144 lines
4.5 KiB
Python
144 lines
4.5 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
from PythonLinearNonlinearControl.configs.two_wheeled \
|
|
import TwoWheeledConfigModule
|
|
|
|
|
|
class TestCalcCost():
|
|
def test_calc_costs(self):
|
|
# make config
|
|
config = TwoWheeledConfigModule()
|
|
# set
|
|
pred_len = 5
|
|
state_size = 3
|
|
input_size = 2
|
|
pop_size = 2
|
|
pred_xs = np.ones((pop_size, pred_len, state_size))
|
|
g_xs = np.ones((pop_size, pred_len, state_size)) * 0.5
|
|
input_samples = np.ones((pop_size, pred_len, input_size)) * 0.5
|
|
|
|
costs = config.input_cost_fn(input_samples)
|
|
expected_costs = np.ones((pop_size, pred_len, input_size))*0.5
|
|
|
|
assert costs == pytest.approx(expected_costs**2 * np.diag(config.R))
|
|
|
|
costs = config.state_cost_fn(pred_xs, g_xs)
|
|
expected_costs = np.ones((pop_size, pred_len, state_size))*0.5
|
|
|
|
assert costs == pytest.approx(expected_costs**2 * np.diag(config.Q))
|
|
|
|
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],
|
|
g_xs[:, -1, :])
|
|
expected_costs = np.ones((pop_size, state_size))*0.5
|
|
|
|
assert costs == pytest.approx(expected_costs**2 * np.diag(config.Sf))
|
|
|
|
|
|
class TestGradient():
|
|
def test_state_gradient(self):
|
|
"""
|
|
"""
|
|
xs = np.ones((1, 3))
|
|
g_xs = np.ones((1, 3)) * 0.5
|
|
cost_grad =\
|
|
TwoWheeledConfigModule.gradient_cost_fn_state(xs, g_xs)
|
|
|
|
# numeric grad
|
|
eps = 1e-4
|
|
expected_grad = np.zeros((1, 3))
|
|
for i in range(3):
|
|
tmp_x = xs.copy()
|
|
tmp_x[0, i] = xs[0, i] + eps
|
|
forward = \
|
|
TwoWheeledConfigModule.state_cost_fn(tmp_x, g_xs)
|
|
forward = np.sum(forward)
|
|
tmp_x = xs.copy()
|
|
tmp_x[0, i] = xs[0, i] - eps
|
|
backward = \
|
|
TwoWheeledConfigModule.state_cost_fn(tmp_x, g_xs)
|
|
backward = np.sum(backward)
|
|
|
|
expected_grad[0, i] = (forward - backward) / (2. * eps)
|
|
|
|
assert cost_grad == pytest.approx(expected_grad)
|
|
|
|
def test_input_gradient(self):
|
|
"""
|
|
"""
|
|
us = np.ones((1, 2))
|
|
cost_grad =\
|
|
TwoWheeledConfigModule.gradient_cost_fn_input(None, us)
|
|
|
|
# numeric grad
|
|
eps = 1e-4
|
|
expected_grad = np.zeros((1, 2))
|
|
for i in range(2):
|
|
tmp_u = us.copy()
|
|
tmp_u[0, i] = us[0, i] + eps
|
|
forward = \
|
|
TwoWheeledConfigModule.input_cost_fn(tmp_u)
|
|
forward = np.sum(forward)
|
|
tmp_u = us.copy()
|
|
tmp_u[0, i] = us[0, i] - eps
|
|
backward = \
|
|
TwoWheeledConfigModule.input_cost_fn(tmp_u)
|
|
backward = np.sum(backward)
|
|
|
|
expected_grad[0, i] = (forward - backward) / (2. * eps)
|
|
|
|
assert cost_grad == pytest.approx(expected_grad)
|
|
|
|
def test_state_hessian(self):
|
|
"""
|
|
"""
|
|
g_xs = np.ones((1, 3)) * 0.5
|
|
xs = np.ones((1, 3))
|
|
cost_hess =\
|
|
TwoWheeledConfigModule.hessian_cost_fn_state(xs, g_xs)
|
|
|
|
# numeric grad
|
|
eps = 1e-4
|
|
expected_hess = np.zeros((1, 3, 3))
|
|
for i in range(3):
|
|
tmp_x = xs.copy()
|
|
tmp_x[0, i] = xs[0, i] + eps
|
|
forward = \
|
|
TwoWheeledConfigModule.gradient_cost_fn_state(
|
|
tmp_x, g_xs, terminal=False)
|
|
tmp_x = xs.copy()
|
|
tmp_x[0, i] = xs[0, i] - eps
|
|
backward = \
|
|
TwoWheeledConfigModule.gradient_cost_fn_state(
|
|
tmp_x, g_xs, terminal=False)
|
|
|
|
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
|
|
|
assert cost_hess == pytest.approx(expected_hess)
|
|
|
|
def test_input_hessian(self):
|
|
"""
|
|
"""
|
|
us = np.ones((1, 2))
|
|
xs = np.ones((1, 3))
|
|
cost_hess = TwoWheeledConfigModule.hessian_cost_fn_input(us, xs)
|
|
|
|
# numeric grad
|
|
eps = 1e-4
|
|
expected_hess = np.zeros((1, 2, 2))
|
|
for i in range(2):
|
|
tmp_u = us.copy()
|
|
tmp_u[0, i] = us[0, i] + eps
|
|
forward = \
|
|
TwoWheeledConfigModule.gradient_cost_fn_input(
|
|
xs, tmp_u)
|
|
tmp_u = us.copy()
|
|
tmp_u[0, i] = us[0, i] - eps
|
|
backward = \
|
|
TwoWheeledConfigModule.gradient_cost_fn_input(
|
|
xs, tmp_u)
|
|
|
|
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
|
|
|
assert cost_hess == pytest.approx(expected_hess)
|