Merge pull request #11 from Shunichi09/develop
Add nonlinear sample Env
This commit is contained in:
commit
0d443f7ed5
|
@ -6,6 +6,8 @@
|
||||||
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
|
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
|
||||||
| Two wheeled System (Moving Goal) (Coming soon) | x | ✓ | 3 | 2 |
|
| Two wheeled System (Moving Goal) (Coming soon) | x | ✓ | 3 | 2 |
|
||||||
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
|
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
|
||||||
|
| Nonlinear Sample System Env | x | ✓ | 2 | 1 |
|
||||||
|
|
||||||
|
|
||||||
## [FistOrderLagEnv](PythonLinearNonlinearControl/envs/first_order_lag.py)
|
## [FistOrderLagEnv](PythonLinearNonlinearControl/envs/first_order_lag.py)
|
||||||
|
|
||||||
|
@ -53,4 +55,14 @@ mc = 1, mp = 0.2, l = 0.5, g = 9.81
|
||||||
|
|
||||||
### Cost.
|
### Cost.
|
||||||
|
|
||||||
<img src="assets/cartpole_score.png" width="300">
|
<img src="assets/cartpole_score.png" width="300">
|
||||||
|
|
||||||
|
## [Nonlinear Sample System Env](PythonLinearNonlinearControl/envs/nonlinear_sample_system.py)
|
||||||
|
|
||||||
|
## System equation.
|
||||||
|
|
||||||
|
<img src="assets/nonlinear_sample_system.png" width="400">
|
||||||
|
|
||||||
|
### Cost.
|
||||||
|
|
||||||
|
<img src="assets/nonlinear_sample_system_score.png" width="400">
|
||||||
|
|
|
@ -1,8 +1,9 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def rotate_pos(pos, angle):
|
def rotate_pos(pos, angle):
|
||||||
""" Transformation the coordinate in the angle
|
""" Transformation the coordinate in the angle
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pos (numpy.ndarray): local state, shape(data_size, 2)
|
pos (numpy.ndarray): local state, shape(data_size, 2)
|
||||||
angle (float): rotate angle, in radians
|
angle (float): rotate angle, in radians
|
||||||
|
@ -14,9 +15,10 @@ def rotate_pos(pos, angle):
|
||||||
|
|
||||||
return np.dot(pos, rot_mat.T)
|
return np.dot(pos, rot_mat.T)
|
||||||
|
|
||||||
|
|
||||||
def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
|
def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
|
||||||
""" Check angle range and correct the range
|
""" Check angle range and correct the range
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
angle (numpy.ndarray): in radians
|
angle (numpy.ndarray): in radians
|
||||||
min_angle (float): maximum of range in radians, default -pi
|
min_angle (float): maximum of range in radians, default -pi
|
||||||
|
@ -29,7 +31,7 @@ def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
|
||||||
if (max_angle - min_angle) < 2.0 * np.pi:
|
if (max_angle - min_angle) < 2.0 * np.pi:
|
||||||
raise ValueError("difference between max_angle \
|
raise ValueError("difference between max_angle \
|
||||||
and min_angle must be greater than 2.0 * pi")
|
and min_angle must be greater than 2.0 * pi")
|
||||||
|
|
||||||
output = np.array(angles)
|
output = np.array(angles)
|
||||||
output_shape = output.shape
|
output_shape = output.shape
|
||||||
|
|
||||||
|
@ -41,4 +43,76 @@ def fit_angle_in_range(angles, min_angle=-np.pi, max_angle=np.pi):
|
||||||
output += min_angle
|
output += min_angle
|
||||||
|
|
||||||
output = np.minimum(max_angle, np.maximum(min_angle, output))
|
output = np.minimum(max_angle, np.maximum(min_angle, output))
|
||||||
return output.reshape(output_shape)
|
return output.reshape(output_shape)
|
||||||
|
|
||||||
|
|
||||||
|
def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
|
||||||
|
""" update state in Runge Kutta methods
|
||||||
|
Args:
|
||||||
|
state (array-like): state of system
|
||||||
|
u (array-like): input of system
|
||||||
|
functions (list): update function of each state,
|
||||||
|
each function will be called like func(state, u)
|
||||||
|
We expect that this function returns differential of each state
|
||||||
|
dt (float): float in seconds
|
||||||
|
batch (bool): state and u is given by batch or not
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
next_state (np.array): next state of system
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
sample of function is as follows:
|
||||||
|
|
||||||
|
def func_x(self, x_1, x_2, u):
|
||||||
|
x_dot = (1. - x_1**2 - x_2**2) * x_2 - x_1 + u
|
||||||
|
return x_dot
|
||||||
|
|
||||||
|
Note that the function return x_dot.
