import numpy as np import matplotlib.pyplot as plt import math import copy from mpc_func import MpcController from control import matlab class FirstOrderSystem(): """FirstOrderSystemWithStates Attributes ----------- states : float system states A : numpy.ndarray system matrix B : numpy.ndarray control matrix C : numpy.ndarray observation matrix history_state : list time history of state """ def __init__(self, A, B, C, D=None, init_states=None): """ Parameters ----------- A : numpy.ndarray system matrix B : numpy.ndarray control matrix C : numpy.ndarray observation matrix C : numpy.ndarray directly matrix init_state : float, optional initial state of system default is None history_xs : list time history of system states """ self.A = A self.B = B self.C = C if D is not None: self.D = D self.xs = np.zeros(self.A.shape[0]) if init_states is not None: self.xs = copy.deepcopy(init_states) self.history_xs = [init_states] def update_state(self, u, dt=0.01): """calculating input Parameters ------------ u : float input of system in some cases this means the reference dt : float in seconds, optional sampling time of simulation, default is 0.01 [s] """ temp_x = self.xs.reshape(-1, 1) temp_u = u.reshape(-1, 1) # solve Runge-Kutta k0 = dt * (np.dot(self.A, temp_x) + np.dot(self.B, temp_u)) k1 = dt * (np.dot(self.A, temp_x + k0/2.) + np.dot(self.B, temp_u)) k2 = dt * (np.dot(self.A, temp_x + k1/2.) + np.dot(self.B, temp_u)) k3 = dt * (np.dot(self.A, temp_x + k2) + np.dot(self.B, temp_u)) # self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten() # for oylar self.xs += k0.flatten() # print("xs = {0}".format(self.xs)) # a = input() # save save_states = copy.deepcopy(self.xs) self.history_xs.append(save_states) # print(self.history_xs) def main(): dt = 0.01 simulation_time = 300 # in seconds iteration_num = int(simulation_time / dt) # you must be care about this matrix # these A and B are for continuos system if you want to use discret system matrix please skip this step tau = 0.63 A = np.array([[-1./tau, 0., 0., 0.], [0., -1./tau, 0., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.]]) B = np.array([[1./tau, 0.], [0., 1./tau], [0., 0.], [0., 0.]]) C = np.eye(4) D = np.zeros((4, 2)) # make simulator with coninuous matrix init_xs = np.array([0., 0., -3000., 50.]) plant = FirstOrderSystem(A, B, C, init_states=init_xs) # create system sysc = matlab.ss(A, B, C, D) # discrete system sysd = matlab.c2d(sysc, dt) Ad = sysd.A Bd = sysd.B # evaluation function weight Q = np.diag([1., 1., 1., 1.]) R = np.diag([100., 100.]) pre_step = 3 # make controller with discreted matrix controller = MpcController(Ad, Bd, Q, R, pre_step) controller.initialize_controller() for i in range(iteration_num): print("simulation time = {0}".format(i)) reference = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) controller.calc_input(plant.xs, reference) states = plant.xs opt_u = controller.calc_input(states, reference) plant.update_state(opt_u) history_states = np.array(plant.history_xs) print(history_states[:, 2]) plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 0]) plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 1]) plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 2], linestyle="dashed") plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 3]) plt.show() if __name__ == "__main__": main()