||||||
|
system states, [x, y, theta]
|
||||||
|
history_xs : list
|
||||||
|
time history of state
|
||||||
|
"""
|
||||||
|
def __init__(self, init_states=None):
|
||||||
|
"""
|
||||||
|
Palameters
|
||||||
|
-----------
|
||||||
|
init_state : float, optional, shape(3, )
|
||||||
|
initial state of system default is None
|
||||||
|
"""
|
||||||
|
self.xs = np.zeros(3)
|
||||||
|
|
||||||
|
if init_states is not None:
|
||||||
|
self.xs = copy.deepcopy(init_states)
|
||||||
|
|
||||||
|
self.history_xs = [init_states]
|
||||||
|
|
||||||
|
def update_state(self, us, dt=0.01):
|
||||||
|
"""
|
||||||
|
Palameters
|
||||||
|
------------
|
||||||
|
u : numpy.ndarray
|
||||||
|
inputs of system in some cases this means the reference
|
||||||
|
dt : float in seconds, optional
|
||||||
|
sampling time of simulation, default is 0.01 [s]
|
||||||
|
"""
|
||||||
|
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
||||||
|
k0 = [0.0 for _ in range(3)]
|
||||||
|
k1 = [0.0 for _ in range(3)]
|
||||||
|
k2 = [0.0 for _ in range(3)]
|
||||||
|
k3 = [0.0 for _ in range(3)]
|
||||||
|
|
||||||
|
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
|
||||||
|
|
||||||
|
# solve Runge-Kutta
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], us[0], us[1])
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k2[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], us[0], us[1])
|
||||||
|
|
||||||
|
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
||||||
|
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
||||||
|
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
||||||
|
|
||||||
|
# save
|
||||||
|
save_states = copy.deepcopy(self.xs)
|
||||||
|
self.history_xs.append(save_states)
|
||||||
|
print(self.xs)
|
||||||
|
|
||||||
|
def _func_x_1(self, y_1, y_2, y_3, u_1, u_2):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
y_1 : float
|
||||||
|
y_2 : float
|
||||||
|
y_3 : float
|
||||||
|
u_1 : float
|
||||||
|
system input
|
||||||
|
u_2 : float
|
||||||
|
system input
|
||||||
|
"""
|
||||||
|
y_dot = math.cos(y_3) * u_1
|
||||||
|
return y_dot
|
||||||
|
|
||||||
|
def _func_x_2(self, y_1, y_2, y_3, u_1, u_2):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
y_1 : float
|
||||||
|
y_2 : float
|
||||||
|
y_3 : float
|
||||||
|
u_1 : float
|
||||||
|
system input
|
||||||
|
u_2 : float
|
||||||
|
system input
|
||||||
|
"""
|
||||||
|
y_dot = math.sin(y_3) * u_1
|
||||||
|
return y_dot
|
||||||
|
|
||||||
|
def _func_x_3(self, y_1, y_2, y_3, u_1, u_2):
|
||||||
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
|
y_1 : float
|
||||||
|
y_2 : float
|
||||||
|
y_3 : float
|
||||||
|
u_1 : float
|
||||||
|
system input
|
||||||
|
u_2 : float
|
||||||
|
system input
|
||||||
|
"""
|
||||||
|
y_dot = u_2
|
||||||
|
return y_dot
|
||||||
|
|
||||||
|
def main():
|
||||||
|
dt = 0.05
|
||||||
|
simulation_time = 10 # in seconds
|
||||||
|
iteration_num = int(simulation_time / dt)
|
||||||
|
|
||||||
|
# you must be care about this matrix
|
||||||
|
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
||||||
|
# lineared car system
|
||||||
|
V = 5.0
|
||||||
|
A = np.array([[0., V], [0., 0.]])
|
||||||
|
B = np.array([[0.], [1.]])
|
||||||
|
|
||||||
|
C = np.eye(2)
|
||||||
|
D = np.zeros((2, 1))
|
||||||
|
|
||||||
|
# make simulator with coninuous matrix
|
||||||
|
init_xs_lead = np.array([5., 0., 0.])
|
||||||
|
init_xs_follow = np.array([0., 0., 0.])
