diff --git a/mpc/extend/README.md b/mpc/extend/README.md
new file mode 100644
index 0000000..2dec8ef
--- /dev/null
+++ b/mpc/extend/README.md
@@ -0,0 +1,37 @@
+# Model Predictive Control for Vehicle model
+This program is for controlling the vehicle model.
+I implemented the steering control for vehicle by using Model Predictive Control.
+
+# Model
+Usually, the vehicle model is expressed by extremely complicated nonlinear equation.
+Acoording to reference 1, I used the simple model as shown in following equation.
+
+
+
+However, it is still a nonlinear equation.
+Therefore, I assume that the car is tracking the reference trajectory.
+If we get the assumption, the model can turn to linear model by using the path's curvatures.
+
+
+
+and \delta_r denoted
+
+
+
+R is the curvatures of the reference trajectory.
+
+Now we can get the linear state equation and can apply the MPC theory.
+
+However, you should care that this state euation could be changed during the predict horizon.
+I implemented this, so if you know about the detail please go to "IteraticeMPC_func.py"
+
+# Expected Results
+
+# Usage
+
+```
+$ python main_track.py
+```
+
+# Reference
+- 1. https://qiita.com/taka_horibe/items/47f86e02e2db83b0c570#%E8%BB%8A%E4%B8%A1%E3%81%AE%E8%BB%8C%E9%81%93%E8%BF%BD%E5%BE%93%E5%95%8F%E9%A1%8C%E9%9D%9E%E7%B7%9A%E5%BD%A2%E3%81%AB%E9%81%A9%E7%94%A8%E3%81%99%E3%82%8B (Japanese)
diff --git a/mpc/with_disturbance/animation.py b/mpc/extend/animation.py
similarity index 100%
rename from mpc/with_disturbance/animation.py
rename to mpc/extend/animation.py
diff --git a/mpc/with_disturbance/coordinate_trans.py b/mpc/extend/coordinate_trans.py
similarity index 100%
rename from mpc/with_disturbance/coordinate_trans.py
rename to mpc/extend/coordinate_trans.py
diff --git a/mpc/with_disturbance/func_curvature.py b/mpc/extend/func_curvature.py
similarity index 100%
rename from mpc/with_disturbance/func_curvature.py
rename to mpc/extend/func_curvature.py
diff --git a/mpc/with_disturbance/iterative_MPC.py b/mpc/extend/iterative_MPC.py
similarity index 100%
rename from mpc/with_disturbance/iterative_MPC.py
rename to mpc/extend/iterative_MPC.py
diff --git a/mpc/with_disturbance/main_track.py b/mpc/extend/main_track.py
similarity index 100%
rename from mpc/with_disturbance/main_track.py
rename to mpc/extend/main_track.py
diff --git a/mpc/with_disturbance/mpc_func_with_cvxopt.py b/mpc/extend/mpc_func_with_cvxopt.py
similarity index 100%
rename from mpc/with_disturbance/mpc_func_with_cvxopt.py
rename to mpc/extend/mpc_func_with_cvxopt.py
diff --git a/mpc/with_disturbance/traj_func.py b/mpc/extend/traj_func.py
similarity index 100%
rename from mpc/with_disturbance/traj_func.py
rename to mpc/extend/traj_func.py
diff --git a/mpc/sample/pathplanner.py b/mpc/sample/pathplanner.py
deleted file mode 100644
index 455ddb4..0000000
--- a/mpc/sample/pathplanner.py
+++ /dev/null
@@ -1,233 +0,0 @@
-"""
-Cubic spline planner
-Author: Atsushi Sakai(@Atsushi_twi)
-"""
-import math
-import numpy as np
-import bisect
-
-
-class Spline:
- """
- Cubic Spline class
