import numpy as np import matplotlib.pyplot as plt import math class TwoWheeledSystem(): """SampleSystem, this is the simulator Attributes ----------- x_1 : float system state 1 x_2 : float system state 2 history_x_1 : list time history of system state 1 (x_1) history_x_2 : list time history of system state 2 (x_2) """ def __init__(self, init_x_1=0., init_x_2=0., init_x_3=0.): """ Palameters ----------- init_x_1 : float, optional initial value of x_1, default is 0. init_x_2 : float, optional initial value of x_2, default is 0. init_x_3 : float, optional initial value of x_3, default is 0. """ self.x_1 = init_x_1 self.x_2 = init_x_2 self.x_3 = init_x_3 self.history_x_1 = [init_x_1] self.history_x_2 = [init_x_2] self.history_x_3 = [init_x_3] def update_state(self, u_1, u_2, dt=0.01): """ Palameters ------------ u_1 : float input of system in some cases this means the reference, u_velocity u_2 : float input of system in some cases this means the reference, u_omega dt : float in seconds, optional sampling time of simulation, default is 0.01 [s] """ # for theta 1, theta 1 dot, theta 2, theta 2 dot k0 = [0.0 for _ in range(3)] k1 = [0.0 for _ in range(3)] k2 = [0.0 for _ in range(3)] k3 = [0.0 for _ in range(3)] functions = [self._func_x_1, self._func_x_2, self._func_x_3] # solve Runge-Kutta for i, func in enumerate(functions): k0[i] = dt * func(self.x_1, self.x_2, self.x_3, u_1, u_2) for i, func in enumerate(functions): k1[i] = dt * func(self.x_1 + k0[0]/2., self.x_2 + k0[1]/2., self.x_3 + k0[2]/2., u_1, u_2) for i, func in enumerate(functions): k2[i] = dt * func(self.x_1 + k1[0]/2., self.x_2 + k1[1]/2., self.x_3 + k1[2]/2., u_1, u_2) for i, func in enumerate(functions): k3[i] = dt * func(self.x_1 + k2[0], self.x_2 + k2[1], self.x_3 + k2[2], u_1, u_2) self.x_1 += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6. self.x_2 += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6. self.x_3 += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6. # save self.history_x_1.append(self.x_1) self.history_x_2.append(self.x_2) self.history_x_3.append(self.x_3) def _func_x_1(self, y_1, y_2, y_3, u_1, u_2): """ Parameters ------------ y_1 : float y_2 : float y_3 : float u_1 : float system input u_2 : float system input """ y_dot = math.cos(y_3) * u_1 return y_dot def _func_x_2(self, y_1, y_2, y_3, u_1, u_2): """ Parameters ------------ y_1 : float y_2 : float y_3 : float u_1 : float system input u_2 : float system input """ y_dot = math.sin(y_3) * u_1 return y_dot def _func_x_3(self, y_1, y_2, y_3, u_1, u_2): """ Parameters ------------ y_1 : float y_2 : float y_3 : float u_1 : float system input u_2 : float system input """ y_dot = u_2 return y_dot class NMPCSimulatorSystem(): """SimulatorSystem for nmpc, this is the simulator of nmpc the reason why I seperate the real simulator and nmpc's simulator is sometimes the modeling error, disturbance can include in real simulator Attributes ----------- None """ def __init__(self): """ Parameters ----------- None """ pass def calc_predict_and_adjoint_state(self, x_1, x_2, x_3, u_1s, u_2s, N, dt): """main Parameters ------------ x_1 : float current state x_2 : float current state x_3 : float current state u_1s : list of float estimated optimal input Us for N steps u_2s : list of float estimated optimal input Us for N steps N : int predict step dt : float sampling time Returns -------- x_1s : list of float predicted x_1s for N steps x_2s : list of float predicted x_2s for N steps x_3s : list of float predicted x_3s for N steps lam_1s : list of float adjoint state of x_1s, lam_1s for N steps lam_2s : list of float adjoint state of x_2s, lam_2s for N steps lam_3s : list of float adjoint state of x_3s, lam_3s for N steps """ x_1s, x_2s, x_3s = self._calc_predict_states(x_1, x_2, x_3, u_1s, u_2s, N, dt) # by usin state equation lam_1s, lam_2s, lam_3s = self._calc_adjoint_states(x_1s, x_2s, x_3s, u_1s, u_2s, N, dt) # by using adjoint equation return x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s def _calc_predict_states(self, x_1, x_2, x_3, u_1s, u_2s, N, dt): """ Parameters ------------ x_1 : float current state x_2 : float current state x_3 : float current state u_1s : list of float estimated optimal input Us for N steps u_2s : list of float estimated optimal input Us for N steps N : int predict step dt : float sampling time Returns -------- x_1s : list of float predicted x_1s for N steps x_2s : list of float predicted x_2s for N steps x_3s : list of float predicted x_3s for N steps """ # initial state x_1s = [x_1] x_2s = [x_2] x_3s = [x_3] for i in range(N): temp_x_1, temp_x_2, temp_x_3 = self._predict_state_with_oylar(x_1s[i], x_2s[i], x_3s[i], u_1s[i], u_2s[i], dt) x_1s.append(temp_x_1) x_2s.append(temp_x_2) x_3s.append(temp_x_3) return x_1s, x_2s, x_3s def _calc_adjoint_states(self, x_1s, x_2s, x_3s, u_1s, u_2s, N, dt): """ Parameters ------------ x_1s : list of float predicted x_1s for N steps x_2s : list of float predicted x_2s for N steps x_3s : list of float predicted x_3s for N steps u_1s : list of float estimated optimal input Us for N steps u_2s : list of float estimated optimal input Us for N steps N : int predict step dt : float sampling time Returns -------- lam_1s : list of float adjoint state of x_1s, lam_1s for N steps lam_2s : list of float adjoint state of x_2s, lam_2s for N steps lam_3s : list of float adjoint state of x_2s, lam_2s for N steps """ # final state # final_state_func lam_1s = [x_1s[-1]] lam_2s = [x_2s[-1]] lam_3s = [x_3s[-1]] for i in range(N-1, 0, -1): temp_lam_1, temp_lam_2, temp_lam_3 = self._adjoint_state_with_oylar(x_1s[i], x_2s[i], x_3s[i], lam_1s[0] ,lam_2s[0], lam_3s[0], u_1s[i], u_2s[i], dt) lam_1s.insert(0, temp_lam_1) lam_2s.insert(0, temp_lam_2) lam_3s.insert(0, temp_lam_3) return lam_1s, lam_2s, lam_3s def final_state_func(self): """this func usually need """ pass def _predict_state_with_oylar(self, x_1, x_2, x_3, u_1, u_2, dt): """in this case this function is the same as simulator Parameters ------------ x_1 : float system state x_2 : float system state x_3 : float system state u_1 : float system input u_2 : float system input dt : float in seconds sampling time Returns -------- next_x_1 : float next state, x_1 calculated by using state equation next_x_2 : float next state, x_2 calculated by using state equation next_x_3 : float next state, x_3 calculated by using state equation """ k0 = [0. for _ in range(3)] functions = [self.func_x_1, self.func_x_2, self.func_x_3] for i, func in enumerate(functions): k0[i] = dt * func(x_1, x_2, x_3, u_1, u_2) next_x_1 = x_1 + k0[0] next_x_2 = x_2 + k0[1] next_x_3 = x_3 + k0[2] return next_x_1, next_x_2, next_x_3 def func_x_1(self, y_1, y_2, y_3, u_1, u_2): """ Parameters ------------ y_1 : float y_2 : float y_3 : float u_1 : float system input u_2 : float system input """ y_dot = math.cos(y_3) * u_1 return y_dot def func_x_2(self, y_1, y_2, y_3, u_1, u_2): """ Parameters ------------ y_1 : float y_2 : float y_3 : float u_1 : float system input u_2 : float system input """ y_dot = math.sin(y_3) * u_1 return