|
||||||
|
"""
|
||||||
|
if not batch:
|
||||||
|
state_size = len(state)
|
||||||
|
assert state_size == len(functions), \
|
||||||
|
"Invalid functions length, You need to give the state size functions"
|
||||||
|
|
||||||
|
k0 = np.zeros(state_size)
|
||||||
|
k1 = np.zeros(state_size)
|
||||||
|
k2 = np.zeros(state_size)
|
||||||
|
k3 = np.zeros(state_size)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k0[i] = dt * func(state, u)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k1[i] = dt * func(state + k0 / 2., u)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k2[i] = dt * func(state + k1 / 2., u)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k3[i] = dt * func(state + k2, u)
|
||||||
|
|
||||||
|
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||||
|
|
||||||
|
else:
|
||||||
|
batch_size, state_size = state.shape
|
||||||
|
assert state_size == len(functions), \
|
||||||
|
"Invalid functions length, You need to give the state size functions"
|
||||||
|
|
||||||
|
k0 = np.zeros((batch_size, state_size))
|
||||||
|
k1 = np.zeros((batch_size, state_size))
|
||||||
|
k2 = np.zeros((batch_size, state_size))
|
||||||
|
k3 = np.zeros((batch_size, state_size))
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k0[:, i] = dt * func(state, u)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k1[:, i] = dt * func(state + k0 / 2., u)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k2[:, i] = dt * func(state + k1 / 2., u)
|
||||||
|
|
||||||
|
for i, func in enumerate(functions):
|
||||||
|
k3[:, i] = dt * func(state + k2, u)
|
||||||
|
|
||||||
|
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class CartPoleConfigModule():
|
class CartPoleConfigModule():
|
||||||
# parameters
|
# parameters
|
||||||
ENV_NAME = "CartPole-v0"
|
ENV_NAME = "CartPole-v0"
|
||||||
|
@ -12,7 +13,7 @@ class CartPoleConfigModule():
|
||||||
DT = 0.02
|
DT = 0.02
|
||||||
# cost parameters
|
# cost parameters
|
||||||
R = np.diag([0.01]) # 0.01 is worked for MPPI and CEM and MPPIWilliams
|
R = np.diag([0.01]) # 0.01 is worked for MPPI and CEM and MPPIWilliams
|
||||||
# 1. is worked for iLQR
|
# 1. is worked for iLQR
|
||||||
TERMINAL_WEIGHT = 1.
|
TERMINAL_WEIGHT = 1.
|
||||||
Q = None
|
Q = None
|
||||||
Sf = None
|
Sf = None
|
||||||
|
@ -39,41 +40,41 @@ class CartPoleConfigModule():
|
||||||
"num_elites": 50,
|
"num_elites": 50,
|
||||||
"max_iters": 15,
|
"max_iters": 15,
|
||||||
"alpha": 0.3,
|
"alpha": 0.3,
|
||||||
"init_var":9.,
|
"init_var": 9.,
|
||||||
"threshold":0.001
|
"threshold": 0.001
|
||||||
},
|
},
|
||||||
"MPPI":{
|
"MPPI": {
|
||||||
"beta" : 0.6,
|
"beta": 0.6,
|
||||||
"popsize": 5000,
|
"popsize": 5000,
|
||||||
"kappa": 0.9,
|
"kappa": 0.9,
|
||||||
"noise_sigma": 0.5,
|
"noise_sigma": 0.5,
|
||||||
},
|
},
|
||||||
"MPPIWilliams":{
|
"MPPIWilliams": {
|
||||||
"popsize": 5000,
|
"popsize": 5000,
|
||||||
"lambda": 1.,
|
"lambda": 1.,
|
||||||
"noise_sigma": 0.9,
|
"noise_sigma": 0.9,
|
||||||
},
|
},
|
||||||
"iLQR":{
|
"iLQR": {
|
||||||
"max_iter": 500,
|
"max_iter": 500,
|
||||||
"init_mu": 1.,
|
"init_mu": 1.,
|
||||||
"mu_min": 1e-6,
|
"mu_min": 1e-6,
|
||||||
"mu_max": 1e10,
|
"mu_max": 1e10,
|
||||||
"init_delta": 2.,
|
"init_delta": 2.,
|
||||||
"threshold": 1e-6,
|
"threshold": 1e-6,
|
||||||
},
|
},
|
||||||
"DDP":{
|
"DDP": {
|
||||||
"max_iter": 500,
|
"max_iter": 500,
|
||||||
"init_mu": 1.,
|
"init_mu": 1.,
|
||||||
"mu_min": 1e-6,
|
"mu_min": 1e-6,
|
||||||
"mu_max": 1e10,
|
"mu_max": 1e10,
|
||||||
"init_delta": 2.,
|
"init_delta": 2.,
|
||||||
"threshold": 1e-6,
|
"threshold": 1e-6,
|
||||||
},
|
},
|
||||||
"NMPC-CGMRES":{
|
"NMPC-CGMRES": {
|
||||||
},
|
},
|
||||||
"NMPC-Newton":{
|
"NMPC-Newton": {
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def input_cost_fn(u):
|
def input_cost_fn(u):
|
||||||
|
@ -87,7 +88,7 @@ class CartPoleConfigModule():
|
||||||
shape(pop_size, pred_len, input_size)
|
shape(pop_size, pred_len, input_size)
|
||||||
"""
|
"""
|
||||||
return (u**2) * np.diag(CartPoleConfigModule.R)
|
return (u**2) * np.diag(CartPoleConfigModule.R)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def state_cost_fn(x, g_x):
