Compare commits

..

2 Commits

Author SHA1 Message Date
Shunichi09 468ed73863 Fix wrong name 2021-05-28 14:37:23 +09:00
Shunichi09 c19f586ad8 Add pypi workflow 2021-05-28 14:35:06 +09:00
1 changed files with 13 additions and 7 deletions

View File

@ -17,8 +17,8 @@ Due to use only basic libralies (scipy, numpy), this library is easy to extend f
|:----------|:---------------: |:----------------:|:----------------:|:----------------:|:----------------:| |:----------|:---------------: |:----------------:|:----------------:|:----------------:|:----------------:|
| Linear Model Predictive Control (MPC) | ✓ | x | x | x | x | | Linear Model Predictive Control (MPC) | ✓ | x | x | x | x |
| Cross Entropy Method (CEM) | ✓ | ✓ | x | x | x | | Cross Entropy Method (CEM) | ✓ | ✓ | x | x | x |
| Model Predictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x | | Model Preidictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x |
| Model Predictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x | | Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x |
| Random Shooting Method (Random) | ✓ | ✓ | x | x | x | | Random Shooting Method (Random) | ✓ | ✓ | x | x | x |
| Iterative LQR (iLQR) | x | ✓ | x | ✓ | x | | Iterative LQR (iLQR) | x | ✓ | x | ✓ | x |
| Differential Dynamic Programming (DDP) | x | ✓ | x | ✓ | ✓ | | Differential Dynamic Programming (DDP) | x | ✓ | x | ✓ | ✓ |
@ -36,10 +36,10 @@ Following algorithms are implemented in PythonLinearNonlinearControl
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114) - [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765) - Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
- [script](PythonLinearNonlinearControl/controllers/cem.py) - [script](PythonLinearNonlinearControl/controllers/cem.py)
- [Model Predictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652) - [Model Preidictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652. - Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
- [script](PythonLinearNonlinearControl/controllers/mppi.py) - [script](PythonLinearNonlinearControl/controllers/mppi.py)
- [Model Predictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202) - [Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
- Ref: Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., & Theodorou, E. A. (2017, May). Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1714-1721). IEEE. - Ref: Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., & Theodorou, E. A. (2017, May). Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1714-1721). IEEE.
- [script](PythonLinearNonlinearControl/controllers/mppi_williams.py) - [script](PythonLinearNonlinearControl/controllers/mppi_williams.py)
- [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114) - [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114)
@ -83,19 +83,25 @@ You could know abount our environmets more in [Environments.md](Environments.md)
## To install this package ## To install this package
``` ```
$ pip install PythonLinearNonlinearControl python setup.py install
```
or
```
pip install .
``` ```
## When developing the package ## When developing the package
``` ```
$ python setup.py develop python setup.py develop
``` ```
or or
``` ```
$ pip install -e . pip install -e .
``` ```
# Basic concepts # Basic concepts