- """
-
- def __init__(self, x, y):
- self.b, self.c, self.d, self.w = [], [], [], []
-
- self.x = x
- self.y = y
-
- self.nx = len(x) # dimension of x
- h = np.diff(x)
-
- # calc coefficient c
- self.a = [iy for iy in y]
-
- # calc coefficient c
- A = self.__calc_A(h)
- B = self.__calc_B(h)
- self.c = np.linalg.solve(A, B)
- # print(self.c1)
-
- # calc spline coefficient b and d
- for i in range(self.nx - 1):
- self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i]))
- tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \
- (self.c[i + 1] + 2.0 * self.c[i]) / 3.0
- self.b.append(tb)
-
- def calc(self, t):
- """
- Calc position
- if t is outside of the input x, return None
- """
-
- if t < self.x[0]:
- return None
- elif t > self.x[-1]:
- return None
-
- i = self.__search_index(t)
- dx = t - self.x[i]
- result = self.a[i] + self.b[i] * dx + \
- self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0
-
- return result
-
- def calcd(self, t):
- """
- Calc first derivative
- if t is outside of the input x, return None
- """
-
- if t < self.x[0]:
- return None
- elif t > self.x[-1]:
- return None
-
- i = self.__search_index(t)
- dx = t - self.x[i]
- result = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0
- return result
-
- def calcdd(self, t):
- """
- Calc second derivative
- """
-
- if t < self.x[0]:
- return None
- elif t > self.x[-1]:
- return None
-
- i = self.__search_index(t)
- dx = t - self.x[i]
- result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx
- return result
-
- def __search_index(self, x):
- """
- search data segment index
- """
- return bisect.bisect(self.x, x) - 1
-
- def __calc_A(self, h):
- """
- calc matrix A for spline coefficient c
- """
- A = np.zeros((self.nx, self.nx))
- A[0, 0] = 1.0
- for i in range(self.nx - 1):
- if i != (self.nx - 2):
- A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1])
- A[i + 1, i] = h[i]
- A[i, i + 1] = h[i]
-
- A[0, 1] = 0.0
- A[self.nx - 1, self.nx - 2] = 0.0
- A[self.nx - 1, self.nx - 1] = 1.0
- # print(A)
- return A
-
- def __calc_B(self, h):
- """
- calc matrix B for spline coefficient c
- """
- B = np.zeros(self.nx)
- for i in range(self.nx - 2):
- B[i + 1] = 3.0 * (self.a[i + 2] - self.a[i + 1]) / \
- h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i]
- return B
-
-
-class Spline2D:
- """
- 2D Cubic Spline class
- """
-
- def __init__(self, x, y):
- self.s = self.__calc_s(x, y)
- self.sx = Spline(self.s, x)
- self.sy = Spline(self.s, y)
-
- def __calc_s(self, x, y):
- dx = np.diff(x)
- dy = np.diff(y)
- self.ds = [math.sqrt(idx ** 2 + idy ** 2)
- for (idx, idy) in zip(dx, dy)]
- s = [0]
- s.extend(np.cumsum(self.ds))
- return s
-
- def calc_position(self, s):
- """
- calc position
- """
- x = self.sx.calc(s)
- y = self.sy.calc(s)
-
- return x, y
-
- def calc_curvature(self, s):
- """
- calc curvature
- """
- dx = self.sx.calcd(s)
- ddx = self.sx.calcdd(s)
- dy = self.sy.calcd(s)
- ddy = self.sy.calcdd(s)
- k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2))
- return k
-
- def calc_yaw(self, s):
- """
- calc yaw