|
def state_cost_fn(x, g_x):
|
||||||
""" state cost function
|
""" state cost function
|
||||||
|
@ -103,21 +104,21 @@ class CartPoleConfigModule():
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if len(x.shape) > 2:
|
if len(x.shape) > 2:
|
||||||
return (6. * (x[:, :, 0]**2) \
|
return (6. * (x[:, :, 0]**2)
|
||||||
+ 12. * ((np.cos(x[:, :, 2]) + 1.)**2) \
|
+ 12. * ((np.cos(x[:, :, 2]) + 1.)**2)
|
||||||
+ 0.1 * (x[:, :, 1]**2) \
|
+ 0.1 * (x[:, :, 1]**2)
|
||||||
+ 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
|
+ 0.1 * (x[:, :, 3]**2))[:, :, np.newaxis]
|
||||||
|
|
||||||
elif len(x.shape) > 1:
|
elif len(x.shape) > 1:
|
||||||
return (6. * (x[:, 0]**2) \
|
return (6. * (x[:, 0]**2)
|
||||||
+ 12. * ((np.cos(x[:, 2]) + 1.)**2) \
|
+ 12. * ((np.cos(x[:, 2]) + 1.)**2)
|
||||||
+ 0.1 * (x[:, 1]**2) \
|
+ 0.1 * (x[:, 1]**2)
|
||||||
+ 0.1 * (x[:, 3]**2))[:, np.newaxis]
|
+ 0.1 * (x[:, 3]**2))[:, np.newaxis]
|
||||||
|
|
||||||
return 6. * (x[0]**2) \
|
return 6. * (x[0]**2) \
|
||||||
+ 12. * ((np.cos(x[2]) + 1.)**2) \
|
+ 12. * ((np.cos(x[2]) + 1.)**2) \
|
||||||
+ 0.1 * (x[1]**2) \
|
+ 0.1 * (x[1]**2) \
|
||||||
+ 0.1 * (x[3]**2)
|
+ 0.1 * (x[3]**2)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def terminal_state_cost_fn(terminal_x, terminal_g_x):
|
def terminal_state_cost_fn(terminal_x, terminal_g_x):
|
||||||
|
@ -134,18 +135,18 @@ class CartPoleConfigModule():
|
||||||
"""
|
"""
|
||||||
|
|
||||||
if len(terminal_x.shape) > 1:
|
if len(terminal_x.shape) > 1:
|
||||||
return (6. * (terminal_x[:, 0]**2) \
|
return (6. * (terminal_x[:, 0]**2)
|
||||||
+ 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2) \
|
+ 12. * ((np.cos(terminal_x[:, 2]) + 1.)**2)
|
||||||
+ 0.1 * (terminal_x[:, 1]**2) \
|
+ 0.1 * (terminal_x[:, 1]**2)
|
||||||
+ 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis] \
|
+ 0.1 * (terminal_x[:, 3]**2))[:, np.newaxis] \
|
||||||
* CartPoleConfigModule.TERMINAL_WEIGHT
|
|
||||||
|
|
||||||
return (6. * (terminal_x[0]**2) \
|
|
||||||
+ 12. * ((np.cos(terminal_x[2]) + 1.)**2) \
|
|
||||||
+ 0.1 * (terminal_x[1]**2) \
|
|
||||||
+ 0.1 * (terminal_x[3]**2)) \
|
|
||||||
* CartPoleConfigModule.TERMINAL_WEIGHT
|
* CartPoleConfigModule.TERMINAL_WEIGHT
|
||||||
|
|
||||||
|
return (6. * (terminal_x[0]**2)
|
||||||
|
+ 12. * ((np.cos(terminal_x[2]) + 1.)**2)
|
||||||
|
+ 0.1 * (terminal_x[1]**2)
|
||||||
|
+ 0.1 * (terminal_x[3]**2)) \
|
||||||
|
* CartPoleConfigModule.TERMINAL_WEIGHT
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||||
""" gradient of costs with respect to the state
|
""" gradient of costs with respect to the state
|
||||||
|
@ -153,26 +154,26 @@ class CartPoleConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
||||||
or shape(1, state_size)
|
or shape(1, state_size)
|
||||||
"""
|
"""
|
||||||
if not terminal:
|
if not terminal:
|
||||||
cost_dx0 = 12. * x[:, 0]
|
cost_dx0 = 12. * x[:, 0]
|
||||||
cost_dx1 = 0.2 * x[:, 1]
|
cost_dx1 = 0.2 * x[:, 1]
|
||||||
cost_dx2 = 24. * (1 + np.cos(x[:, 2])) * -np.sin(x[:, 2])
|
cost_dx2 = 24. * (1 + np.cos(x[:, 2])) * -np.sin(x[:, 2])
|
||||||
cost_dx3 = 0.2 * x[:, 3]
|
cost_dx3 = 0.2 * x[:, 3]
|
||||||
cost_dx = np.stack((cost_dx0, cost_dx1,\
|
cost_dx = np.stack((cost_dx0, cost_dx1,
|
||||||
cost_dx2, cost_dx3), axis=1)
|
cost_dx2, cost_dx3), axis=1)
|
||||||
return cost_dx
|
return cost_dx
|
||||||
|
|
||||||
cost_dx0 = 12. * x[0]
|
cost_dx0 = 12. * x[0]
|
||||||
cost_dx1 = 0.2 * x[1]
|
cost_dx1 = 0.2 * x[1]
|
||||||
cost_dx2 = 24. * (1 + np.cos(x[2])) * -np.sin(x[2])
|
cost_dx2 = 24. * (1 + np.cos(x[2])) * -np.sin(x[2])
|
||||||
cost_dx3 = 0.2 * x[3]
|
cost_dx3 = 0.2 * x[3]
|
||||||
cost_dx = np.array([[cost_dx0, cost_dx1, cost_dx2, cost_dx3]])
|
cost_dx = np.array([[cost_dx0, cost_dx1, cost_dx2, cost_dx3]])
|
||||||
|
|
||||||
return cost_dx * CartPoleConfigModule.TERMINAL_WEIGHT
|
return cost_dx * CartPoleConfigModule.TERMINAL_WEIGHT
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@ -206,21 +207,21 @@ class CartPoleConfigModule():
|
||||||
hessian[:, 0, 0] = 12.
