Compare commits
6 Commits
Author | SHA1 | Date |
---|---|---|
|
eb0bf0c782 | |
|
a0f9d219f5 | |
|
f057d2669e | |
|
6519290e2e | |
|
cf30226519 | |
|
2e0ac5c2f1 |
20
README.md
20
README.md
|
@ -17,8 +17,8 @@ Due to use only basic libralies (scipy, numpy), this library is easy to extend f
|
||||||
|:----------|:---------------: |:----------------:|:----------------:|:----------------:|:----------------:|
|
|:----------|:---------------: |:----------------:|:----------------:|:----------------:|:----------------:|
|
||||||
| Linear Model Predictive Control (MPC) | ✓ | x | x | x | x |
|
| Linear Model Predictive Control (MPC) | ✓ | x | x | x | x |
|
||||||
| Cross Entropy Method (CEM) | ✓ | ✓ | x | x | x |
|
| Cross Entropy Method (CEM) | ✓ | ✓ | x | x | x |
|
||||||
| Model Preidictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x |
|
| Model Predictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x |
|
||||||
| Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x |
|
| Model Predictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x |
|
||||||
| Random Shooting Method (Random) | ✓ | ✓ | x | x | x |
|
| Random Shooting Method (Random) | ✓ | ✓ | x | x | x |
|
||||||
| Iterative LQR (iLQR) | x | ✓ | x | ✓ | x |
|
| Iterative LQR (iLQR) | x | ✓ | x | ✓ | x |
|
||||||
| Differential Dynamic Programming (DDP) | x | ✓ | x | ✓ | ✓ |
|
| Differential Dynamic Programming (DDP) | x | ✓ | x | ✓ | ✓ |
|
||||||
|
@ -36,10 +36,10 @@ Following algorithms are implemented in PythonLinearNonlinearControl
|
||||||
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
|
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
|
||||||
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
|
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
|
||||||
- [script](PythonLinearNonlinearControl/controllers/cem.py)
|
- [script](PythonLinearNonlinearControl/controllers/cem.py)
|
||||||
- [Model Preidictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
|
- [Model Predictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
|
||||||
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
|
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
|
||||||
- [script](PythonLinearNonlinearControl/controllers/mppi.py)
|
- [script](PythonLinearNonlinearControl/controllers/mppi.py)
|
||||||
- [Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
|
- [Model Predictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
|
||||||
- Ref: Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., & Theodorou, E. A. (2017, May). Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1714-1721). IEEE.
|
- Ref: Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., & Theodorou, E. A. (2017, May). Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1714-1721). IEEE.
|
||||||
- [script](PythonLinearNonlinearControl/controllers/mppi_williams.py)
|
- [script](PythonLinearNonlinearControl/controllers/mppi_williams.py)
|
||||||
- [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114)
|
- [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114)
|
||||||
|
@ -83,25 +83,19 @@ You could know abount our environmets more in [Environments.md](Environments.md)
|
||||||
## To install this package
|
## To install this package
|
||||||
|
|
||||||
```
|
```
|
||||||
python setup.py install
|
$ pip install PythonLinearNonlinearControl
|
||||||
```
|
|
||||||
|
|
||||||
or
|
|
||||||
|
|
||||||
```
|
|
||||||
pip install .
|
|
||||||
```
|
```
|
||||||
|
|
||||||
## When developing the package
|
## When developing the package
|
||||||
|
|
||||||
```
|
```
|
||||||
python setup.py develop
|
$ python setup.py develop
|
||||||
```
|
```
|
||||||
|
|
||||||
or
|
or
|
||||||
|
|
||||||
```
|
```
|
||||||
pip install -e .
|
$ pip install -e .
|
||||||
```
|
```
|
||||||
|
|
||||||
# Basic concepts
|
# Basic concepts
|
||||||
|
|
1
setup.py
1
setup.py
|
@ -13,6 +13,7 @@ setup(
|
||||||
author_email='quick1st97of@gmail.com',
|
author_email='quick1st97of@gmail.com',
|
||||||
install_requires=install_requires,
|
install_requires=install_requires,
|
||||||
url='https://github.com/Shunichi09/PythonLinearNonlinearControl',
|
url='https://github.com/Shunichi09/PythonLinearNonlinearControl',
|
||||||
|
license='MIT License',
|
||||||
packages=find_packages(exclude=('tests', 'scripts')),
|
packages=find_packages(exclude=('tests', 'scripts')),
|
||||||
setup_requires=setup_requires,
|
setup_requires=setup_requires,
|
||||||
test_suite='tests',
|
test_suite='tests',
|
||||||
|
|
Loading…
Reference in New Issue