PythonLinearNonlinearControl/mpc/basic_IOC/main_example.py

184 lines
5.9 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import math
import copy
from mpc_func_with_scipy import MpcController as MpcController_scipy
from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
from control import matlab
class FirstOrderSystem():
"""FirstOrderSystemWithStates
Attributes
-----------
xs : numpy.ndarray
system states
A : numpy.ndarray
system matrix
B : numpy.ndarray
control matrix
C : numpy.ndarray
observation matrix
history_xs : list
time history of state
"""
def __init__(self, A, B, C, D=None, init_states=None):
"""
Parameters
-----------
A : numpy.ndarray
system matrix
B : numpy.ndarray
control matrix
C : numpy.ndarray
observation matrix
D : numpy.ndarray
directly matrix
init_state : float, optional
initial state of system default is None
history_xs : list
time history of system states
"""
self.A = A
self.B = B
self.C = C
if D is not None:
self.D = D
self.xs = np.zeros(self.A.shape[0])
if init_states is not None:
self.xs = copy.deepcopy(init_states)
self.history_xs = [init_states]
def update_state(self, u, dt=0.01):
"""calculating input
Parameters
------------
u : numpy.ndarray
inputs of system in some cases this means the reference
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
temp_x = self.xs.reshape(-1, 1)
temp_u = u.reshape(-1, 1)
# solve Runge-Kutta
k0 = dt * (np.dot(self.A, temp_x) + np.dot(self.B, temp_u))
k1 = dt * (np.dot(self.A, temp_x + k0/2.) + np.dot(self.B, temp_u))
k2 = dt * (np.dot(self.A, temp_x + k1/2.) + np.dot(self.B, temp_u))
k3 = dt * (np.dot(self.A, temp_x + k2) + np.dot(self.B, temp_u))
self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten()
# for oylar
# self.xs += k0.flatten()
# print("xs = {0}".format(self.xs))
# save
save_states = copy.deepcopy(self.xs)
self.history_xs.append(save_states)
def main():
dt = 0.05
simulation_time = 30 # in seconds
iteration_num = int(simulation_time / dt)
# you must be care about this matrix
# these A and B are for continuos system if you want to use discret system matrix please skip this step
tau = 0.63
A = np.array([[-1./tau, 0., 0., 0.],
[0., -1./tau, 0., 0.],
[1., 0., 0., 0.],
[0., 1., 0., 0.]])
B = np.array([[1./tau, 0.],
[0., 1./tau],
[0., 0.],
[0., 0.]])
C = np.eye(4)
D = np.zeros((4, 2))
# make simulator with coninuous matrix
init_xs = np.array([0., 0., 0., 0.])
plant = FirstOrderSystem(A, B, C, init_states=init_xs)
# create system
sysc = matlab.ss(A, B, C, D)
# discrete system
sysd = matlab.c2d(sysc, dt)
Ad = sysd.A
Bd = sysd.B
# evaluation function weight
Q = np.diag([1., 1., 1., 1.])
R = np.diag([1., 1.])
pre_step = 10
# make controller with discreted matrix
# please check the solver, if you want to use the scipy, set the MpcController_scipy
controller = MpcController_cvxopt(Ad, Bd, Q, R, pre_step,
dt_input_upper=np.array([0.25 * dt, 0.25 * dt]), dt_input_lower=np.array([-0.5 * dt, -0.5 * dt]),
input_upper=np.array([1. ,3.]), input_lower=np.array([-1., -3.]))
controller.initialize_controller()
for i in range(iteration_num):
print("simulation time = {0}".format(i))
reference = np.array([[0., 0., -5., 7.5] for _ in range(pre_step)]).flatten()
states = plant.xs
opt_u = controller.calc_input(states, reference)
plant.update_state(opt_u, dt=dt)
history_states = np.array(plant.history_xs)
time_history_fig = plt.figure()
x_fig = time_history_fig.add_subplot(411)
y_fig = time_history_fig.add_subplot(412)
v_x_fig = time_history_fig.add_subplot(413)
v_y_fig = time_history_fig.add_subplot(414)
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 0])
v_x_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
v_x_fig.set_xlabel("time [s]")
v_x_fig.set_ylabel("v_x")
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 1])
v_y_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
v_y_fig.set_xlabel("time [s]")
v_y_fig.set_ylabel("v_y")
x_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 2])
x_fig.plot(np.arange(0, simulation_time+0.01, dt), [-5. for _ in range(iteration_num+1)], linestyle="dashed")
x_fig.set_xlabel("time [s]")
x_fig.set_ylabel("x")
y_fig.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 3])
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [7.5 for _ in range(iteration_num+1)], linestyle="dashed")
y_fig.set_xlabel("time [s]")
y_fig.set_ylabel("y")
time_history_fig.tight_layout()
plt.show()
history_us = np.array(controller.history_us)
input_history_fig = plt.figure()
u_1_fig = input_history_fig.add_subplot(211)
u_2_fig = input_history_fig.add_subplot(212)
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us[:, 0])
u_1_fig.set_xlabel("time [s]")
u_1_fig.set_ylabel("u_x")
u_2_fig.plot(np.arange(0, simulation_time+0.01, dt), history_us[:, 1])
u_2_fig.set_xlabel("time [s]")
u_2_fig.set_ylabel("u_y")
input_history_fig.tight_layout()
plt.show()
if __name__ == "__main__":
main()