- """
- dx = self.sx.calcd(s)
- dy = self.sy.calcd(s)
- yaw = math.atan2(dy, dx)
- return yaw
-
-
-def calc_spline_course(x, y, ds=0.1):
- sp = Spline2D(x, y)
- s = list(np.arange(0, sp.s[-1], ds))
-
- rx, ry, ryaw, rk = [], [], [], []
- for i_s in s:
- ix, iy = sp.calc_position(i_s)
- rx.append(ix)
- ry.append(iy)
- ryaw.append(sp.calc_yaw(i_s))
- rk.append(sp.calc_curvature(i_s))
-
- return rx, ry, ryaw, rk, s
-
-
-def main():
- print("Spline 2D test")
- import matplotlib.pyplot as plt
- x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0]
- y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0]
- ds = 0.1 # [m] distance of each intepolated points
-
- sp = Spline2D(x, y)
- s = np.arange(0, sp.s[-1], ds)
-
- rx, ry, ryaw, rk = [], [], [], []
- for i_s in s:
- ix, iy = sp.calc_position(i_s)
- rx.append(ix)
- ry.append(iy)
- ryaw.append(sp.calc_yaw(i_s))
- rk.append(sp.calc_curvature(i_s))
-
- plt.subplots(1)
- plt.plot(x, y, "xb", label="input")
- plt.plot(rx, ry, "-r", label="spline")
- plt.grid(True)
- plt.axis("equal")
- plt.xlabel("x[m]")
- plt.ylabel("y[m]")
- plt.legend()
-
- plt.subplots(1)
- plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw")
- plt.grid(True)
- plt.legend()
- plt.xlabel("line length[m]")
- plt.ylabel("yaw angle[deg]")
-
- plt.subplots(1)
- plt.plot(s, rk, "-r", label="curvature")
- plt.grid(True)
- plt.legend()
- plt.xlabel("line length[m]")
- plt.ylabel("curvature [1/m]")
-
- plt.show()
-
-
-if __name__ == '__main__':
- main()
\ No newline at end of file
diff --git a/mpc/sample/test.py b/mpc/sample/test.py
deleted file mode 100644
index 5328002..0000000
--- a/mpc/sample/test.py
+++ /dev/null
@@ -1,614 +0,0 @@
-"""
-Path tracking simulation with iterative linear model predictive control for speed and steer control
-author: Atsushi Sakai (@Atsushi_twi)
-"""
-import matplotlib.pyplot as plt
-import cvxpy
-import math
-import numpy as np
-import sys
-
-try:
- import pathplanner
-except:
- raise
-
-
-NX = 4 # x = x, y, v, yaw
-NU = 2 # a = [accel, steer]
-T = 5 # horizon length
-
-# mpc parameters
-R = np.diag([0.01, 0.01]) # input cost matrix
-Rd = np.diag([0.01, 1.0]) # input difference cost matrix
-Q = np.diag([1.0, 1.0, 0.5, 0.5]) # state cost matrix
-Qf = Q # state final matrix
-GOAL_DIS = 1.5 # goal distance
-STOP_SPEED = 0.5 / 3.6 # stop speed
-MAX_TIME = 500.0 # max simulation time
-
-# iterative paramter
-MAX_ITER = 3 # Max iteration
-DU_TH = 0.1 # iteration finish param
-
-TARGET_SPEED = 10.0 / 3.6 # [m/s] target speed
-N_IND_SEARCH = 10 # Search index number
-
-DT = 0.2 # [s] time tick
-
-# Vehicle parameters
-LENGTH = 4.5 # [m]
-WIDTH = 2.0 # [m]
-BACKTOWHEEL = 1.0 # [m]
-WHEEL_LEN = 0.3 # [m]
-WHEEL_WIDTH = 0.2 # [m]
-TREAD = 0.7 # [m]
-WB = 2.5 # [m]
-
-MAX_STEER = np.deg2rad(45.0) # maximum steering angle [rad]
-MAX_DSTEER = np.deg2rad(30.0) # maximum steering speed [rad/s]
-MAX_SPEED = 55.0 / 3.6 # maximum speed [m/s]
-MIN_SPEED = -20.0 / 3.6 # minimum speed [m/s]
-MAX_ACCEL = 1.0 # maximum accel [m/ss]
-
-show_animation = True
-
-
-class State:
- """
- vehicle state class