|
hessian[:, 0, 0] = 12.
|
||||||
hessian[:, 1, 1] = 0.2
|
hessian[:, 1, 1] = 0.2
|
||||||
hessian[:, 2, 2] = 24. * -np.sin(x[:, 2]) \
|
hessian[:, 2, 2] = 24. * -np.sin(x[:, 2]) \
|
||||||
* (-np.sin(x[:, 2])) \
|
* (-np.sin(x[:, 2])) \
|
||||||
+ 24. * (1. + np.cos(x[:, 2])) \
|
+ 24. * (1. + np.cos(x[:, 2])) \
|
||||||
* -np.cos(x[:, 2])
|
* -np.cos(x[:, 2])
|
||||||
hessian[:, 3, 3] = 0.2
|
hessian[:, 3, 3] = 0.2
|
||||||
|
|
||||||
return hessian
|
return hessian
|
||||||
|
|
||||||
state_size = len(x)
|
state_size = len(x)
|
||||||
hessian = np.eye(state_size)
|
hessian = np.eye(state_size)
|
||||||
hessian[0, 0] = 12.
|
hessian[0, 0] = 12.
|
||||||
hessian[1, 1] = 0.2
|
hessian[1, 1] = 0.2
|
||||||
hessian[2, 2] = 24. * -np.sin(x[2]) \
|
hessian[2, 2] = 24. * -np.sin(x[2]) \
|
||||||
* (-np.sin(x[2])) \
|
* (-np.sin(x[2])) \
|
||||||
+ 24. * (1. + np.cos(x[2])) \
|
+ 24. * (1. + np.cos(x[2])) \
|
||||||
* -np.cos(x[2])
|
* -np.cos(x[2])
|
||||||
hessian[3, 3] = 0.2
|
hessian[3, 3] = 0.2
|
||||||
|
|
||||||
return hessian[np.newaxis, :, :] * CartPoleConfigModule.TERMINAL_WEIGHT
|
return hessian[np.newaxis, :, :] * CartPoleConfigModule.TERMINAL_WEIGHT
|
||||||
|
@ -239,7 +240,7 @@ class CartPoleConfigModule():
|
||||||
(pred_len, _) = u.shape
|
(pred_len, _) = u.shape
|
||||||
|
|
||||||
return np.tile(2.*CartPoleConfigModule.R, (pred_len, 1, 1))
|
return np.tile(2.*CartPoleConfigModule.R, (pred_len, 1, 1))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hessian_cost_fn_with_input_state(x, u):
|
def hessian_cost_fn_with_input_state(x, u):
|
||||||
""" hessian costs with respect to the state and input
|
""" hessian costs with respect to the state and input
|
||||||
|
@ -254,4 +255,4 @@ class CartPoleConfigModule():
|
||||||
(_, state_size) = x.shape
|
(_, state_size) = x.shape
|
||||||
(pred_len, input_size) = u.shape
|
(pred_len, input_size) = u.shape
|
||||||
|
|
||||||
return np.zeros((pred_len, input_size, state_size))
|
return np.zeros((pred_len, input_size, state_size))
|
||||||
|
|
|
@ -1,5 +1,6 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class FirstOrderLagConfigModule():
|
class FirstOrderLagConfigModule():
|
||||||
# parameters
|
# parameters
|
||||||
ENV_NAME = "FirstOrderLag-v0"
|
ENV_NAME = "FirstOrderLag-v0"
|
||||||
|
@ -34,43 +35,43 @@ class FirstOrderLagConfigModule():
|
||||||
"num_elites": 50,
|
"num_elites": 50,
|
||||||
"max_iters": 15,
|
"max_iters": 15,
|
||||||
"alpha": 0.3,
|
"alpha": 0.3,
|
||||||
"init_var":1.,
|
"init_var": 1.,
|
||||||
"threshold":0.001
|
"threshold": 0.001
|
||||||
},
|
},
|
||||||
"MPPI":{
|
"MPPI": {
|
||||||
"beta" : 0.6,
|
"beta": 0.6,
|
||||||
"popsize": 5000,
|
"popsize": 5000,
|
||||||
"kappa": 0.9,
|
"kappa": 0.9,
|
||||||
"noise_sigma": 0.5,
|
"noise_sigma": 0.5,
|
||||||
},
|
},
|
||||||
"MPPIWilliams":{
|
"MPPIWilliams": {
|
||||||
"popsize": 5000,
|
"popsize": 5000,
|
||||||
"lambda": 1.,
|
"lambda": 1.,
|
||||||
"noise_sigma": 0.9,
|
"noise_sigma": 0.9,
|
||||||
},
|
},
|
||||||
"MPC":{
|
"MPC": {
|
||||||
},
|
},
|
||||||
"iLQR":{
|
"iLQR": {
|
||||||
"max_iter": 500,
|
"max_iter": 500,
|
||||||
"init_mu": 1.,
|
"init_mu": 1.,
|
||||||
"mu_min": 1e-6,
|
"mu_min": 1e-6,
|
||||||
"mu_max": 1e10,
|
"mu_max": 1e10,
|
||||||
"init_delta": 2.,
|
"init_delta": 2.,
|
||||||
"threshold": 1e-6,
|
"threshold": 1e-6,
|
||||||
},
|
},
|
||||||
"DDP":{
|
"DDP": {
|
||||||
"max_iter": 500,
|
"max_iter": 500,
|
||||||
"init_mu": 1.,
|
"init_mu": 1.,
|
||||||
"mu_min": 1e-6,
|
"mu_min": 1e-6,
|
||||||
"mu_max": 1e10,
|
"mu_max": 1e10,
|
||||||
"init_delta": 2.,
|
"init_delta": 2.,
|
||||||
"threshold": 1e-6,
|
"threshold": 1e-6,
|
||||||
},
|
},
|
||||||
"NMPC-CGMRES":{
|
"NMPC-CGMRES": {
|
||||||
},
|
},
|
||||||
"NMPC-Newton":{
|
"NMPC-Newton": {
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def input_cost_fn(u):
