PythonLinearNonlinearControl/PythonLinearNonlinearControl/envs/two_wheeled.py

382 lines
13 KiB
Python

import numpy as np
from matplotlib.axes import Axes
import matplotlib.pyplot as plt
from .env import Env
from ..plotters.plot_objs import circle_with_angle, square, circle
def step_two_wheeled_env(curr_x, u, dt, method="Oylar"):
""" step two wheeled enviroment
Args:
curr_x (numpy.ndarray): current state, shape(state_size, )
u (numpy.ndarray): input, shape(input_size, )
dt (float): sampling time
Returns:
next_x (numpy.ndarray): next state, shape(state_size. )
Notes:
TODO: deal with another method, like Runge Kutta
"""
B = np.array([[np.cos(curr_x[-1]), 0.],
[np.sin(curr_x[-1]), 0.],
[0., 1.]])
x_dot = np.matmul(B, u[:, np.newaxis])
next_x = x_dot.flatten() * dt + curr_x
return next_x
class TwoWheeledConstEnv(Env):
""" Two wheeled robot with constant goal Env
"""
def __init__(self):
"""
"""
self.config = {"state_size" : 3,\
"input_size" : 2,\
"dt" : 0.01,\
"max_step" : 500,\
"input_lower_bound": (-1.5, -3.14),\
"input_upper_bound": (1.5, 3.14),\
"car_size": 0.2,\
"wheel_size": (0.075, 0.015)
}
super(TwoWheeledConstEnv, self).__init__(self.config)
def reset(self, init_x=None):
""" reset state
Returns:
init_x (numpy.ndarray): initial state, shape(state_size, )
info (dict): information
"""
self.step_count = 0
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
self.curr_x = init_x
# goal
self.g_x = np.array([2.5, 2.5, 0.])
# clear memory
self.history_x = []
self.history_g_x = []
return self.curr_x, {"goal_state": self.g_x}
def step(self, u):
""" step environments
Args:
u (numpy.ndarray) : input, shape(input_size, )
Returns:
next_x (numpy.ndarray): next state, shape(state_size, )
cost (float): costs
done (bool): end the simulation or not
info (dict): information
"""
# clip action
u = np.clip(u,
self.config["input_lower_bound"],
self.config["input_upper_bound"])
# step
next_x = step_two_wheeled_env(self.curr_x, u, self.config["dt"])
# TODO: costs
costs = 0.
costs += 0.1 * np.sum(u**2)
costs += np.sum(((self.curr_x - self.g_x)**2) * np.array([5., 5., 1.]))
# save history
self.history_x.append(next_x.flatten())
self.history_g_x.append(self.g_x.flatten())
# update
self.curr_x = next_x.flatten()
# update costs
self.step_count += 1
return next_x.flatten(), costs, \
self.step_count > self.config["max_step"], \
{"goal_state" : self.g_x}
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
""" plot cartpole object function
Args:
to_plot (axis or imgs): plotted objects
i (int): frame count
history_x (numpy.ndarray): history of state, shape(iters, state)
history_g_x (numpy.ndarray): history of goal state,
shape(iters, state)
Returns:
None or imgs : imgs order is ["cart_img", "pole_img"]
"""
if isinstance(to_plot, Axes):
imgs = {} # create new imgs
imgs["car"] = to_plot.plot([], [], c="k")[0]
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
imgs["right_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
imgs["goal"] = to_plot.plot([], [], marker="*",
c="b", markersize=10)[0]
imgs["traj"] = to_plot.plot([], [], c="b", linestyle="dashed")[0]
# set axis
to_plot.set_xlim([-1., 3.])
to_plot.set_ylim([-1., 3.])