y_dot def func_x_3(self, y_1, y_2, y_3, u_1, u_2): """ Parameters ------------ y_1 : float y_2 : float y_3 : float u_1 : float system input u_2 : float system input """ y_dot = u_2 return y_dot def _adjoint_state_with_oylar(self, x_1, x_2, x_3, lam_1, lam_2, lam_3, u_1, u_2, dt): """ Parameters ------------ x_1 : float system state x_2 : float system state x_3 : float system state lam_1 : float adjoint state lam_2 : float adjoint state lam_3 : float adjoint state u_1 : float system input u_2 : float system input dt : float in seconds sampling time Returns -------- pre_lam_1 : float pre, 1 step before lam_1 calculated by using adjoint equation pre_lam_2 : float pre, 1 step before lam_2 calculated by using adjoint equation pre_lam_3 : float pre, 1 step before lam_3 calculated by using adjoint equation """ k0 = [0. for _ in range(3)] functions = [self._func_lam_1, self._func_lam_2, self._func_lam_3] for i, func in enumerate(functions): k0[i] = dt * func(x_1, x_2, x_3, lam_1, lam_2, lam_3, u_1, u_2) pre_lam_1 = lam_1 + k0[0] pre_lam_2 = lam_2 + k0[1] pre_lam_3 = lam_3 + k0[2] return pre_lam_1, pre_lam_2, pre_lam_3 def _func_lam_1(self, y_1, y_2, y_3, y_4, y_5, y_6, u_1, u_2): """calculating -\dot{lam_1} Parameters ------------ y_1 : float means x_1 y_2 : float means x_2 y_3 : float means x_3 y_4 : float means lam_1 y_5 : float means lam_2 y_6 : float means lam_3 u_1 : float means system input u_2 : float means system input Returns --------- y_dot : float means -\dot{lam_1} """ y_dot = 0. return y_dot def _func_lam_2(self, y_1, y_2, y_3, y_4, y_5, y_6, u_1, u_2): """calculating -\dot{lam_2} Parameters ------------ y_1 : float means x_1 y_2 : float means x_2 y_3 : float means x_3 y_4 : float means lam_1 y_5 : float means lam_2 y_6 : float means lam_3 u_1 : float means system input u_2 : float means system input Returns --------- y_dot : float means -\dot{lam_2} """ y_dot = 0. return y_dot def _func_lam_3(self, y_1, y_2, y_3, y_4, y_5, y_6, u_1, u_2): """calculating -\dot{lam_3} Parameters ------------ y_1 : float means x_1 y_2 : float means x_2 y_3 : float means x_3 y_4 : float means lam_1 y_5 : float means lam_2 y_6 : float means lam_3 u_1 : float means system input u_2 : float means system input Returns --------- y_dot : float means -\dot{lam_3} """ y_dot = - y_4 * math.sin(y_3) * u_1 + y_5 * math.cos(y_3) * u_1 return y_dot class NMPCController_with_CGMRES(): """ Attributes ------------ zeta : float gain of optimal answer stability ht : float update value of NMPC this should be decided by zeta tf : float predict time alpha : float gain of predict time N : int predicte step, discritize value threshold : float cgmres's threshold value input_num : int system input length, this should include dummy u and constraint variables max_iteration : int decide by the solved matrix size simulator : NMPCSimulatorSystem class u_1s : list of float estimated optimal system input u_2s : list of float estimated optimal system input dummy_u_1s : list of float estimated dummy input dummy_u_2s : list of float estimated dummy input raw_1s : list of float estimated constraint variable raw_2s : list of float estimated constraint variable history_u_1 : list of float time history of actual system input history_u_2 : list of float time history of actual system input history_dummy_u_1 : list of float time history of actual dummy u_1 history_dummy_u_2 : list of float time history of actual dummy u_2 history_raw_1 : list of float time history of actual raw_1 history_raw_2 : list of float time history of