- """
-
- def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
- self.x = x
- self.y = y
- self.yaw = yaw
- self.v = v
- self.predelta = None
-
-
-def pi_2_pi(angle):
- while(angle > math.pi):
- angle = angle - 2.0 * math.pi
-
- while(angle < -math.pi):
- angle = angle + 2.0 * math.pi
-
- return angle
-
-
-def get_linear_model_matrix(v, phi, delta):
-
- A = np.zeros((NX, NX))
- A[0, 0] = 1.0
- A[1, 1] = 1.0
- A[2, 2] = 1.0
- A[3, 3] = 1.0
- A[0, 2] = DT * math.cos(phi)
- A[0, 3] = - DT * v * math.sin(phi)
- A[1, 2] = DT * math.sin(phi)
- A[1, 3] = DT * v * math.cos(phi)
- A[3, 2] = DT * math.tan(delta) / WB
-
- B = np.zeros((NX, NU))
- B[2, 0] = DT
- B[3, 1] = DT * v / (WB * math.cos(delta) ** 2)
-
- C = np.zeros(NX)
- C[0] = DT * v * math.sin(phi) * phi
- C[1] = - DT * v * math.cos(phi) * phi
- C[3] = - v * delta / (WB * math.cos(delta) ** 2)
-
- return A, B, C
-
-
-def plot_car(x, y, yaw, steer=0.0, cabcolor="-r", truckcolor="-k"): # pragma: no cover
-
- outline = np.array([[-BACKTOWHEEL, (LENGTH - BACKTOWHEEL), (LENGTH - BACKTOWHEEL), -BACKTOWHEEL, -BACKTOWHEEL],
- [WIDTH / 2, WIDTH / 2, - WIDTH / 2, -WIDTH / 2, WIDTH / 2]])
-
- fr_wheel = np.array([[WHEEL_LEN, -WHEEL_LEN, -WHEEL_LEN, WHEEL_LEN, WHEEL_LEN],
- [-WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, WHEEL_WIDTH - TREAD, -WHEEL_WIDTH - TREAD]])
-
- rr_wheel = np.copy(fr_wheel)
-
- fl_wheel = np.copy(fr_wheel)
- fl_wheel[1, :] *= -1
- rl_wheel = np.copy(rr_wheel)
- rl_wheel[1, :] *= -1
-
- Rot1 = np.array([[math.cos(yaw), math.sin(yaw)],
- [-math.sin(yaw), math.cos(yaw)]])
- Rot2 = np.array([[math.cos(steer), math.sin(steer)],
- [-math.sin(steer), math.cos(steer)]])
-
- fr_wheel = (fr_wheel.T.dot(Rot2)).T
- fl_wheel = (fl_wheel.T.dot(Rot2)).T
- fr_wheel[0, :] += WB
- fl_wheel[0, :] += WB
-
- fr_wheel = (fr_wheel.T.dot(Rot1)).T
- fl_wheel = (fl_wheel.T.dot(Rot1)).T
-
- outline = (outline.T.dot(Rot1)).T
- rr_wheel = (rr_wheel.T.dot(Rot1)).T
- rl_wheel = (rl_wheel.T.dot(Rot1)).T
-
- outline[0, :] += x
- outline[1, :] += y
- fr_wheel[0, :] += x
- fr_wheel[1, :] += y
- rr_wheel[0, :] += x
- rr_wheel[1, :] += y
- fl_wheel[0, :] += x
- fl_wheel[1, :] += y
- rl_wheel[0, :] += x
- rl_wheel[1, :] += y
-
- plt.plot(np.array(outline[0, :]).flatten(),
- np.array(outline[1, :]).flatten(), truckcolor)
- plt.plot(np.array(fr_wheel[0, :]).flatten(),
- np.array(fr_wheel[1, :]).flatten(), truckcolor)
- plt.plot(np.array(rr_wheel[0, :]).flatten(),
- np.array(rr_wheel[1, :]).flatten(), truckcolor)
- plt.plot(np.array(fl_wheel[0, :]).flatten(),
- np.array(fl_wheel[1, :]).flatten(), truckcolor)
- plt.plot(np.array(rl_wheel[0, :]).flatten(),
- np.array(rl_wheel[1, :]).flatten(), truckcolor)
- plt.plot(x, y, "*")
-
-
-def update_state(state, a, delta):
-
- # input check
- if delta >= MAX_STEER:
- delta = MAX_STEER
- elif delta <= -MAX_STEER:
- delta = -MAX_STEER
-
- state.x = state.x + state.v * math.cos(state.yaw) * DT
- state.y = state.y + state.v * math.sin(state.yaw) * DT
- state.yaw = state.yaw + state.v / WB * math.tan(delta) * DT
- state.v = state.v + a * DT