return imgs
# set imgs
# car imgs
car_x, car_y, car_angle_x, car_angle_y, \
left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
self._plot_car(history_x[i])
to_plot["car"].set_data(car_x, car_y)
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
to_plot["right_tire"].set_data(right_tire_x, right_tire_y)
# goal and trajs
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
def _plot_car(self, curr_x):
""" plot car fucntions
"""
# cart
car_x, car_y, car_angle_x, car_angle_y = \
circle_with_angle(curr_x[0], curr_x[1],
self.config["car_size"], curr_x[2])
# left tire
center_x = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
center_y = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
left_tire_x, left_tire_y = \
square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
# right tire
center_x = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
center_y = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
right_tire_x, right_tire_y = \
square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
return car_x, car_y, car_angle_x, car_angle_y,\
left_tire_x, left_tire_y,\
right_tire_x, right_tire_y
class TwoWheeledTrackEnv(Env):
""" Two wheeled robot with constant goal Env
"""
def __init__(self):
"""
"""
self.config = {"state_size" : 3,\
"input_size" : 2,\
"dt" : 0.01,\
"max_step" : 1000,\
"input_lower_bound": (-1.5, -3.14),\
"input_upper_bound": (1.5, 3.14),\
"car_size": 0.2,\
"wheel_size": (0.075, 0.015)
}
super(TwoWheeledTrackEnv, self).__init__(self.config)
@staticmethod
def make_road(linelength=3., circle_radius=1.):
""" make track
Returns:
road (numpy.ndarray): road info, shape(n_point, 3) x, y, angle
"""
# line
# not include start points
line = np.linspace(-1.5, 1.5, num=51, endpoint=False)[1:]
line_1 = np.stack((line, np.zeros(50)), axis=1)
line_2 = np.stack((line[::-1], np.zeros(50)+circle_radius*2.), axis=1)
# circle
circle_1_x, circle_1_y = circle(linelength/2., circle_radius,
circle_radius, start=-np.pi/2., end=np.pi/2., n_point=50)
circle_1 = np.stack((circle_1_x , circle_1_y), axis=1)
circle_2_x, circle_2_y = circle(-linelength/2., circle_radius,
circle_radius, start=np.pi/2., end=3*np.pi/2., n_point=50)
circle_2 = np.stack((circle_2_x , circle_2_y), axis=1)
road_pos = np.concatenate((line_1, circle_1, line_2, circle_2), axis=0)
# calc road angle
road_diff = road_pos[1:] - road_pos[:-1]
road_angle = np.arctan2(road_diff[:, 1], road_diff[:, 0])
road_angle = np.concatenate((np.zeros(1), road_angle))
road = np.concatenate((road_pos, road_angle[:, np.newaxis]), axis=1)
return np.tile(road, (3, 1))
def reset(self, init_x=None):
""" reset state
Returns:
init_x (numpy.ndarray): initial state, shape(state_size, )
info (dict): information
"""
self.step_count = 0
self.curr_x = np.zeros(self.config["state_size"])
if init_x is not None:
self.curr_x = init_x
# goal
self.g_traj = self.make_road()
# clear memory
self.history_x = []
self.history_g_x = []
return self.curr_x, {"goal_state": self.g_traj}
def step(self, u):
""" step environments
Args:
u (numpy.ndarray) : input, shape(input_size, )
Returns:
next_x (numpy.ndarray): next state, shape(state_size, )
cost (float): costs
done (bool): end the simulation or not
info (dict): information
"""
# clip action
u = np.clip(u,
self.config["input_lower_bound"],
self.config["input_upper_bound"])
# step
next_x = step_two_wheeled_env(self.curr_x, u, self.config["dt"])
costs = 0.
costs += 0.1 * np.sum(u**2)
costs += np.min(np.linalg.norm(self.curr_x - self.g_traj, axis=1))
# save history
self.history_x.append(next_x.flatten())
# update
self.curr_x = next_x.flatten()
# update costs
self.step_count += 1
return next_x.flatten(), costs, \
self.step_count > self.config["max_step"], \
{"goal_state" : self.g_traj}
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
""" plot cartpole object function
Args:
to_plot (axis or imgs): plotted objects
i (int): frame count
history_x (numpy.ndarray): history of state, shape(iters, state)
history_g_x (numpy.ndarray): history of goal state,
shape(iters, state)
Returns:
None or imgs : imgs order is ["cart_img", "pole_img"]
"""
if isinstance(to_plot, Axes):
imgs = {} # create new imgs
imgs["car"] = to_plot.plot([], [], c="k")[0]
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
imgs["right_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
imgs["goal"] = to_plot.plot([], [], marker="*",
c="b", markersize=10)[0]
imgs["traj"] = to_plot.plot([], [], c="b", linestyle="dashed")[0]
# set axis
to_plot.set_xlim([-3., 3.])
to_plot.set_ylim([-1., 3.])
# plot road
to_plot.plot(self.g_traj[:, 0], self.g_traj[:, 1],
c="k", linestyle="dashed")
return imgs
# set imgs
# car imgs
car_x, car_y, car_angle_x, car_angle_y, \
left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
self._plot_car(history_x[i])
to_plot["car"].set_data(car_x, car_y)
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
to_plot["right_tire"].set_data(right_tire_x, right_tire_y)
# goal and trajs
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
def _plot_car(self, curr_x):
""" plot car fucntions
"""
# cart
car_x, car_y, car_angle_x, car_angle_y = \
circle_with_angle(curr_x[0], curr_x[1],
self.config["car_size"], curr_x[2])
# left tire
center_x = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
center_y = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
left_tire_x, left_tire_y = \
square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
# right tire
center_x = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
center_y = (self.config["car_size"] \
+ self.config["wheel_size"][1]) \
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
right_tire_x, right_tire_y = \
square(center_x, center_y,
self.config["wheel_size"], curr_x[2])
return car_x, car_y, car_angle_x, car_angle_y,\
left_tire_x, left_tire_y,\
right_tire_x, right_tire_y