import numpy as np import matplotlib.pyplot as plt import math class SampleSystem(): """SampleSystem Attributes ----------- """ def __init__(self, init_x_1=0., init_x_2=0.): """ Palameters ----------- """ self.x_1 = init_x_1 self.x_2 = init_x_2 self.history_x_1 = [init_x_1] self.history_x_2 = [init_x_2] def update_state(self, u, dt=0.01): """ Palameters ------------ u : float input of system in some cases this means the reference dt : float in seconds, optional sampling time of simulation, default is 0.01 [s] """ # for theta 1, theta 1 dot, theta 2, theta 2 dot k0 = [0.0 for _ in range(2)] k1 = [0.0 for _ in range(2)] k2 = [0.0 for _ in range(2)] k3 = [0.0 for _ in range(2)] functions = [self._func_x_1, self._func_x_2] # solve Runge-Kutta for i, func in enumerate(functions): k0[i] = dt * func(self.x_1, self.x_2, u) for i, func in enumerate(functions): k1[i] = dt * func(self.x_1 + k0[0]/2., self.x_2 + k0[1]/2., u) for i, func in enumerate(functions): k2[i] = dt * func(self.x_1 + k1[0]/2., self.x_2 + k1[1]/2., u) for i, func in enumerate(functions): k3[i] = dt * func(self.x_1 + k2[0], self.x_2 + k2[1], u) self.x_1 += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6. self.x_2 += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6. # save self.history_x_1.append(self.x_1) self.history_x_2.append(self.x_2) def _func_x_1(self, y_1, y_2, u): """ Parameters ------------ """ y_dot = y_2 return y_dot def _func_x_2(self, y_1, y_2, u): """ Parameters ------------ """ y_dot = (1. - y_1**2 - y_2**2) * y_2 - y_1 + u return y_dot class NMPCSimulatorSystem(): """SimulatorSystem for nmpc Attributes ----------- """ def __init__(self): """ Parameters ----------- """ pass def calc_predict_and_adjoint_state(self, x_1, x_2, us, N, dt): """main Parameters ------------ Returns -------- x_1s : x_2s : lam_1s : lam_2s : """ x_1s, x_2s = self._calc_predict_states(x_1, x_2, us, N, dt) lam_1s, lam_2s = self._calc_adjoint_states(x_1s, x_2s, us, N, dt) return x_1s, x_2s, lam_1s, lam_2s def _calc_predict_states(self, x_1, x_2, us, N, dt): """ Parameters ------------ predict_t : float predict time dt : float sampling time """ # initial state x_1s = [x_1] x_2s = [x_2] for i in range(N): temp_x_1, temp_x_2 = self._predict_state_with_oylar(x_1s[i], x_2s[i], us[i], dt) x_1s.append(temp_x_1) x_2s.append(temp_x_2) return x_1s, x_2s def _calc_adjoint_states(self, x_1s, x_2s, us, N, dt): """ Parameters ------------ predict_t : float predict time dt : float sampling time """ # final state # final_state_func lam_1s = [x_1s[-1]] lam_2s = [x_2s[-1]] for i in range(N-1, 0, -1): temp_lam_1, temp_lam_2 = self._adjoint_state_with_oylar(x_1s[i], x_2s[i], lam_1s[0] ,lam_2s[0], us[i], dt) lam_1s.insert(0, temp_lam_1) lam_2s.insert(0, temp_lam_2) return lam_1s, lam_2s def final_state_func(self): """this func usually need """ pass def _predict_state_with_oylar(self, x_1, x_2, u, dt): """in this case this function is the same as simulatoe Parameters ------------ u : float input of system in some cases this means the reference dt : float in seconds sampling time of simulation, default is 0.01 [s] """ # for theta 1, theta 1 dot, theta 2, theta 2 dot k0 = [0. for _ in range(2)] functions = [self.func_x_1, self.func_x_2] # solve Runge-Kutta for i, func in enumerate(functions): k0[i] = dt * func(x_1, x_2, u) next_x_1 = x_1 + k0[0] next_x_2 = x_2 + k0[1] return next_x_1, next_x_2 def func_x_1(self, y_1, y_2, u): """ Parameters ------------ """ y_dot = y_2 return y_dot def func_x_2(self, y_1, y_2, u): """ Parameters ------------ """ y_dot = (1. - y_1**2 - y_2**2) * y_2 - y_1 + u return y_dot def _adjoint_state_with_oylar(self, x_1, x_2, lam_1, lam_2, u, dt): """ """ # for theta 1, theta 1 dot, theta 2, theta 2 dot k0 = [0. for _ in range(2)] functions = [self._func_lam_1, self._func_lam_2] # solve Runge-Kutta for i, func in enumerate(functions): k0[i] = dt * func(x_1, x_2, lam_1, lam_2, u) next_lam_1 = lam_1 + k0[0] next_lam_2 = lam_2 + k0[1] return next_lam_1, next_lam_2 def _func_lam_1(self, y_1, y_2, y_3, y_4, u): """ """ y_dot = y_1 - (2. * y_1 * y_2 + 1.) * y_4 return y_dot def _func_lam_2(self, y_1, y_2, y_3, y_4, u): """ """ y_dot = y_2 + y_3 + (-3. * (y_2**2) - y_1**2 + 1. ) * y_4 return y_dot class NMPCController_with_CGMRES(): """ Attributes ------------ """ def __init__(self): """ Parameters ----------- """ # parameters self.zeta = 100. # 安定化ゲイン self.ht = 0.01 # 差分近似の幅 self.tf = 1. # 最終時間 self.alpha = 0.5 # 時間の上昇ゲイン self.N = 10 # 分割数 self.threshold = 0.001 # break値 self.input_num = 3 # dummy, 制約条件に対するuにも合わせた入力の数 self.max_iteration = self.input_num * self.N # simulator self.simulator = NMPCSimulatorSystem() # initial self.us = np.zeros(self.N) self.dummy_us = np.ones(self.N) * 0.49 self.raws = np.ones(self.N) * 0.011 # for fig self.history_u = [] self.history_dummy_u = [] self.history_raw = [] self.history_f = [] def calc_input(self, x_1, x_2, time): """ """ dt = self.tf * (1. - np.exp(-self.alpha * time)) / float(self.N) # x_dot x_1_dot = self.simulator.func_x_1(x_1, x_2, self.us[0]) x_2_dot = self.simulator.func_x_2(x_1, x_2, self.us[0]) dx_1 = x_1_dot * self.ht dx_2 = x_2_dot * self.ht x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, self.us, self.N, dt) # Fxt Fxt = self.calc_f(x_1s, x_2s, lam_1s, lam_2s, self.us, self.dummy_us, self.raws, self.N, dt) # F x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, self.us, self.N, dt) F = self.calc_f(x_1s, x_2s, lam_1s, lam_2s, self.us, self.dummy_us, self.raws, self.N, dt) right = -self.zeta * F - ((Fxt - F) / self.ht) # dus du = self.us * self.ht ddummy_u = self.dummy_us * self.ht draw = self.raws * self.ht x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, self.us + du, self.N, dt) Fuxt = self.calc_f(x_1s, x_2s, lam_1s, lam_2s, self.us + du, self.dummy_us + ddummy_u, self.raws + draw, self.N, dt) left = ((Fuxt - Fxt) / self.ht) # calculationg cgmres r0 = right - left r0_norm = np.linalg.norm(r0) vs = np.zeros((self.max_iteration, self.max_iteration + 1)) # 数×iterarion回数 vs[:, 0] = r0 / r0_norm hs = np.zeros((self.max_iteration + 1, self.max_iteration + 1)) e = np.zeros((self.max_iteration + 1, 1)) # in this case the state is 3(u and dummy_u) e[0] = 1. for i in range(self.max_iteration): du = vs[::3, i] * self.ht ddummy_u = vs[1::3, i] * self.ht draw = vs[2::3, i] * self.ht x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, self.us + du, self.N, dt) Fuxt = self.calc_f(x_1s, x_2s, lam_1s, lam_2s, self.us + du, self.dummy_us + ddummy_u, self.raws + draw, self.N, dt) Av = (( Fuxt - Fxt) / self.ht) sum_Av = np.zeros(self.max_iteration) for j in range(i + 1): hs[j, i] = np.dot(Av, vs[:, j]) sum_Av = sum_Av + hs[j, i] * vs[:, j] v_est = Av - sum_Av hs[i+1, i] = np.linalg.norm(v_est) vs[:, i+1] = v_est / hs[i+1, i] # print("v_est = {0}".format(v_est)) inv_hs = np.linalg.pinv(hs[:i+1, :i]) ys = np.dot(inv_hs, r0_norm * e[:i+1]) # print("ys = {0}".format(ys)) judge_value = r0_norm * e[:i+1] - np.dot(hs[:i+1, :i], ys[:i]) if np.linalg.norm(judge_value) < self.threshold or i == self.max_iteration-1: update_value = np.dot(vs[:, :i-1], ys_pre[:i-1]).flatten() du_new = du + update_value[::3] ddummy_u_new = du + update_value[1::3] draw_new = du + update_value[2::3] break ys_pre = ys # update self.us += du_new * self.ht self.dummy_us += ddummy_u_new * self.ht self.raws += draw_new * self.ht x_1s, x_2s, lam_1s, lam_2s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, self.us, self.N, dt) F = self.calc_f(x_1s, x_2s, lam_1s, lam_2s, self.us, self.dummy_us, self.raws, self.N, dt) print("check F = {0}".format(np.linalg.norm(F))) # for save self.history_f.append(np.linalg.norm(F)) self.history_u.append(self.us[0]) self.history_dummy_u.append(self.dummy_us[0]) self.history_raw.append(self.raws[0]) return self.us def calc_f(self, x_1s, x_2s, lam_1s, lam_2s, us, dummy_us, raws, N, dt): """ここはケースによって変えるめっちゃ使う """ F = [] for i in range(N): F.append(us[i] + lam_2s[i] + 2. * raws[i] * us[i]) F.append(-0.01 + 2. * raws[i] * dummy_us[i]) F.append(us[i]**2 + dummy_us[i]**2 - 0.5**2) return np.array(F) def main(): # simulation time dt = 0.01 iteration_time = 20. iteration_num = int(iteration_time/dt) # plant plant_system = SampleSystem(init_x_1=2., init_x_2=0.) # controller controller = NMPCController_with_CGMRES() # for i in range(iteration_num) for i in range(1, iteration_num): time = float(i) * dt x_1 = plant_system.x_1 x_2 = plant_system.x_2 # make input us = controller.calc_input(x_1, x_2, time) # update state plant_system.update_state(us[0]) # figure fig = plt.figure() x_1_fig = fig.add_subplot(321) x_2_fig = fig.add_subplot(322) u_fig = fig.add_subplot(323) dummy_fig = fig.add_subplot(324) raw_fig = fig.add_subplot(325) f_fig = fig.add_subplot(326) x_1_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_1) x_2_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_2) u_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_u) dummy_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_dummy_u) raw_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_raw) f_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_f) plt.show() if __name__ == "__main__": main()