PythonLinearNonlinearControl/tests/configs/test_cartpole.py

181 lines
5.7 KiB
Python

import pytest
import numpy as np
from PythonLinearNonlinearControl.configs.cartpole \
import CartPoleConfigModule
class TestCalcCost():
def test_calc_costs(self):
# make config
config = CartPoleConfigModule()
# set
pred_len = 5
state_size = 4
input_size = 1
pop_size = 2
pred_xs = np.ones((pop_size, pred_len, state_size))
g_xs = np.ones((pop_size, pred_len, state_size)) * 0.5
input_samples = np.ones((pop_size, pred_len, input_size)) * 0.5
costs = config.input_cost_fn(input_samples)
assert costs.shape == (pop_size, pred_len, input_size)
costs = config.state_cost_fn(pred_xs, g_xs)
assert costs.shape == (pop_size, pred_len, 1)
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
g_xs[:, -1, :])
assert costs.shape == (pop_size, 1)
class TestGradient():
def test_state_gradient(self):
"""
"""
xs = np.ones((1, 4))
cost_grad = CartPoleConfigModule.gradient_cost_fn_with_state(xs, None)
# numeric grad
eps = 1e-4
expected_grad = np.zeros((1, 4))
for i in range(4):
tmp_x = xs.copy()
tmp_x[0, i] = xs[0, i] + eps
forward = \
CartPoleConfigModule.state_cost_fn(tmp_x, None)
tmp_x = xs.copy()
tmp_x[0, i] = xs[0, i] - eps
backward = \
CartPoleConfigModule.state_cost_fn(tmp_x, None)
expected_grad[0, i] = (forward - backward) / (2. * eps)
assert cost_grad == pytest.approx(expected_grad)
def test_terminal_state_gradient(self):
"""
"""
xs = np.ones(4)
cost_grad =\
CartPoleConfigModule.gradient_cost_fn_with_state(xs, None,
terminal=True)
# numeric grad
eps = 1e-4
expected_grad = np.zeros((1, 4))
for i in range(4):
tmp_x = xs.copy()
tmp_x[i] = xs[i] + eps
forward = \
CartPoleConfigModule.state_cost_fn(tmp_x, None)
tmp_x = xs.copy()
tmp_x[i] = xs[i] - eps
backward = \
CartPoleConfigModule.state_cost_fn(tmp_x, None)
expected_grad[0, i] = (forward - backward) / (2. * eps)
assert cost_grad == pytest.approx(expected_grad)
def test_input_gradient(self):
"""
"""
us = np.ones((1, 1))
cost_grad = CartPoleConfigModule.gradient_cost_fn_with_input(None, us)
# numeric grad
eps = 1e-4
expected_grad = np.zeros((1, 1))
for i in range(1):
tmp_u = us.copy()
tmp_u[0, i] = us[0, i] + eps
forward = \
CartPoleConfigModule.input_cost_fn(tmp_u)
tmp_u = us.copy()
tmp_u[0, i] = us[0, i] - eps
backward = \
CartPoleConfigModule.input_cost_fn(tmp_u)
expected_grad[0, i] = (forward - backward) / (2. * eps)
assert cost_grad == pytest.approx(expected_grad)
def test_state_hessian(self):
"""
"""
xs = np.ones((1, 4))
cost_hess = CartPoleConfigModule.hessian_cost_fn_with_state(xs, None)
# numeric grad
eps = 1e-4
expected_hess = np.zeros((1, 4, 4))
for i in range(4):
tmp_x = xs.copy()
tmp_x[0, i] = xs[0, i] + eps
forward = \
CartPoleConfigModule.gradient_cost_fn_with_state(
tmp_x, None, terminal=False)
tmp_x = xs.copy()
tmp_x[0, i] = xs[0, i] - eps
backward = \
CartPoleConfigModule.gradient_cost_fn_with_state(
tmp_x, None, terminal=False)
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
assert cost_hess == pytest.approx(expected_hess)
def test_terminal_state_hessian(self):
"""
"""
xs = np.ones(4)
cost_hess =\
CartPoleConfigModule.hessian_cost_fn_with_state(xs, None,
terminal=True)
# numeric grad
eps = 1e-4
expected_hess = np.zeros((1, 4, 4))
for i in range(4):
tmp_x = xs.copy()
tmp_x[i] = xs[i] + eps
forward = \
CartPoleConfigModule.gradient_cost_fn_with_state(
tmp_x, None, terminal=True)
tmp_x = xs.copy()
tmp_x[i] = xs[i] - eps
backward = \
CartPoleConfigModule.gradient_cost_fn_with_state(
tmp_x, None, terminal=True)
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
assert cost_hess == pytest.approx(expected_hess)
def test_input_hessian(self):
"""
"""
us = np.ones((1, 1))
xs = np.ones((1, 4))
cost_hess = CartPoleConfigModule.hessian_cost_fn_with_input(us, xs)
# numeric grad
eps = 1e-4
expected_hess = np.zeros((1, 1, 1))
for i in range(1):
tmp_u = us.copy()
tmp_u[0, i] = us[0, i] + eps
forward = \
CartPoleConfigModule.gradient_cost_fn_with_input(
xs, tmp_u)
tmp_u = us.copy()
tmp_u[0, i] = us[0, i] - eps
backward = \
CartPoleConfigModule.gradient_cost_fn_with_input(
xs, tmp_u)
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
assert cost_hess == pytest.approx(expected_hess)