PythonLinearNonlinearControl/iLQR/model.py

177 lines
5.3 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import math
import copy
"""
このWheeled modelはコントローラー用
ホントはbase作って、継承すべきですが省略
"""
class TwoWheeledCar():
"""SampleSystem, this is the simulator
Attributes
-----------
xs : numpy.ndarray
system states, [x, y, theta]
history_xs : list
time history of state
"""
def __init__(self, init_states=None):
"""
Palameters
-----------
init_state : float, optional, shape(3, )
initial state of system default is None
"""
self.STATE_SIZE = 3
self.INPUT_SIZE = 2
self.xs = np.zeros(3)
if init_states is not None:
self.xs = copy.deepcopy(init_states)
self.history_xs = [init_states]
self.history_predict_xs = []
def update_state(self, us, dt):
"""
Palameters
------------
us : numpy.ndarray
inputs of system in some cases this means the reference
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
# for theta 1, theta 1 dot, theta 2, theta 2 dot
k0 = [0.0 for _ in range(3)]
k1 = [0.0 for _ in range(3)]
k2 = [0.0 for _ in range(3)]
k3 = [0.0 for _ in range(3)]
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
# solve Runge-Kutta
for i, func in enumerate(functions):
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], us[0], us[1])
for i, func in enumerate(functions):
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
for i, func in enumerate(functions):
k2[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., us[0], us[1])
for i, func in enumerate(functions):
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], us[0], us[1])
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
# save
save_states = copy.deepcopy(self.xs)
self.history_xs.append(save_states)
return self.xs.copy()
def predict_state(self, init_xs, us, dt=0.01):
"""make predict state by using optimal input made by MPC
Paramaters
-----------
us : array-like, shape(2, N)
optimal input made by MPC
dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s]
"""
## test
# assert us.shape[0] == 2 and us.shape[1] == 15, "wrong shape"
xs = copy.deepcopy(init_xs)
predict_xs = [copy.deepcopy(xs)]
for i in range(us.shape[1]):
k0 = [0.0 for _ in range(self.NUM_STATE)]
k1 = [0.0 for _ in range(self.NUM_STATE)]
k2 = [0.0 for _ in range(self.NUM_STATE)]
k3 = [0.0 for _ in range(self.NUM_STATE)]
functions = [self._func_x_1, self._func_x_2, self._func_x_3]
# solve Runge-Kutta
for i, func in enumerate(functions):
k0[i] = dt * func(xs[0], xs[1], xs[2], us[0, i], us[1, i])
for i, func in enumerate(functions):
k1[i] = dt * func(xs[0] + k0[0]/2., xs[1] + k0[1]/2., xs[2] + k0[2]/2., us[0, i], us[1, i])
for i, func in enumerate(functions):
k2[i] = dt * func(xs[0] + k1[0]/2., xs[1] + k1[1]/2., xs[2] + k1[2]/2., us[0, i], us[1, i])
for i, func in enumerate(functions):
k3[i] = dt * func(xs[0] + k2[0], xs[1] + k2[1], xs[2] + k2[2], us[0, i], us[1, i])
xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
predict_xs.append(copy.deepcopy(xs))
self.history_predict_xs.append(np.array(predict_xs))
return np.array(predict_xs)
def initialize_state(self, init_xs):
"""
initialize the state
Parameters
------------
init_xs : numpy.ndarray
"""
self.xs = init_xs.flatten()
def _func_x_1(self, y_1, y_2, y_3, u_1, u_2):
"""
Parameters
------------
y_1 : float
y_2 : float
y_3 : float
u_1 : float
system input
u_2 : float
system input
"""
y_dot = math.cos(y_3) * u_1
return y_dot
def _func_x_2(self, y_1, y_2, y_3, u_1, u_2):
"""
Parameters
------------
y_1 : float
y_2 : float
y_3 : float
u_1 : float
system input
u_2 : float
system input
"""
y_dot = math.sin(y_3) * u_1
return y_dot
def _func_x_3(self, y_1, y_2, y_3, u_1, u_2):
"""
Parameters
------------
y_1 : float
y_2 : float
y_3 : float
u_1 : float
system input
u_2 : float
system input
"""
y_dot = u_2
return y_dot