|
def input_cost_fn(u):
|
||||||
|
@ -83,7 +84,7 @@ class FirstOrderLagConfigModule():
|
||||||
shape(pop_size, pred_len, input_size)
|
shape(pop_size, pred_len, input_size)
|
||||||
"""
|
"""
|
||||||
return (u**2) * np.diag(FirstOrderLagConfigModule.R)
|
return (u**2) * np.diag(FirstOrderLagConfigModule.R)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def state_cost_fn(x, g_x):
|
def state_cost_fn(x, g_x):
|
||||||
""" state cost function
|
""" state cost function
|
||||||
|
@ -111,8 +112,8 @@ class FirstOrderLagConfigModule():
|
||||||
shape(pop_size, pred_len)
|
shape(pop_size, pred_len)
|
||||||
"""
|
"""
|
||||||
return ((terminal_x - terminal_g_x)**2) \
|
return ((terminal_x - terminal_g_x)**2) \
|
||||||
* np.diag(FirstOrderLagConfigModule.Sf)
|
* np.diag(FirstOrderLagConfigModule.Sf)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||||
""" gradient of costs with respect to the state
|
""" gradient of costs with respect to the state
|
||||||
|
@ -120,16 +121,16 @@ class FirstOrderLagConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
||||||
or shape(1, state_size)
|
or shape(1, state_size)
|
||||||
"""
|
"""
|
||||||
if not terminal:
|
if not terminal:
|
||||||
return 2. * (x - g_x) * np.diag(FirstOrderLagConfigModule.Q)
|
return 2. * (x - g_x) * np.diag(FirstOrderLagConfigModule.Q)
|
||||||
|
|
||||||
return (2. * (x - g_x) \
|
return (2. * (x - g_x)
|
||||||
* np.diag(FirstOrderLagConfigModule.Sf))[np.newaxis, :]
|
* np.diag(FirstOrderLagConfigModule.Sf))[np.newaxis, :]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_cost_fn_with_input(x, u):
|
def gradient_cost_fn_with_input(x, u):
|
||||||
|
@ -138,7 +139,7 @@ class FirstOrderLagConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
||||||
"""
|
"""
|
||||||
|
@ -151,7 +152,7 @@ class FirstOrderLagConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_xx (numpy.ndarray): gradient of cost,
|
l_xx (numpy.ndarray): gradient of cost,
|
||||||
shape(pred_len, state_size, state_size) or
|
shape(pred_len, state_size, state_size) or
|
||||||
|
@ -159,9 +160,9 @@ class FirstOrderLagConfigModule():
|
||||||
"""
|
"""
|
||||||
if not terminal:
|
if not terminal:
|
||||||
(pred_len, _) = x.shape
|
(pred_len, _) = x.shape
|
||||||
return np.tile(2.*FirstOrderLagConfigModule.Q, (pred_len, 1, 1))
|
return np.tile(2.*FirstOrderLagConfigModule.Q, (pred_len, 1, 1))
|
||||||
|
|
||||||
return np.tile(2.*FirstOrderLagConfigModule.Sf, (1, 1, 1))
|
return np.tile(2.*FirstOrderLagConfigModule.Sf, (1, 1, 1))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hessian_cost_fn_with_input(x, u):
|
def hessian_cost_fn_with_input(x, u):
|
||||||
|
@ -170,7 +171,7 @@ class FirstOrderLagConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_uu (numpy.ndarray): gradient of cost,
|
l_uu (numpy.ndarray): gradient of cost,
|
||||||
shape(pred_len, input_size, input_size)
|
shape(pred_len, input_size, input_size)
|
||||||
|
@ -178,7 +179,7 @@ class FirstOrderLagConfigModule():
|
||||||
(pred_len, _) = u.shape
|
(pred_len, _) = u.shape
|
||||||
|
|
||||||
return np.tile(2.*FirstOrderLagConfigModule.R, (pred_len, 1, 1))
|
return np.tile(2.*FirstOrderLagConfigModule.R, (pred_len, 1, 1))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hessian_cost_fn_with_input_state(x, u):
|
def hessian_cost_fn_with_input_state(x, u):
|
||||||
""" hessian costs with respect to the state and input
|
""" hessian costs with respect to the state and input
|
||||||
|
@ -186,7 +187,7 @@ class FirstOrderLagConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_ux (numpy.ndarray): gradient of cost ,
|
l_ux (numpy.ndarray): gradient of cost ,
|
||||||
shape(pred_len, input_size, state_size)
|
shape(pred_len, input_size, state_size)
|
||||||
|
|
|
@ -1,6 +1,8 @@
|
||||||
