PythonLinearNonlinearControl/PythonLinearNonlinearControl/models/cartpole.py

213 lines
7.8 KiB
Python

import numpy as np
from .model import Model
class CartPoleModel(Model):
""" cartpole model
"""
def __init__(self, config):
"""
"""
super(CartPoleModel, self).__init__()
self.dt = config.DT
self.mc = config.MC
self.mp = config.MP
self.l = config.L
self.g = config.G
def predict_next_state(self, curr_x, u):
""" predict next state
Args:
curr_x (numpy.ndarray): current state, shape(state_size, ) or
shape(pop_size, state_size)
u (numpy.ndarray): input, shape(input_size, ) or
shape(pop_size, input_size)
Returns:
next_x (numpy.ndarray): next state, shape(state_size, ) or
shape(pop_size, state_size)
"""
if len(u.shape) == 1:
# x
d_x0 = curr_x[1]
# v_x
d_x1 = (u[0] + self.mp * np.sin(curr_x[2]) \
* (self.l * (curr_x[3]**2) \
+ self.g * np.cos(curr_x[2]))) \
/ (self.mc + self.mp * (np.sin(curr_x[2])**2))
# theta
d_x2 = curr_x[3]
# v_theta
d_x3 = (-u[0] * np.cos(curr_x[2]) \
- self.mp * self.l * (curr_x[3]**2) \
* np.cos(curr_x[2]) * np.sin(curr_x[2]) \
- (self.mc + self.mp) * self.g * np.sin(curr_x[2])) \
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
next_x = curr_x +\
np.array([d_x0, d_x1, d_x2, d_x3]) * self.dt
return next_x
elif len(u.shape) == 2:
# x
d_x0 = curr_x[:, 1]
# v_x
d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2]) \
* (self.l * (curr_x[:, 3]**2) \
+ self.g * np.cos(curr_x[:, 2]))) \
/ (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
# theta
d_x2 = curr_x[:, 3]
# v_theta
d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2]) \
- self.mp * self.l * (curr_x[:, 3]**2) \
* np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2]) \
- (self.mc + self.mp) * self.g * np.sin(curr_x[:, 2])) \
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
next_x = curr_x +\
np.stack((d_x0, d_x1, d_x2, d_x3), axis=1) * self.dt
return next_x
def calc_f_x(self, xs, us, dt):
""" gradient of model with respect to the state in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_x (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size)
Notes:
This should be discrete form !!
"""
# get size
(_, state_size) = xs.shape
(pred_len, _) = us.shape
f_x = np.zeros((pred_len, state_size, state_size))
# f_x_dot
f_x[:, 0, 1] = np.ones(pred_len)
# f_theta
tmp = ((self.mc + self.mp * np.sin(xs[:, 2])**2)**(-2)) \
* self.mp * 2. * np.sin(xs[:, 2]) * np.cos(xs[:, 2])
tmp2 = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
f_x[:, 1, 2] = - us[:, 0] * tmp \
- tmp * (self.mp * np.sin(xs[:, 2]) \
* (self.l * xs[:, 3]**2 \
+ self.g * np.cos(xs[:, 2]))) \
+ tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l \
* xs[:, 3]**2 \
+ self.mp * self.g * (np.cos(xs[:, 2])**2 \
- np.sin(xs[:, 2])**2))
f_x[:, 3, 2] = - 1. / self.l * tmp \
* (-us[:, 0] * np.cos(xs[:, 2]) \
- self.mp * self.l * (xs[:, 3]**2) \
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]) \
- (self.mc + self.mp) * self.g * np.sin(xs[:, 2])) \
+ 1. / self.l * tmp2 \
* (us[:, 0] * np.sin(xs[:, 2]) \
- self.mp * self.l * xs[:, 3]**2 \
* (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2) \
- (self.mc + self.mp) \
* self.g * np.cos(xs[:, 2]))
# f_theta_dot
f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2]) \
* self.l * 2 * xs[:, 3])
f_x[:, 2, 3] = np.ones(pred_len)
f_x[:, 3, 3] = 1. / self.l * tmp2 \
* (-2. * self.mp * self.l * xs[:, 3] \
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]))
return f_x * dt + np.eye(state_size) # to discrete form
def calc_f_u(self, xs, us, dt):
""" gradient of model with respect to the input in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_u (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size)
Notes:
This should be discrete form !!
"""
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_u = np.zeros((pred_len, state_size, input_size))
f_u[:, 1, 0] = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
f_u[:, 3, 0] = -np.cos(xs[:, 2]) \
/ (self.l * (self.mc \
+ self.mp * (np.sin(xs[:, 2])**2)))
return f_u * dt # to discrete form
def calc_f_xx(self, xs, us, dt):
""" hessian of model with respect to the state in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_xx (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, state_size, state_size)
"""
# get size
(_, state_size) = xs.shape
(pred_len, _) = us.shape
f_xx = np.zeros((pred_len, state_size, state_size, state_size))
raise NotImplementedError
def calc_f_ux(self, xs, us, dt):
""" hessian of model with respect to state and input in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_ux (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, state_size)
"""
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
raise NotImplementedError
def calc_f_uu(self, xs, us, dt):
""" hessian of model with respect to input in batch form
Args:
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
us (numpy.ndarray): input, shape(pred_len, input_size,)
Return:
f_uu (numpy.ndarray): gradient of model with respect to x,
shape(pred_len, state_size, input_size, input_size)
"""
# get size
(_, state_size) = xs.shape
(pred_len, input_size) = us.shape
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
raise NotImplementedError