actual raw_2 history_f : list of float time history of error of optimal """ def __init__(self): """ Parameters ----------- None """ # parameters self.zeta = 100. # 安定化ゲイン self.ht = 0.01 # 差分近似の幅 self.tf = 1. # 最終時間 self.alpha = 0.5 # 時間の上昇ゲイン self.N = 10 # 分割数 self.threshold = 0.001 # break値 self.input_num = 6 # dummy, 制約条件に対するuにも合わせた入力の数 self.max_iteration = self.input_num * self.N # simulator self.simulator = NMPCSimulatorSystem() # initial self.u_1s = np.ones(self.N) * 1. self.u_2s = np.ones(self.N) * 0.1 self.dummy_u_1s = np.ones(self.N) * 0.1 self.dummy_u_2s = np.ones(self.N) * 2.5 self.raw_1s = np.ones(self.N) * 0.8 self.raw_2s = np.ones(self.N) * 0.8 # for fig self.history_u_1 = [] self.history_u_2 = [] self.history_dummy_u_1 = [] self.history_dummy_u_2 = [] self.history_raw_1 = [] self.history_raw_2 = [] self.history_f = [] def calc_input(self, x_1, x_2, x_3, time): """ Parameters ------------ x_1 : float current state x_2 : float current state x_3 : float current state time : float in seconds now time Returns -------- u_1s : list of float estimated optimal system input u_2s : list of float estimated optimal system input """ # calculating sampling time dt = self.tf * (1. - np.exp(-self.alpha * time)) / float(self.N) # x_dot x_1_dot = self.simulator.func_x_1(x_1, x_2, x_3, self.u_1s[0], self.u_2s[0]) x_2_dot = self.simulator.func_x_2(x_1, x_2, x_3, self.u_1s[0], self.u_2s[0]) x_3_dot = self.simulator.func_x_3(x_1, x_2, x_3, self.u_1s[0], self.u_2s[0]) dx_1 = x_1_dot * self.ht dx_2 = x_2_dot * self.ht dx_3 = x_3_dot * self.ht x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, self.u_1s, self.u_2s, self.N, dt) # Fxt Fxt = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s, self.u_1s, self.u_2s, self.dummy_u_1s, self.dummy_u_2s, self.raw_1s, self.raw_2s, self.N, dt) # F x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, x_3, self.u_1s, self.u_2s, self.N, dt) F = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s, self.u_1s, self.u_2s, self.dummy_u_1s, self.dummy_u_2s, self.raw_1s, self.raw_2s, self.N, dt) right = -self.zeta * F - ((Fxt - F) / self.ht) du_1 = self.u_1s * self.ht du_2 = self.u_2s * self.ht ddummy_u_1 = self.dummy_u_1s * self.ht ddummy_u_2 = self.dummy_u_2s * self.ht draw_1 = self.raw_1s * self.ht draw_2 = self.raw_2s * self.ht x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, self.u_1s + du_1, self.u_2s + du_2, self.N, dt) Fuxt = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s, self.u_1s + du_1, self.u_2s + du_2, self.dummy_u_1s + ddummy_u_1, self.dummy_u_2s + ddummy_u_2, self.raw_1s + draw_1, self.raw_2s + draw_2, self.N, dt) left = ((Fuxt - Fxt) / self.ht) # calculationg cgmres r0 = right - left r0_norm = np.linalg.norm(r0) vs = np.zeros((self.max_iteration, self.max_iteration + 1)) # 数×iterarion回数 vs[:, 0] = r0 / r0_norm # 最初の基底を算出 hs = np.zeros((self.max_iteration + 1, self.max_iteration + 1)) e = np.zeros((self.max_iteration + 1, 1)) # in this case the state is 3(u and dummy_u) e[0] = 1. for i in range(self.max_iteration): du_1 = vs[::self.input_num, i] * self.ht du_2 = vs[1::self.input_num, i] * self.ht ddummy_u_1 = vs[2::self.input_num, i] * self.ht ddummy_u_2 = vs[3::self.input_num, i] * self.ht draw_1 = vs[4::self.input_num, i] * self.ht draw_2 = vs[5::self.input_num, i] * self.ht x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(x_1 + dx_1, x_2 + dx_2, x_3 + dx_3, self.u_1s + du_1, self.u_2s + du_2, self.N, dt) Fuxt = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s, self.u_1s + du_1, self.u_2s + du_2, self.dummy_u_1s + ddummy_u_1, self.dummy_u_2s + ddummy_u_2, self.raw_1s + draw_1, self.raw_2s + draw_2, self.N, dt) Av = (( Fuxt - Fxt) / self.ht) sum_Av = np.zeros(self.max_iteration) for j in range(i + 1): # グラムシュミットの直交化法です、和を取って差分を取って算出します hs[j, i] = np.dot(Av, vs[:, j]) sum_Av = sum_Av + hs[j, i] * vs[:, j] v_est = Av - sum_Av hs[i+1, i] = np.linalg.norm(v_est) vs[:, i+1] = v_est / hs[i+1, i] inv_hs = np.linalg.pinv(hs[:i+1, :i]) # この辺は教科書(実時間の方)にのっています ys = np.dot(inv_hs, r0_norm * e[:i+1]) judge_value = r0_norm * e[:i+1] - np.dot(hs[:i+1, :i], ys[:i]) if np.linalg.norm(judge_value) < self.threshold or i == self.max_iteration-1: update_value = np.dot(vs[:, :i-1], ys_pre[:i-1]).flatten() du_1_new = du_1 + update_value[::self.input_num] du_2_new = du_2 + update_value[1::self.input_num] ddummy_u_1_new = ddummy_u_1 + update_value[2::self.input_num] ddummy_u_2_new = ddummy_u_2 + update_value[3::self.input_num] draw_1_new = draw_1 + update_value[4::self.input_num] draw_2_new = draw_2 + update_value[5::self.input_num] break ys_pre = ys # update self.u_1s += du_1_new * self.ht self.u_2s += du_2_new * self.ht self.dummy_u_1s += ddummy_u_1_new * self.ht self.dummy_u_2s += ddummy_u_2_new * self.ht self.raw_1s += draw_1_new * self.ht self.raw_2s += draw_2_new * self.ht x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s = self.simulator.calc_predict_and_adjoint_state(x_1, x_2, x_3, self.u_1s, self.u_2s, self.N, dt) F = self._calc_f(x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s, self.u_1s, self.u_2s, self.dummy_u_1s, self.dummy_u_2s, self.raw_1s, self.raw_2s, self.N, dt) print("check F = {0}".format(np.linalg.norm(F))) # for save self.history_f.append(np.linalg.norm(F)) self.history_u_1.append(self.u_1s[0]) self.history_u_2.append(self.u_2s[0]) self.history_dummy_u_1.append(self.dummy_u_1s[0]) self.history_dummy_u_2.append(self.dummy_u_2s[0]) self.history_raw_1.append(self.raw_1s[0]) self.history_raw_2.append(self.raw_2s[0]) return self.u_1s, self.u_2s def _calc_f(self, x_1s, x_2s, x_3s, lam_1s, lam_2s, lam_3s, u_1s, u_2s, dummy_u_1s, dummy_u_2s, raw_1s, raw_2s, N, dt): """ Parameters ------------ x_1s : list of float predicted x_1s for N steps x_2s : list of float predicted x_2s for N steps x_3s : list of float predicted x_3s for N steps lam_1s : list of float adjoint state of x_1s, lam_1s for N steps lam_2s : list of float adjoint state of x_2s, lam_2s for N steps lam_3s : list of float adjoint state of x_2s, lam_3s for N steps u_1s : list of float estimated optimal system input u_2s : list of float estimated optimal system input dummy_u_1s : list of float estimated dummy input dummy_u_2s : list of float estimated dummy input raw_1s : list of float estimated constraint variable raw_2s : list of float estimated constraint variable N : int predict time step dt : float sampling time of system """ F = [] for i in range(N): F.append(u_1s[i] + lam_1s[i] * math.cos(x_3s[i]) + lam_2s[i] * math.sin(x_3s[i]) + 2 * raw_1s[i] * u_1s[i]) F.append(u_2s[i] + lam_3s[i] + 2 * raw_2s[i] * u_2s[i]) F.append(-0.01 + 2. * raw_1s[i] * dummy_u_1s[i]) F.append(-0.01 + 2. * raw_2s[i] * dummy_u_2s[i]) F.append(u_1s[i]**2 + dummy_u_1s[i]**2 - 1.