PythonLinearNonlinearControl/tests/env/test_cartpole.py

73 lines
2.4 KiB
Python

import pytest
import numpy as np
from PythonLinearNonlinearControl.envs.cartpole import CartPoleEnv
class TestCartPoleEnv():
"""
"""
def test_step(self):
env = CartPoleEnv()
curr_x = np.ones(4)
curr_x[2] = np.pi / 6.
env.reset(init_x=curr_x)
u = np.ones(1)
next_x, _, _, _ = env.step(u)
d_x0 = curr_x[1]
d_x1 = (1. + env.config["mp"] * np.sin(np.pi / 6.) \
* (env.config["l"] * (1.**2) \
+ env.config["g"] * np.cos(np.pi / 6.))) \
/ (env.config["mc"] + env.config["mp"] * np.sin(np.pi / 6.)**2)
d_x2 = curr_x[3]
d_x3 = (-1. * np.cos(np.pi / 6.) \
- env.config["mp"] * env.config["l"] * (1.**2) \
* np.cos(np.pi / 6.) * np.sin(np.pi / 6.) \
- (env.config["mp"] + env.config["mc"]) * env.config["g"] \
* np.sin(np.pi / 6.)) \
/ (env.config["l"] \
* (env.config["mc"] \
+ env.config["mp"] * np.sin(np.pi / 6.)**2))
expected = np.array([d_x0, d_x1, d_x2, d_x3]) * env.config["dt"] \
+ curr_x
assert next_x == pytest.approx(expected, abs=1e-5)
def test_bound_step(self):
env = CartPoleEnv()
curr_x = np.ones(4)
curr_x[2] = np.pi / 6.
env.reset(init_x=curr_x)
u = np.ones(1) * 1e3
next_x, _, _, _ = env.step(u)
u = env.config["input_upper_bound"][0]
d_x0 = curr_x[1]
d_x1 = (u + env.config["mp"] * np.sin(np.pi / 6.) \
* (env.config["l"] * (1.**2) \
+ env.config["g"] * np.cos(np.pi / 6.))) \
/ (env.config["mc"] + env.config["mp"] * np.sin(np.pi / 6.)**2)
d_x2 = curr_x[3]
d_x3 = (-u * np.cos(np.pi / 6.) \
- env.config["mp"] * env.config["l"] * (1.**2) \
* np.cos(np.pi / 6.) * np.sin(np.pi / 6.) \
- (env.config["mp"] + env.config["mc"]) * env.config["g"] \
* np.sin(np.pi / 6.)) \
/ (env.config["l"] \
* (env.config["mc"] \
+ env.config["mp"] * np.sin(np.pi / 6.)**2))
expected = np.array([d_x0, d_x1, d_x2, d_x3]) * env.config["dt"] \
+ curr_x
assert next_x == pytest.approx(expected, abs=1e-5)