from .first_order_lag import FirstOrderLagConfigModule
|
from .first_order_lag import FirstOrderLagConfigModule
|
||||||
from .two_wheeled import TwoWheeledConfigModule
|
from .two_wheeled import TwoWheeledConfigModule
|
||||||
from .cartpole import CartPoleConfigModule
|
from .cartpole import CartPoleConfigModule
|
||||||
|
from .nonlinear_sample_system import NonlinearSampleSystemConfigModule
|
||||||
|
|
||||||
|
|
||||||
def make_config(args):
|
def make_config(args):
|
||||||
"""
|
"""
|
||||||
|
@ -12,4 +14,6 @@ def make_config(args):
|
||||||
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
|
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
|
||||||
return TwoWheeledConfigModule()
|
return TwoWheeledConfigModule()
|
||||||
elif args.env == "CartPole":
|
elif args.env == "CartPole":
|
||||||
return CartPoleConfigModule()
|
return CartPoleConfigModule()
|
||||||
|
elif args.env == "NonlinearSample":
|
||||||
|
return NonlinearSampleSystemConfigModule()
|
||||||
|
|
|
@ -0,0 +1,219 @@
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class NonlinearSampleSystemConfigModule():
|
||||||
|
# parameters
|
||||||
|
ENV_NAME = "NonlinearSampleSystem-v0"
|
||||||
|
PLANNER_TYPE = "Const"
|
||||||
|
TYPE = "Nonlinear"
|
||||||
|
TASK_HORIZON = 2500
|
||||||
|
PRED_LEN = 10
|
||||||
|
STATE_SIZE = 2
|
||||||
|
INPUT_SIZE = 1
|
||||||
|
DT = 0.01
|
||||||
|
R = np.diag([0.01])
|
||||||
|
Q = None
|
||||||
|
Sf = None
|
||||||
|
# bounds
|
||||||
|
INPUT_LOWER_BOUND = np.array([-0.5])
|
||||||
|
INPUT_UPPER_BOUND = np.array([0.5])
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
# opt configs
|
||||||
|
self.opt_config = {
|
||||||
|
"Random": {
|
||||||
|
"popsize": 5000
|
||||||
|
},
|
||||||
|
"CEM": {
|
||||||
|
"popsize": 500,
|
||||||
|
"num_elites": 50,
|
||||||
|
"max_iters": 15,
|
||||||
|
"alpha": 0.3,
|
||||||
|
"init_var": 9.,
|
||||||
|
"threshold": 0.001
|
||||||
|
},
|
||||||
|
"MPPI": {
|
||||||
|
"beta": 0.6,
|
||||||
|
"popsize": 5000,
|
||||||
|
"kappa": 0.9,
|
||||||
|
"noise_sigma": 0.5,
|
||||||
|
},
|
||||||
|
"MPPIWilliams": {
|
||||||
|
"popsize": 5000,
|
||||||
|
"lambda": 1.,
|
||||||
|
"noise_sigma": 0.9,
|
||||||
|
},
|
||||||
|
"iLQR": {
|
||||||
|
"max_iter": 500,
|
||||||
|
"init_mu": 1.,
|
||||||
|
"mu_min": 1e-6,
|
||||||
|
"mu_max": 1e10,
|
||||||
|
"init_delta": 2.,
|
||||||
|
"threshold": 1e-6,
|
||||||
|
},
|
||||||
|
"DDP": {
|
||||||
|
"max_iter": 500,
|
||||||
|
"init_mu": 1.,
|
||||||
|
"mu_min": 1e-6,
|
||||||
|
"mu_max": 1e10,
|
||||||
|
"init_delta": 2.,
|
||||||
|
"threshold": 1e-6,
|
||||||
|
},
|
||||||
|
"NMPC-CGMRES": {
|
||||||
|
},
|
||||||
|
"NMPC-Newton": {
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def input_cost_fn(u):
|
||||||
|
""" input cost functions
|
||||||
|
|
||||||
|
Args:
|
||||||
|
u (numpy.ndarray): input, shape(pred_len, input_size)
|
||||||
|
or shape(pop_size, pred_len, input_size)
|
||||||
|
Returns:
|
||||||
|
cost (numpy.ndarray): cost of input, shape(pred_len, input_size) or
|
||||||
|
shape(pop_size, pred_len, input_size)
|
||||||
|
"""
|
||||||
|
return (u**2) * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def state_cost_fn(x, g_x):
|
||||||
|
""" state cost function
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
|
or shape(pop_size, pred_len, state_size)
|
||||||
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
or shape(pop_size, pred_len, state_size)
|
||||||
|
Returns:
|
||||||
|
cost (numpy.ndarray): cost of state, shape(pred_len, 1) or
|
||||||
|
shape(pop_size, pred_len, 1)
|
||||||
|
"""
|
||||||
|
|
||||||
|
if len(x.shape) > 2:
|
||||||
|
return (0.5 * (x[:, :, 0]**2) +
|
||||||
|
0.5 * (x[:, :, 1]**2))[:, :, np.newaxis]
|
||||||
|
|
||||||
|
elif len(x.shape) > 1:
|
||||||
|
return (0.5 * (x[:, 0]**2) + 0.5 * (x[:, 1]**2))[:, np.newaxis]
|
||||||
|
|
