PythonLinearNonlinearControl/PythonLinearNonlinearControl/envs/nonlinear_sample_system.py

98 lines
2.7 KiB
Python

import numpy as np
import scipy
from scipy import integrate
from .env import Env
from ..common.utils import update_state_with_Runge_Kutta
class NonlinearSampleSystemEnv(Env):
""" Nonlinear Sample Env
"""
def __init__(self):
"""
"""
self.config = {"state_size": 2,
"input_size": 1,
"dt": 0.01,
"max_step": 2000,
"input_lower_bound": [-0.5],
"input_upper_bound": [0.5],
}
super(NonlinearSampleSystemEnv, self).__init__(self.config)
def reset(self, init_x=np.array([2., 0.])):
""" reset state
Returns:
init_x (numpy.ndarray): initial state, shape(state_size, )
info (dict): information
"""
self.step_count = 0
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
self.curr_x = init_x
# goal
self.g_x = np.array([0., 0.])
# clear memory
self.history_x = []
self.history_g_x = []
return self.curr_x, {"goal_state": self.g_x}
def step(self, u):
"""
Args:
u (numpy.ndarray) : input, shape(input_size, )
Returns:
next_x (numpy.ndarray): next state, shape(state_size, )
cost (float): costs
done (bool): end the simulation or not
info (dict): information
"""
# clip action
u = np.clip(u,
self.config["input_lower_bound"],
self.config["input_upper_bound"])
functions = [self._func_x_1, self._func_x_2]
next_x = update_state_with_Runge_Kutta(self.curr_x, u,
functions, self.config["dt"],
batch=False)
# cost
cost = 0
cost = np.sum(u**2)
cost += np.sum((self.curr_x - self.g_x)**2)
# save history
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
# update
self.curr_x = next_x.flatten()
# update costs
self.step_count += 1
return next_x.flatten(), cost, \
self.step_count > self.config["max_step"], \
{"goal_state": self.g_x}
def _func_x_1(self, x, u):
x_dot = x[1]
return x_dot
def _func_x_2(self, x, u):
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
return x_dot
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
"""
"""
raise ValueError("NonlinearSampleSystemEnv does not have animation")