import pytest import numpy as np from PythonLinearNonlinearControl.models.two_wheeled import TwoWheeledModel from PythonLinearNonlinearControl.configs.two_wheeled \ import TwoWheeledConfigModule class TestTwoWheeledModel(): """ """ def test_step(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) curr_x = np.ones(config.STATE_SIZE) curr_x[-1] = np.pi / 6. u = np.ones((1, config.INPUT_SIZE)) next_x = two_wheeled_model.predict_traj(curr_x, u) pos_x = np.cos(curr_x[-1]) * u[0, 0] * config.DT + curr_x[0] pos_y = np.sin(curr_x[-1]) * u[0, 0] * config.DT + curr_x[1] expected = np.array([[1., 1., np.pi / 6.], [pos_x, pos_y, curr_x[-1] + u[0, 1] * config.DT]]) assert next_x == pytest.approx(expected) def test_predict_traj(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) curr_x = np.ones(config.STATE_SIZE) curr_x[-1] = np.pi / 6. u = np.ones((1, config.INPUT_SIZE)) pred_xs = two_wheeled_model.predict_traj(curr_x, u) u = np.tile(u, (1, 1, 1)) pred_xs_alltogether = two_wheeled_model.predict_traj(curr_x, u)[0] assert pred_xs_alltogether == pytest.approx(pred_xs) def test_gradient_state(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) xs = np.ones((1, config.STATE_SIZE)) xs[0, -1] = np.pi / 6. us = np.ones((1, config.INPUT_SIZE)) grad = two_wheeled_model.calc_f_x(xs, us, config.DT) # expected cost expected_grad = np.zeros((1, config.STATE_SIZE, config.STATE_SIZE)) eps = 1e-4 for i in range(config.STATE_SIZE): tmp_x = xs.copy() tmp_x[0, i] = xs[0, i] + eps forward = \ two_wheeled_model.predict_next_state(tmp_x[0], us[0]) tmp_x = xs.copy() tmp_x[0, i] = xs[0, i] - eps backward = \ two_wheeled_model.predict_next_state(tmp_x[0], us[0]) expected_grad[0, :, i] = (forward - backward) / (2. * eps) assert grad == pytest.approx(expected_grad) def test_gradient_input(self): config = TwoWheeledConfigModule() two_wheeled_model = TwoWheeledModel(config) xs = np.ones((1, config.STATE_SIZE)) xs[0, -1] = np.pi / 6. us = np.ones((1, config.INPUT_SIZE)) grad = two_wheeled_model.calc_f_u(xs, us, config.DT) # expected cost expected_grad = np.zeros((1, config.STATE_SIZE, config.INPUT_SIZE)) eps = 1e-4 for i in range(config.INPUT_SIZE): tmp_u = us.copy() tmp_u[0, i] = us[0, i] + eps forward = \ two_wheeled_model.predict_next_state(xs[0], tmp_u[0]) tmp_u = us.copy() tmp_u[0, i] = us[0, i] - eps backward = \ two_wheeled_model.predict_next_state(xs[0], tmp_u[0]) expected_grad[0, :, i] = (forward - backward) / (2. * eps) assert grad == pytest.approx(expected_grad)