-
- if state. v > MAX_SPEED:
- state.v = MAX_SPEED
- elif state. v < MIN_SPEED:
- state.v = MIN_SPEED
-
- return state
-
-
-def get_nparray_from_matrix(x):
- return np.array(x).flatten()
-
-
-def calc_nearest_index(state, cx, cy, cyaw, pind):
-
- dx = [state.x - icx for icx in cx[pind:(pind + N_IND_SEARCH)]]
- dy = [state.y - icy for icy in cy[pind:(pind + N_IND_SEARCH)]]
-
- d = [idx ** 2 + idy ** 2 for (idx, idy) in zip(dx, dy)]
-
- mind = min(d)
-
- ind = d.index(mind) + pind
-
- mind = math.sqrt(mind)
-
- dxl = cx[ind] - state.x
- dyl = cy[ind] - state.y
-
- angle = pi_2_pi(cyaw[ind] - math.atan2(dyl, dxl))
- if angle < 0:
- mind *= -1
-
- return ind, mind
-
-
-def predict_motion(x0, oa, od, xref):
- xbar = xref * 0.0
- for i, _ in enumerate(x0):
- xbar[i, 0] = x0[i]
-
- state = State(x=x0[0], y=x0[1], yaw=x0[3], v=x0[2])
- for (ai, di, i) in zip(oa, od, range(1, T + 1)):
- state = update_state(state, ai, di)
- xbar[0, i] = state.x
- xbar[1, i] = state.y
- xbar[2, i] = state.v
- xbar[3, i] = state.yaw
-
- return xbar
-
-
-def iterative_linear_mpc_control(xref, x0, dref, oa, od):
- """
- MPC contorl with updating operational point iteraitvely
- """
-
- if oa is None or od is None:
- oa = [0.0] * T
- od = [0.0] * T
-
- for i in range(MAX_ITER):
- xbar = predict_motion(x0, oa, od, xref)
- poa, pod = oa[:], od[:]
- oa, od, ox, oy, oyaw, ov = linear_mpc_control(xref, xbar, x0, dref)
- du = sum(abs(oa - poa)) + sum(abs(od - pod)) # calc u change value
- if du <= DU_TH:
- break
- else:
- print("Iterative is max iter")
-
- return oa, od, ox, oy, oyaw, ov
-
-
-def linear_mpc_control(xref, xbar, x0, dref):
- """
- linear mpc control
- xref: reference point
- xbar: operational point
- x0: initial state
- dref: reference steer angle
- """
-
- x = cvxpy.Variable((NX, T + 1))
- u = cvxpy.Variable((NU, T))
-
- cost = 0.0
- constraints = []
-
- for t in range(T):
- cost += cvxpy.quad_form(u[:, t], R)
-
- if t != 0:
- cost += cvxpy.quad_form(xref[:, t] - x[:, t], Q)
-
- A, B, C = get_linear_model_matrix(
- xbar[2, t], xbar[3, t], dref[0, t])
- constraints += [x[:, t + 1] == A * x[:, t] + B * u[:, t] + C]
-
- if t < (T - 1):
- cost += cvxpy.quad_form(u[:, t + 1] - u[:, t], Rd)
- constraints += [cvxpy.abs(u[1, t + 1] - u[1, t]) <=
- MAX_DSTEER * DT]
-
- cost += cvxpy.quad_form(xref[:, T] - x[:, T], Qf)
-
- constraints += [x[:, 0] == x0]
- constraints += [x[2, :] <= MAX_SPEED]
- constraints += [x[2, :] >= MIN_SPEED]
- constraints += [cvxpy.abs(u[0, :]) <= MAX_ACCEL]
- constraints += [cvxpy.abs(u[1, :]) <= MAX_STEER]
-
- prob = cvxpy.Problem(cvxpy.Minimize(cost), constraints)
- prob.solve(solver=cvxpy.ECOS, verbose=False)
-
- if prob.status == cvxpy.OPTIMAL or prob.status == cvxpy.OPTIMAL_INACCURATE:
- ox = get_nparray_from_matrix(x.value[0, :])
- oy = get_nparray_from_matrix(x.value[1, :])
- ov = get_nparray_from_matrix(x.value[2, :])
- oyaw = get_nparray_from_matrix(x.value[3, :])
- oa = get_nparray_from_matrix(u.value[0, :])
- odelta = get_nparray_from_matrix(u.value[1, :])
-
- else:
- print("Error: Cannot solve mpc..")