**2) F.append(u_2s[i]**2 + dummy_u_2s[i]**2 - 1.5**2) return np.array(F) def circle_make_with_angles(center_x, center_y, radius, angle): ''' Create circle matrix with angle line matrix Parameters ------- center_x : float the center x position of the circle center_y : float the center y position of the circle radius : float angle : float [rad] Returns ------- circle xs : numpy.ndarray circle ys : numpy.ndarray angle line xs : numpy.ndarray angle line ys : numpy.ndarray ''' point_num = 100 # 分解能 circle_xs = [] circle_ys = [] for i in range(point_num + 1): circle_xs.append(center_x + radius * math.cos(i*2*math.pi/point_num)) circle_ys.append(center_y + radius * math.sin(i*2*math.pi/point_num)) angle_line_xs = [center_x, center_x + math.cos(angle) * radius] angle_line_ys = [center_y, center_y + math.sin(angle) * radius] return np.array(circle_xs), np.array(circle_ys), np.array(angle_line_xs), np.array(angle_line_ys) def main(): # simulation time dt = 0.01 iteration_time = 15. iteration_num = int(iteration_time/dt) # plant plant_system = TwoWheeledSystem(init_x_1=-4.5, init_x_2=1.5, init_x_3=0.25) # controller controller = NMPCController_with_CGMRES() # for i in range(iteration_num) for i in range(1, iteration_num): time = float(i) * dt x_1 = plant_system.x_1 x_2 = plant_system.x_2 x_3 = plant_system.x_3 # make input u_1s, u_2s = controller.calc_input(x_1, x_2, x_3, time) # update state plant_system.update_state(u_1s[0], u_2s[0]) # figure # time history fig_p = plt.figure() fig_u = plt.figure() fig_f = plt.figure() # traj fig_t = plt.figure() fig_traj = fig_t.add_subplot(111) fig_traj.set_aspect('equal') x_1_fig = fig_p.add_subplot(311) x_2_fig = fig_p.add_subplot(312) x_3_fig = fig_p.add_subplot(313) u_1_fig = fig_u.add_subplot(411) u_2_fig = fig_u.add_subplot(412) dummy_1_fig = fig_u.add_subplot(413) dummy_2_fig = fig_u.add_subplot(414) raw_1_fig = fig_f.add_subplot(311) raw_2_fig = fig_f.add_subplot(312) f_fig = fig_f.add_subplot(313) x_1_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_1) x_1_fig.set_xlabel("time [s]") x_1_fig.set_ylabel("x_1") x_2_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_2) x_2_fig.set_xlabel("time [s]") x_2_fig.set_ylabel("x_2") x_3_fig.plot(np.arange(iteration_num)*dt, plant_system.history_x_3) x_3_fig.set_xlabel("time [s]") x_3_fig.set_ylabel("x_3") u_1_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_u_1) u_1_fig.set_xlabel("time [s]") u_1_fig.set_ylabel("u_v") u_2_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_u_2) u_2_fig.set_xlabel("time [s]") u_2_fig.set_ylabel("u_omega") dummy_1_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_dummy_u_1) dummy_1_fig.set_xlabel("time [s]") dummy_1_fig.set_ylabel("dummy u_1") dummy_2_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_dummy_u_2) dummy_2_fig.set_xlabel("time [s]") dummy_2_fig.set_ylabel("dummy u_2") raw_1_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_raw_1) raw_1_fig.set_xlabel("time [s]") raw_1_fig.set_ylabel("raw_1") raw_2_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_raw_2) raw_2_fig.set_xlabel("time [s]") raw_2_fig.set_ylabel("raw_2") f_fig.plot(np.arange(iteration_num - 1)*dt, controller.history_f) f_fig.set_xlabel("time [s]") f_fig.set_ylabel("optimal error") fig_traj.plot(plant_system.history_x_1, plant_system.history_x_2, color="b", linestyle="dashed") fig_traj.set_xlabel("x [m]") fig_traj.set_ylabel("y [m]") write_obj_num = 5 count_num = int(iteration_num / write_obj_num) for i in np.arange(0, iteration_num, count_num): obj_xs, obj_ys, obj_line_xs, obj_line_ys = circle_make_with_angles(plant_system.history_x_1[i], plant_system.history_x_2[i], 0.5, plant_system.history_x_3[i]) fig_traj.plot(obj_xs, obj_ys, color="k") fig_traj.plot(obj_line_xs, obj_line_ys, color="k") fig_p.tight_layout() fig_u.tight_layout() fig_f.tight_layout() plt.show() if __name__ == "__main__": main()