|
||||||
|
lead_car = TwoWheeledSystem(init_states=init_xs_lead)
|
||||||
|
follow_car = TwoWheeledSystem(init_states=init_xs_follow)
|
||||||
|
|
||||||
|
# create system
|
||||||
|
sysc = matlab.ss(A, B, C, D)
|
||||||
|
# discrete system
|
||||||
|
sysd = matlab.c2d(sysc, dt)
|
||||||
|
|
||||||
|
Ad = sysd.A
|
||||||
|
Bd = sysd.B
|
||||||
|
|
||||||
|
# evaluation function weight
|
||||||
|
Q = np.diag([1., 1.])
|
||||||
|
R = np.diag([5.])
|
||||||
|
pre_step = 15
|
||||||
|
|
||||||
|
# make controller with discreted matrix
|
||||||
|
# please check the solver, if you want to use the scipy, set the MpcController_scipy
|
||||||
|
lead_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||||
|
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||||
|
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||||
|
|
||||||
|
follow_controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
|
||||||
|
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
||||||
|
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
||||||
|
|
||||||
|
lead_controller.initialize_controller()
|
||||||
|
follow_controller.initialize_controller()
|
||||||
|
|
||||||
|
# reference
|
||||||
|
lead_reference = np.array([[0., 0.] for _ in range(pre_step)]).flatten()
|
||||||
|
|
||||||
|
for i in range(iteration_num):
|
||||||
|
print("simulation time = {0}".format(i))
|
||||||
|
# make lead car's move
|
||||||
|
if i > int(iteration_num / 3):
|
||||||
|
lead_reference = np.array([[4., 0.] for _ in range(pre_step)]).flatten()
|
||||||
|
|
||||||
|
lead_states = lead_car.xs
|
||||||
|
lead_opt_u = lead_controller.calc_input(lead_states[1:], lead_reference)
|
||||||
|
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
|
||||||
|
|
||||||
|
# make follow car
|
||||||
|
follow_reference = np.array([lead_states[1:] for _ in range(pre_step)]).flatten()
|
||||||
|
follow_states = follow_car.xs
|
||||||
|
|
||||||
|
follow_opt_u = follow_controller.calc_input(follow_states[1:], follow_reference)
|
||||||
|
follow_opt_u = np.hstack((np.array([V]), follow_opt_u))
|
||||||
|
|
||||||
|
lead_car.update_state(lead_opt_u, dt=dt)
|
||||||
|
follow_car.update_state(follow_opt_u, dt=dt)
|
||||||
|
|
||||||
|
# figures and animation
|
||||||
|
lead_history_states = np.array(lead_car.history_xs)
|
||||||
|
follow_history_states = np.array(follow_car.history_xs)
|
||||||
|
|
||||||
|
time_history_fig = plt.figure()
|
||||||
|
x_fig = time_history_fig.add_subplot(311)
|
||||||
|
y_fig = time_history_fig.add_subplot(312)
|
||||||
|
theta_fig = time_history_fig.add_subplot(313)
|
||||||
|
|
||||||
|
car_traj_fig = plt.figure()
|
||||||
|
traj_fig = car_traj_fig.add_subplot(111)
|
||||||
|
traj_fig.set_aspect('equal')
|
||||||
|
|
||||||
|
x_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 0], label="lead")
|
||||||
|
x_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 0], label="follow")
|
||||||
|
x_fig.set_xlabel("time [s]")
|
||||||
|
x_fig.set_ylabel("x")
|
||||||
|
x_fig.legend()
|
||||||
|
|
||||||
|
y_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 1], label="lead")
|
||||||
|
y_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 1], label="follow")
|
||||||
|
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [4. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||||
|
y_fig.set_xlabel("time [s]")
|
||||||
|
y_fig.set_ylabel("y")
|
||||||
|
y_fig.legend()
|
||||||
|
|
||||||
|
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 2], label="lead")
|
||||||
|
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 2], label="follow")
|
||||||
|
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
||||||
|
theta_fig.set_xlabel("time [s]")
|
||||||
|
theta_fig.set_ylabel("theta")
|
||||||
|
theta_fig.legend()
|
||||||
|
|
||||||
|
time_history_fig.tight_layout()
|
||||||
|
time_history_fig.legend()
|
||||||
|
|