||||||
|
return 0.5 * (x[0]**2) + 0.5 * (x[1]**2)
|
||||||
|
|
||||||
|
@ staticmethod
|
||||||
|
def terminal_state_cost_fn(terminal_x, terminal_g_x):
|
||||||
|
"""
|
||||||
|
|
||||||
|
Args:
|
||||||
|
terminal_x (numpy.ndarray): terminal state,
|
||||||
|
shape(state_size, ) or shape(pop_size, state_size)
|
||||||
|
terminal_g_x (numpy.ndarray): terminal goal state,
|
||||||
|
shape(state_size, ) or shape(pop_size, state_size)
|
||||||
|
Returns:
|
||||||
|
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
|
||||||
|
shape(pop_size, pred_len)
|
||||||
|
"""
|
||||||
|
|
||||||
|
if len(terminal_x.shape) > 1:
|
||||||
|
return (0.5 * (terminal_x[:, 0]**2) +
|
||||||
|
0.5 * (terminal_x[:, 1]**2))[:, np.newaxis]
|
||||||
|
|
||||||
|
return 0.5 * (terminal_x[0]**2) + 0.5 * (terminal_x[1]**2)
|
||||||
|
|
||||||
|
@ staticmethod
|
||||||
|
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||||
|
""" gradient of costs with respect to the state
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
||||||
|
or shape(1, state_size)
|
||||||
|
"""
|
||||||
|
if not terminal:
|
||||||
|
cost_dx0 = x[:, 0]
|
||||||
|
cost_dx1 = x[:, 1]
|
||||||
|
cost_dx = np.stack((cost_dx0, cost_dx1), axis=1)
|
||||||
|
return cost_dx
|
||||||
|
|
||||||
|
cost_dx0 = x[0]
|
||||||
|
cost_dx1 = x[1]
|
||||||
|
cost_dx = np.array([[cost_dx0, cost_dx1]])
|
||||||
|
|
||||||
|
return cost_dx
|
||||||
|
|
||||||
|
@ staticmethod
|
||||||
|
def gradient_cost_fn_with_input(x, u):
|
||||||
|
""" gradient of costs with respect to the input
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
Returns:
|
||||||
|
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
||||||
|
"""
|
||||||
|
return 2. * u * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||||
|
|
||||||
|
@ staticmethod
|
||||||
|
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||||
|
""" hessian costs with respect to the state
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
Returns:
|
||||||
|
l_xx (numpy.ndarray): gradient of cost,
|
||||||
|
shape(pred_len, state_size, state_size) or
|
||||||
|
shape(1, state_size, state_size) or
|
||||||
|
"""
|
||||||
|
if not terminal:
|
||||||
|
(pred_len, state_size) = x.shape
|
||||||
|
hessian = np.eye(state_size)
|
||||||
|
hessian = np.tile(hessian, (pred_len, 1, 1))
|
||||||
|
hessian[:, 0, 0] = 1.
|
||||||
|
hessian[:, 1, 1] = 1.
|
||||||
|
|
||||||
|
return hessian
|
||||||
|
|
||||||
|
state_size = len(x)
|
||||||
|
hessian = np.eye(state_size)
|
||||||
|
hessian[0, 0] = 1.
|
||||||
|
hessian[1, 1] = 1.
|
||||||
|
|
||||||
|
return hessian[np.newaxis, :, :]
|
||||||
|
|
||||||
|
@ staticmethod
|
||||||
|
def hessian_cost_fn_with_input(x, u):
|
||||||
|
""" hessian costs with respect to the input
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
Returns:
|
||||||
|
l_uu (numpy.ndarray): gradient of cost,
|
||||||
|
shape(pred_len, input_size, input_size)
|
||||||
|
"""
|
||||||
|
(pred_len, _) = u.shape
|
||||||
|
|
||||||
|
return np.tile(NonlinearSampleSystemConfigModule.R, (pred_len, 1, 1))
|
||||||
|
|
||||||
|
@ staticmethod
|
||||||
|
def hessian_cost_fn_with_input_state(x, u):
|
||||||
|
""" hessian costs with respect to the state and input
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
Returns:
|
||||||
|
l_ux (numpy.ndarray): gradient of cost ,
|
||||||
|
shape(pred_len, input_size, state_size)
|
||||||
|
"""
|
||||||
|
(_, state_size) = x.shape
|
||||||
|
(pred_len, input_size) = u.shape
|
||||||
|
|
||||||
|
return np.zeros((pred_len, input_size, state_size))
|
|
@ -4,6 +4,7 @@ from matplotlib.axes import Axes
|
||||||
from ..plotters.plot_objs import square_with_angle, square
|
from ..plotters.plot_objs import square_with_angle, square
|
||||||
from ..common.utils import fit_angle_in_range
|
from ..common.utils import fit_angle_in_range
