import numpy as np import matplotlib.pyplot as plt import math import copy from mpc_func_with_scipy import MpcController as MpcController_scipy from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt from control import matlab class FirstOrderSystem(): """FirstOrderSystemWithStates Attributes ----------- xs : numpy.ndarray system states A : numpy.ndarray system matrix B : numpy.ndarray control matrix C : numpy.ndarray observation matrix history_xs : list time history of state """ def __init__(self, A, B, C, D=None, init_states=None): """ Parameters ----------- A : numpy.ndarray system matrix B : numpy.ndarray control matrix C : numpy.ndarray observation matrix D : numpy.ndarray directly matrix init_state : float, optional initial state of system default is None history_xs : list time history of system states """ self.A = A self.B = B self.C = C if D is not None: self.D = D self.xs = np.zeros(self.A.shape[0]) if init_states is not None: self.xs = copy.deepcopy(init_states) self.history_xs = [init_states] def update_state(self, u, dt=0.01): """calculating input Parameters ------------ u : numpy.ndarray inputs of system in some cases this means the reference dt : float in seconds, optional sampling time of simulation, default is 0.01 [s] """ temp_x = self.xs.reshape(-1, 1) temp_u = u.reshape(-1, 1) # solve Runge-Kutta k0 = dt * (np.dot(self.A, temp_x) + np.dot(self.B, temp_u)) k1 = dt * (np.dot(self.A, temp_x + k0/2.) + np.dot(self.B, temp_u)) k2 = dt * (np.dot(self.A, temp_x + k1/2.) + np.dot(self.B, temp_u)) k3 = dt * (np.dot(self.A, temp_x + k2) + np.dot(self.B, temp_u)) self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten() # for oylar # self.xs += k0.flatten() # print("xs = {0}".format(self.xs)) # save save_states = copy.deepcopy(self.xs) self.history_xs.append(save_states) def main(): dt = 0.05 simulation_time = 30 # in seconds iteration_num = int(simulation_time / dt) # you must be care about this matrix # these A and B are for continuos system if you want to use discret system matrix please skip this step tau = 0.63 A = np.array([[-1./tau, 0., 0., 0.], [0., -1./tau, 0., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) B = np.array([[1./tau, 0.], [0., 1./tau], [0., 0.], [0., 0.]]) C = np.eye(4) D = np.zeros((4, 2)) # make simulator with coninuous matrix init_xs = np.array([0., 0., 0., 0.]) plant = FirstOrderSystem(A, B, C, init_states=init_xs) # create system sysc = matlab.ss(A, B, C, D) # discrete system sysd = matlab.c2d(sysc, dt) Ad = sysd.A Bd = sysd.B print(Ad) print(Bd) input() # evaluation function weight Q = np.diag([1., 1., 1., 1.]) R = np.diag([1., 1.]) pre_step = 10 # make controller with discreted matrix # please check the solver, if you want to use the scipy, set the MpcController_scipy controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step, dt_input_upper=np.array([0.25 * dt, 0.25 * dt]), dt_input_lower=np.array([-0.5 * dt, -0.5 * dt]), input_upper=np.array([1. ,3.]), input_lower=np.array([-1., -3.])) controller.initialize_controller() for i in range(iteration_num): print("simulation time = {0}".format(i)) reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten() states = plant.xs opt_u = controller.calc_input(states, reference) plant.update_state(opt_u, dt=dt) history_states = np.array(plant.history_xs) time_history_fig = plt.figure() x_fig = time_history_fig.add_subplot(411) y_fig = time_history_fig.add_subplot(412) v_x_fig = time_history_fig.add_subplot(413) v_y_fig = time_history_fig.add_subplot(414) v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 0]) v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed") v_x_fig.set_xlabel("time [s]") v_x_fig.set_ylabel("v_x") v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 1]) v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed") v_y_fig.set_xlabel("time [s]") v_y_fig.set_ylabel("v_y") x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 2]) x_fig.plot(np.arange(0, simulation_time+0.01, dt), [-5. for _ in range(iteration_num+1)], linestyle="dashed") x_fig.set_xlabel("time [s]") x_fig.set_ylabel("x") y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 3]) y_fig.plot(np.arange(0, simulation_time+0.01, dt), [7.5 for _ in range(iteration_num+1)], linestyle="dashed") y_fig.set_xlabel("time [s]") y_fig.set_ylabel("y") time_history_fig.tight_layout() plt.show() history_us = np.array(controller.history_us) input_history_fig = plt.figure() u_1_fig = input_history_fig.add_subplot(211) u_2_fig = input_history_fig.add_subplot(212) u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us[:, 0]) u_1_fig.set_xlabel("time [s]") u_1_fig.set_ylabel("u_x") u_2_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us[:, 1]) u_2_fig.set_xlabel("time [s]") u_2_fig.set_ylabel("u_y") input_history_fig.tight_layout() plt.show() if __name__ == "__main__": main()