||||||
|
traj_fig.plot(lead_history_states[:, 0], lead_history_states[:, 1], label="lead")
|
||||||
|
traj_fig.plot(follow_history_states[:, 0], follow_history_states[:, 1], label="follow")
|
||||||
|
traj_fig.set_xlabel("x")
|
||||||
|
traj_fig.set_ylabel("y")
|
||||||
|
traj_fig.legend()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
lead_history_us = np.array(lead_controller.history_us)
|
||||||
|
follow_history_us = np.array(follow_controller.history_us)
|
||||||
|
input_history_fig = plt.figure()
|
||||||
|
u_1_fig = input_history_fig.add_subplot(111)
|
||||||
|
|
||||||
|
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_us[:, 0], label="lead")
|
||||||
|
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_us[:, 0], label="follow")
|
||||||
|
u_1_fig.set_xlabel("time [s]")
|
||||||
|
u_1_fig.set_ylabel("u_omega")
|
||||||
|
|
||||||
|
input_history_fig.tight_layout()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
animdrawer = AnimDrawer([lead_history_states, follow_history_states])
|
||||||
|
animdrawer.draw_anim()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
|
@ -12,7 +12,7 @@ class FirstOrderSystem():
|
||||||
|
|
||||||
Attributes
|
Attributes
|
||||||
-----------
|
-----------
|
||||||
states : float
|
xs : numpy.ndarray
|
||||||
system states
|
system states
|
||||||
A : numpy.ndarray
|
A : numpy.ndarray
|
||||||
system matrix
|
system matrix
|
||||||
|
@ -20,7 +20,7 @@ class FirstOrderSystem():
|
||||||
control matrix
|
control matrix
|
||||||
C : numpy.ndarray
|
C : numpy.ndarray
|
||||||
observation matrix
|
observation matrix
|
||||||
history_state : list
|
history_xs : list
|
||||||
time history of state
|
time history of state
|
||||||
"""
|
"""
|
||||||
def __init__(self, A, B, C, D=None, init_states=None):
|
def __init__(self, A, B, C, D=None, init_states=None):
|
||||||
|
@ -33,7 +33,7 @@ class FirstOrderSystem():
|
||||||
control matrix
|
control matrix
|
||||||
C : numpy.ndarray
|
C : numpy.ndarray
|
||||||
observation matrix
|
observation matrix
|
||||||
C : numpy.ndarray
|
D : numpy.ndarray
|
||||||
directly matrix
|
directly matrix
|
||||||
init_state : float, optional
|
init_state : float, optional
|
||||||
initial state of system default is None
|
initial state of system default is None
|
||||||
|
@ -59,8 +59,8 @@ class FirstOrderSystem():
|
||||||
"""calculating input
|
"""calculating input
|
||||||
Parameters
|
Parameters
|
||||||
------------
|
------------
|
||||||
u : float
|
u : numpy.ndarray
|
||||||
input of system in some cases this means the reference
|
inputs of system in some cases this means the reference
|
||||||
dt : float in seconds, optional
|
dt : float in seconds, optional
|
||||||
sampling time of simulation, default is 0.01 [s]
|
sampling time of simulation, default is 0.01 [s]
|
||||||
"""
|
"""
|
||||||
|
@ -77,13 +77,11 @@ class FirstOrderSystem():
|
||||||
|
|
||||||
# for oylar
|
# for oylar
|
||||||
# self.xs += k0.flatten()
|
# self.xs += k0.flatten()
|
||||||
|
|
||||||
# print("xs = {0}".format(self.xs))
|
# print("xs = {0}".format(self.xs))
|
||||||
# a = input()
|
|
||||||
# save
|
# save
|
||||||
save_states = copy.deepcopy(self.xs)
|
save_states = copy.deepcopy(self.xs)
|
||||||
self.history_xs.append(save_states)
|
self.history_xs.append(save_states)
|
||||||
# print(self.history_xs)
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
dt = 0.05
|
dt = 0.05
|
||||||
|
@ -135,7 +133,7 @@ def main():
|
||||||
reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten()
|
reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten()
|
||||||
states = plant.xs
|
states = plant.xs
|
||||||
opt_u = controller.calc_input(states, reference)
|
opt_u = controller.calc_input(states, reference)
|
||||||
plant.update_state(opt_u)
|
plant.update_state(opt_u, dt=dt)
|
||||||
|
|
||||||
history_states = np.array(plant.history_xs)