- oa, odelta, ox, oy, oyaw, ov = None, None, None, None, None, None
-
- return oa, odelta, ox, oy, oyaw, ov
-
-
-def calc_ref_trajectory(state, cx, cy, cyaw, ck, sp, dl, pind):
- xref = np.zeros((NX, T + 1))
- dref = np.zeros((1, T + 1))
- ncourse = len(cx)
-
- ind, _ = calc_nearest_index(state, cx, cy, cyaw, pind)
-
- if pind >= ind:
- ind = pind
-
- xref[0, 0] = cx[ind]
- xref[1, 0] = cy[ind]
- xref[2, 0] = sp[ind]
- xref[3, 0] = cyaw[ind]
- dref[0, 0] = 0.0 # steer operational point should be 0
-
- travel = 0.0
-
- for i in range(T + 1):
- travel += abs(state.v) * DT
- dind = int(round(travel / dl))
-
- if (ind + dind) < ncourse:
- xref[0, i] = cx[ind + dind]
- xref[1, i] = cy[ind + dind]
- xref[2, i] = sp[ind + dind]
- xref[3, i] = cyaw[ind + dind]
- dref[0, i] = 0.0
- else:
- xref[0, i] = cx[ncourse - 1]
- xref[1, i] = cy[ncourse - 1]
- xref[2, i] = sp[ncourse - 1]
- xref[3, i] = cyaw[ncourse - 1]
- dref[0, i] = 0.0
-
- return xref, ind, dref
-
-
-def check_goal(state, goal, tind, nind):
-
- # check goal
- dx = state.x - goal[0]
- dy = state.y - goal[1]
- d = math.sqrt(dx ** 2 + dy ** 2)
-
- isgoal = (d <= GOAL_DIS)
-
- if abs(tind - nind) >= 5:
- isgoal = False
-
- isstop = (abs(state.v) <= STOP_SPEED)
-
- if isgoal and isstop:
- return True
-
- return False
-
-
-def do_simulation(cx, cy, cyaw, ck, sp, dl, initial_state):
- """
- Simulation
- cx: course x position list
- cy: course y position list
- cy: course yaw position list
- ck: course curvature list
- sp: speed profile
- dl: course tick [m]
- """
-
- goal = [cx[-1], cy[-1]]
-
- state = initial_state
-
- # initial yaw compensation
- if state.yaw - cyaw[0] >= math.pi:
- state.yaw -= math.pi * 2.0
- elif state.yaw - cyaw[0] <= -math.pi:
- state.yaw += math.pi * 2.0
-
- time = 0.0
- x = [state.x]
- y = [state.y]
- yaw = [state.yaw]
- v = [state.v]
- t = [0.0]
- d = [0.0]
- a = [0.0]
- target_ind, _ = calc_nearest_index(state, cx, cy, cyaw, 0)
-
- odelta, oa = None, None
-
- cyaw = smooth_yaw(cyaw)
-
- while MAX_TIME >= time:
- xref, target_ind, dref = calc_ref_trajectory(
- state, cx, cy, cyaw, ck, sp, dl, target_ind)
-
- x0 = [state.x, state.y, state.v, state.yaw] # current state
-
- oa, odelta, ox, oy, oyaw, ov = iterative_linear_mpc_control(
- xref, x0, dref, oa, odelta)
-
- if odelta is not None:
- di, ai = odelta[0], oa[0]
-
- state = update_state(state, ai, di)
- time = time + DT
-
- x.append(state.x)
- y.append(state.y)
- yaw.append(state.yaw)
- v.append(state.v)
- t.append(time)
- d.append(di)
- a.append(ai)
-
- if check_goal(state, goal, target_ind, len(cx)):
- print("Goal")
- break
-
- if show_animation: # pragma: no cover
- plt.cla()
- if ox is not None:
- plt.plot(ox, oy, "xr", label="MPC")
- plt.plot(cx, cy, "-r", label="course")
- plt.plot(x, y, "ob", label="trajectory")
- plt.plot(xref[0, :], xref[1, :], "xk", label="xref")
- plt.plot(cx[target_ind], cy[target_ind], "xg", label="target")
- plot_car(state.x, state.y, state.yaw, steer=di)
- plt.axis("equal")
- plt.grid(True)
- plt.title("Time[s]:" + str(round(time, 2))
- + ", speed[km/h]:" + str(round(state.v * 3.6, 2)))
- plt.pause(0.0001)
-
- return t, x, y, yaw, v, d, a
-
-
-def calc_speed_profile(cx, cy, cyaw, target_speed):
-
- speed_profile = [target_speed] * len(cx)
- direction = 1.0 # forward
-
- # Set stop point
- for i in range(len(cx) - 1):
- dx = cx[i + 1] - cx[i]
- dy = cy[i + 1] - cy[i]
-
- move_direction = math.atan2(dy, dx)
-
- if dx != 0.0 and dy != 0.0:
- dangle = abs(pi_2_pi(move_direction - cyaw[i]))
- if dangle >= math.pi / 4.0:
- direction = -1.0
- else:
- direction = 1.0
-
- if direction != 1.0:
- speed_profile[i] = - target_speed
- else:
- speed_profile[i] = target_speed
-
- speed_profile[-1] = 0.0
-
- return speed_profile
-
-
-def smooth_yaw(yaw):
-
- for i in range(len(yaw) - 1):
- dyaw = yaw[i + 1] - yaw[i]
-
- while dyaw >= math.pi / 2.0:
- yaw[i + 1] -= math.pi * 2.0
- dyaw = yaw[i + 1] - yaw[i]
-
- while dyaw <= -math.pi / 2.0:
- yaw[i + 1] += math.pi * 2.0
- dyaw = yaw[i + 1] - yaw[i]
-
- return yaw
-
-
-def get_straight_course(dl):
- ax = [0.0, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0]
- ay = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
- cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
- ax, ay, ds=dl)
-
- return cx, cy, cyaw, ck
-
-
-def get_straight_course2(dl):
- ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
- ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
- cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
- ax, ay, ds=dl)
-
- return cx, cy, cyaw, ck
-
-
-def get_straight_course3(dl):
- ax = [0.0, -10.0, -20.0, -40.0, -50.0, -60.0, -70.0]
- ay = [0.0, -1.0, 1.0, 0.0, -1.0, 1.0, 0.0]
- cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
- ax, ay, ds=dl)
-
- cyaw = [i - math.pi for i in cyaw]
-
- return cx, cy, cyaw, ck
-
-
-def get_forward_course(dl):
- ax = [0.0, 60.0, 125.0, 50.0, 75.0, 30.0, -10.0]
- ay = [0.0, 0.0, 50.0, 65.0, 30.0, 50.0, -20.0]
- cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
- ax, ay, ds=dl)
-
- return cx, cy, cyaw, ck
-
-
-def get_switch_back_course(dl):
- ax = [0.0, 30.0, 6.0, 20.0, 35.0]
- ay = [0.0, 0.0, 20.0, 35.0, 20.0]
- cx, cy, cyaw, ck, s = pathplanner.calc_spline_course(
- ax, ay, ds=dl)
- ax = [35.0, 10.0, 0.0, 0.0]
- ay = [20.0, 30.0, 5.0, 0.0]
- cx2, cy2, cyaw2, ck2, s2 = pathplanner.calc_spline_course(
- ax, ay, ds=dl)
- cyaw2 = [i - math.pi for i in cyaw2]
- cx.extend(cx2)
- cy.extend(cy2)
- cyaw.extend(cyaw2)
- ck.extend(ck2)
-
- return cx, cy, cyaw, ck
-
-
-def main():
- print(__file__ + " start!!")
-
- dl = 1.0 # course tick
- # cx, cy, cyaw, ck = get_straight_course(dl)
- # cx, cy, cyaw, ck = get_straight_course2(dl)
- cx, cy, cyaw, ck = get_straight_course3(dl)
- # cx, cy, cyaw, ck = get_forward_course(dl)
- # CX, cy, cyaw, ck = get_switch_back_course(dl)
-
- sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
-
- initial_state = State(x=cx[0], y=cy[0], yaw=cyaw[0], v=0.0)
-
- t, x, y, yaw, v, d, a = do_simulation(
- cx, cy, cyaw, ck, sp, dl, initial_state)
-
- if show_animation: # pragma: no cover
- plt.close("all")
- plt.subplots()
- plt.plot(cx, cy, "-r", label="spline")
- plt.plot(x, y, "-g", label="tracking")
- plt.grid(True)
- plt.axis("equal")
- plt.xlabel("x[m]")
- plt.ylabel("y[m]")
- plt.legend()
-
- plt.subplots()
- plt.plot(t, v, "-r", label="speed")
- plt.grid(True)
- plt.xlabel("Time [s]")
- plt.ylabel("Speed [kmh]")
-
- plt.show()
-
-
-def main2():
- print(__file__ + " start!!")
-
- dl = 1.0 # course tick
- cx, cy, cyaw, ck = get_straight_course3(dl)
-
- sp = calc_speed_profile(cx, cy, cyaw, TARGET_SPEED)
-
- initial_state = State(x=cx[0], y=cy[0], yaw=0.0, v=0.0)
-
- t, x, y, yaw, v, d, a = do_simulation(
- cx, cy, cyaw, ck, sp, dl, initial_state)
-
- if show_animation: # pragma: no cover
- plt.close("all")
- plt.subplots()
- plt.plot(cx, cy, "-r", label="spline")
- plt.plot(x, y, "-g", label="tracking")
- plt.grid(True)
- plt.axis("equal")
- plt.xlabel("x[m]")
- plt.ylabel("y[m]")
- plt.legend()
-
- plt.subplots()
- plt.plot(t, v, "-r", label="speed")
- plt.grid(True)
- plt.xlabel("Time [s]")
- plt.ylabel("Speed [kmh]")
-
- plt.show()
-
-
-if __name__ == '__main__':
- # main()
- main2()
\ No newline at end of file