|
history_states = np.array(plant.history_xs)
|
||||||
|
|
||||||
|
|
|
@ -14,41 +14,52 @@ class MpcController():
|
||||||
B : numpy.ndarray
|
B : numpy.ndarray
|
||||||
input matrix
|
input matrix
|
||||||
Q : numpy.ndarray
|
Q : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for states
|
||||||
|
Qs : numpy.ndarray
|
||||||
|
concatenated evaluation function weight for states
|
||||||
R : numpy.ndarray
|
R : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for inputs
|
||||||
|
Rs : numpy.ndarray
|
||||||
|
concatenated evaluation function weight for inputs
|
||||||
pre_step : int
|
pre_step : int
|
||||||
prediction step
|
prediction step
|
||||||
dt_input_upper : numpy.ndarray
|
state_size : int
|
||||||
constraints of input dt
|
state size of the plant
|
||||||
dt_input_lower : numpy.ndarray
|
input_size : int
|
||||||
constraints of input dt
|
input size of the plant
|
||||||
input_upper : numpy.ndarray
|
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input dt, default is None
|
||||||
input_lower : numpy.ndarray
|
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input dt, default is None
|
||||||
history_
|
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
|
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
"""
|
"""
|
||||||
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||||
"""
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
A : numpy.ndarray
|
A : numpy.ndarray
|
||||||
system matrix
|
system matrix
|
||||||
B : numpy.ndarray
|
B : numpy.ndarray
|
||||||
input matrix
|
input matrix
|
||||||
Q : numpy.ndarray
|
Q : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for states
|
||||||
R : numpy.ndarray
|
R : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for inputs
|
||||||
pre_step : int
|
pre_step : int
|
||||||
prediction step
|
prediction step
|
||||||
dt_input_upper : numpy.ndarray
|
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input dt
|
constraints of input dt, default is None
|
||||||
dt_input_lower : numpy.ndarray
|
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input dt
|
constraints of input dt, default is None
|
||||||
input_upper : numpy.ndarray
|
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input, default is None
|
||||||
input_lower : numpy.ndarray
|
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input, default is None
|
||||||
|
history_us : list
|
||||||
|
time history of optimal input us(numpy.ndarray)
|
||||||
"""
|
"""
|
||||||
self.A = np.array(A)
|
self.A = np.array(A)
|
||||||
self.B = np.array(B)
|
self.B = np.array(B)
|
||||||
|
@ -73,7 +84,8 @@ class MpcController():
|
||||||
self.dt_input_upper = dt_input_upper
|
self.dt_input_upper = dt_input_upper
|
||||||
self.input_upper = input_upper
|
self.input_upper = input_upper
|
||||||
self.input_lower = input_lower
|
self.input_lower = input_lower
|
||||||
|
|
||||||
|
# about mpc matrix
|
||||||
self.W = None
|
self.W = None
|
||||||
self.omega = None
|
self.omega = None
|
||||||
self.F = None
|
self.F = None
|
||||||
|
@ -82,6 +94,7 @@ class MpcController():
|
||||||
def initialize_controller(self):
|
def initialize_controller(self):
|
||||||
"""
|
"""
|
||||||
make matrix to calculate optimal control input
|
make matrix to calculate optimal control input
|
||||||
|
|
||||||
"""
|
"""
|
||||||
A_factorials = [self.A]
|
A_factorials = [self.A]
|
||||||
|
|
||||||
|
@ -187,22 +200,22 @@ class MpcController():
|
||||||
"""calculate optimal input
|
"""calculate optimal input
|
||||||
Parameters
|
Parameters
|
||||||
-----------
|
-----------
|
||||||
states : numpy.array
|
states : numpy.ndarray, shape(state length, )
|
||||||
the size should have (state length * 1)
|
current state of system
|
||||||
references :
|
references : numpy.ndarray, shape(state length * pre_step, )
|
||||||
the size should have (state length * pre_step)
|
reference of the system, you should set this value as reachable goal
|
||||||
|
|
||||||
References
|
References
|
||||||
------------
|
------------
|
||||||
opt_input : numpy.ndarray
|
opt_input : numpy.ndarray, shape(input_length, )
|
||||||
optimal input, size is (1, input_length)
|
optimal input
|
||||||
"""
|
"""
|
||||||
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||||
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||||
|
|
||||||
error = references.reshape(-1, 1) - temp_1 - temp_2
|
error = references.reshape(-1, 1) - temp_1 - temp_2
|
||||||
|
|
||||||
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error) )
|
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error))
|
||||||
|
|
||||||
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
|
H = np.dot(self.theta_mat.T, np.dot(self.Qs, self.theta_mat)) + self.Rs
|
||||||
|
|
||||||
|
@ -220,9 +233,8 @@ class MpcController():
|
||||||
b.append(b_F)
|
b.append(b_F)
|
||||||
|
|
||||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||||
# b = np.array(b).reshape(-1, 1)
|
|
||||||
ub = np.array(b).flatten()
|
ub = np.array(b).flatten()
|
||||||
# print(np.dot(self.F1, self.history_us[-1].reshape(-1, 1)))
|
|
||||||
|
|
||||||
# make cvxpy problem formulation
|
# make cvxpy problem formulation
|
||||||
P = 2*matrix(H)
|
P = 2*matrix(H)
|
||||||
|
@ -232,26 +244,13 @@ class MpcController():
|
||||||
|
|
||||||
# constraint
|
# constraint
|
||||||
if self.W is not None or self.F is not None :
|
if self.W is not None or self.F is not None :
|
||||||
# print("consider constraint!")
|
|
||||||
opt_result = solvers.qp(P, q, G=A, h=b)
|
opt_result = solvers.qp(P, q, G=A, h=b)
|
||||||
|
|
||||||
# print(list(opt_result['x']))
|
|
||||||
opt_dt_us = list(opt_result['x'])
|
opt_dt_us = list(opt_result['x'])
|
||||||
# print("current_u = {0}".format(self.history_us[-1]))
|
|
||||||
# print("opt_dt_u = {0}".format(np.round(opt_dt_us, 5)))
|
|
||||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||||
# print("opt_u = {0}".format(np.round(opt_u, 5)))
|
|
||||||
# save
|
# save
|
||||||
self.history_us.append(opt_u)
|
self.history_us.append(opt_u)
|
||||||
# a = input()
|
|
||||||
return opt_u
|
|
||||||
|
|
||||||
|
return opt_u
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
constraint = []
|
|
||||||
for i in range(self.pre_step * self.input_size):
|
|
||||||
sums = -1. * (np.dot(A[i], init_dt_us) - b[i])[0]
|
|
||||||
constraint.append(sums)
|
|
||||||
"""
|
|
|
@ -15,41 +15,52 @@ class MpcController():
|
||||||
B : numpy.ndarray
|
B : numpy.ndarray
|
||||||
input matrix
|
input matrix
|
||||||
Q : numpy.ndarray
|
Q : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for states
|
||||||
|
Qs : numpy.ndarray
|
||||||
|
concatenated evaluation function weight for states
|
||||||
R : numpy.ndarray
|
R : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for inputs
|
||||||
|
Rs : numpy.ndarray
|
||||||
|
concatenated evaluation function weight for inputs
|
||||||
pre_step : int
|
pre_step : int
|
||||||
prediction step
|
prediction step
|
||||||
dt_input_upper : numpy.ndarray
|
state_size : int
|
||||||
constraints of input dt
|
state size of the plant
|
||||||
dt_input_lower : numpy.ndarray
|
input_size : int
|
||||||
constraints of input dt
|
input size of the plant
|
||||||
input_upper : numpy.ndarray
|
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input dt, default is None
|
||||||
input_lower : numpy.ndarray
|
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input dt, default is None
|
||||||
history_
|
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
|
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
|
constraints of input, default is None
|
||||||
"""
|
"""
|
||||||
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
|
||||||
"""
|
"""
|
||||||
|
Parameters
|
||||||
|
------------
|
||||||
A : numpy.ndarray
|
A : numpy.ndarray
|
||||||
system matrix
|
system matrix
|
||||||
B : numpy.ndarray
|
B : numpy.ndarray
|
||||||
input matrix
|
input matrix
|
||||||
Q : numpy.ndarray
|
Q : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for states
|
||||||
R : numpy.ndarray
|
R : numpy.ndarray
|
||||||
evaluation function weight
|
evaluation function weight for inputs
|
||||||
pre_step : int
|
pre_step : int
|
||||||
prediction step
|
prediction step
|
||||||
dt_input_upper : numpy.ndarray
|
dt_input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input dt
|
constraints of input dt, default is None
|
||||||
dt_input_lower : numpy.ndarray
|
dt_input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input dt
|
constraints of input dt, default is None
|
||||||
input_upper : numpy.ndarray
|
input_upper : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input, default is None
|
||||||
input_lower : numpy.ndarray
|
input_lower : numpy.ndarray, shape(input_size, ), optional
|
||||||
constraints of input
|
constraints of input, default is None
|
||||||
|
history_us : list
|
||||||
|
time history of optimal input us(numpy.ndarray)
|
||||||
"""
|
"""
|
||||||
self.A = np.array(A)
|
self.A = np.array(A)
|
||||||
self.B = np.array(B)
|
self.B = np.array(B)
|
||||||
|
@ -188,15 +199,15 @@ class MpcController():
|
||||||
"""calculate optimal input
|
"""calculate optimal input
|
||||||
Parameters
|
Parameters
|
||||||
-----------
|
-----------
|
||||||
states : numpy.array
|
states : numpy.ndarray, shape(state length, )
|
||||||
the size should have (state length * 1)
|
current state of system
|
||||||
references :
|
references : numpy.ndarray, shape(state length * pre_step, )
|
||||||
the size should have (state length * pre_step)
|
reference of the system, you should set this value as reachable goal
|
||||||
|
|
||||||
References
|
References
|
||||||
------------
|
------------
|
||||||
opt_input : numpy.ndarray
|
opt_input : numpy.ndarray, shape(input_length, )
|
||||||
optimal input, size is (1, input_length)
|
optimal input
|
||||||
"""
|
"""
|
||||||
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
|
||||||
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
|
||||||
|
@ -221,9 +232,8 @@ class MpcController():
|
||||||
b.append(b_F)
|
b.append(b_F)
|
||||||
|
|
||||||
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
A = np.array(A).reshape(-1, self.input_size * self.pre_step)
|
||||||
# b = np.array(b).reshape(-1, 1)
|
|
||||||
ub = np.array(b).flatten()
|
ub = np.array(b).flatten()
|
||||||
# print(np.dot(self.F1, self.history_us[-1].reshape(-1, 1)))
|
|
||||||
|
|
||||||
def optimized_func(dt_us):
|
def optimized_func(dt_us):
|
||||||
"""
|
"""
|
||||||
|
@ -240,25 +250,13 @@ class MpcController():
|
||||||
|
|
||||||
# constraint
|
# constraint
|
||||||
if self.W is not None or self.F is not None :
|
if self.W is not None or self.F is not None :
|
||||||
# print("consider constraint!")
|
|
||||||
opt_result = minimize(optimized_func, init_dt_us, constraints=[linear_cons])
|
opt_result = minimize(optimized_func, init_dt_us, constraints=[linear_cons])
|
||||||
|
|
||||||
opt_dt_us = opt_result.x
|
opt_dt_us = opt_result.x
|
||||||
# print("current_u = {0}".format(self.history_us[-1]))
|
|
||||||
# print("opt_dt_u = {0}".format(np.round(opt_dt_us, 5)))
|
|
||||||
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
|
||||||
# print("opt_u = {0}".format(np.round(opt_u, 5)))
|
|
||||||
# save
|
# save
|
||||||
self.history_us.append(opt_u)
|
self.history_us.append(opt_u)
|
||||||
|
|
||||||
return opt_u
|
return opt_u
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
constraint = []
|
|
||||||
for i in range(self.pre_step * self.input_size):
|
|
||||||
sums = -1. * (np.dot(A[i], init_dt_us) - b[i])[0]
|
|
||||||
constraint.append(sums)
|
|
||||||
"""
|
|
Loading…
Reference in New Issue