|
||||||
|
|
||||||
|
|
||||||
class TwoWheeledConfigModule():
|
class TwoWheeledConfigModule():
|
||||||
# parameters
|
# parameters
|
||||||
ENV_NAME = "TwoWheeled-v0"
|
ENV_NAME = "TwoWheeled-v0"
|
||||||
|
@ -25,7 +26,7 @@ class TwoWheeledConfigModule():
|
||||||
R = np.diag([0.01, 0.01])
|
R = np.diag([0.01, 0.01])
|
||||||
Q = np.diag([2.5, 2.5, 0.01])
|
Q = np.diag([2.5, 2.5, 0.01])
|
||||||
Sf = np.diag([2.5, 2.5, 0.01])
|
Sf = np.diag([2.5, 2.5, 0.01])
|
||||||
|
|
||||||
# bounds
|
# bounds
|
||||||
INPUT_LOWER_BOUND = np.array([-1.5, -3.14])
|
INPUT_LOWER_BOUND = np.array([-1.5, -3.14])
|
||||||
INPUT_UPPER_BOUND = np.array([1.5, 3.14])
|
INPUT_UPPER_BOUND = np.array([1.5, 3.14])
|
||||||
|
@ -46,41 +47,41 @@ class TwoWheeledConfigModule():
|
||||||
"num_elites": 50,
|
"num_elites": 50,
|
||||||
"max_iters": 15,
|
"max_iters": 15,
|
||||||
"alpha": 0.3,
|
"alpha": 0.3,
|
||||||
"init_var":1.,
|
"init_var": 1.,
|
||||||
"threshold":0.001
|
"threshold": 0.001
|
||||||
},
|
},
|
||||||
"MPPI":{
|
"MPPI": {
|
||||||
"beta" : 0.6,
|
"beta": 0.6,
|
||||||
"popsize": 5000,
|
"popsize": 5000,
|
||||||
"kappa": 0.9,
|
"kappa": 0.9,
|
||||||
"noise_sigma": 0.5,
|
"noise_sigma": 0.5,
|
||||||
},
|
},
|
||||||
"MPPIWilliams":{
|
"MPPIWilliams": {
|
||||||
"popsize": 5000,
|
"popsize": 5000,
|
||||||
"lambda": 1,
|
"lambda": 1,
|
||||||
"noise_sigma": 1.,
|
"noise_sigma": 1.,
|
||||||
},
|
},
|
||||||
"iLQR":{
|
"iLQR": {
|
||||||
"max_iter": 500,
|
"max_iter": 500,
|
||||||
"init_mu": 1.,
|
"init_mu": 1.,
|
||||||
"mu_min": 1e-6,
|
"mu_min": 1e-6,
|
||||||
"mu_max": 1e10,
|
"mu_max": 1e10,
|
||||||
"init_delta": 2.,
|
"init_delta": 2.,
|
||||||
"threshold": 1e-6,
|
"threshold": 1e-6,
|
||||||
},
|
},
|
||||||
"DDP":{
|
"DDP": {
|
||||||
"max_iter": 500,
|
"max_iter": 500,
|
||||||
"init_mu": 1.,
|
"init_mu": 1.,
|
||||||
"mu_min": 1e-6,
|
"mu_min": 1e-6,
|
||||||
"mu_max": 1e10,
|
"mu_max": 1e10,
|
||||||
"init_delta": 2.,
|
"init_delta": 2.,
|
||||||
"threshold": 1e-6,
|
"threshold": 1e-6,
|
||||||
},
|
},
|
||||||
"NMPC-CGMRES":{
|
"NMPC-CGMRES": {
|
||||||
},
|
},
|
||||||
"NMPC-Newton":{
|
"NMPC-Newton": {
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def input_cost_fn(u):
|
def input_cost_fn(u):
|
||||||
|
@ -93,7 +94,7 @@ class TwoWheeledConfigModule():
|
||||||
shape(pop_size, pred_len, input_size)
|
shape(pop_size, pred_len, input_size)
|
||||||
"""
|
"""
|
||||||
return (u**2) * np.diag(TwoWheeledConfigModule.R)
|
return (u**2) * np.diag(TwoWheeledConfigModule.R)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def fit_diff_in_range(diff_x):
|
def fit_diff_in_range(diff_x):
|
||||||
""" fit difference state in range(angle)
|
""" fit difference state in range(angle)
|
||||||
|
@ -107,7 +108,7 @@ class TwoWheeledConfigModule():
|
||||||
fitted_diff_x (numpy.ndarray): same shape as diff_x
|
fitted_diff_x (numpy.ndarray): same shape as diff_x
|
||||||
"""
|
"""
|
||||||
if len(diff_x.shape) == 3:
|
if len(diff_x.shape) == 3:
|
||||||
diff_x[:, :, -1] = fit_angle_in_range(diff_x[:, :, -1])
|
diff_x[:, :, -1] = fit_angle_in_range(diff_x[:, :, -1])
|
||||||
elif len(diff_x.shape) == 2:
|
elif len(diff_x.shape) == 2:
|
||||||
diff_x[:, -1] = fit_angle_in_range(diff_x[:, -1])
|
diff_x[:, -1] = fit_angle_in_range(diff_x[:, -1])
|
||||||
elif len(diff_x.shape) == 1:
|
elif len(diff_x.shape) == 1:
|
||||||
|
@ -142,11 +143,11 @@ class TwoWheeledConfigModule():
|
||||||
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
|
cost (numpy.ndarray): cost of state, shape(pred_len, ) or
|
||||||
shape(pop_size, pred_len)
|
shape(pop_size, pred_len)
|
||||||
"""
|
"""
|
||||||
terminal_diff = TwoWheeledConfigModule.fit_diff_in_range(terminal_x \
|
terminal_diff = TwoWheeledConfigModule.fit_diff_in_range(terminal_x
|
||||||
- terminal_g_x)
|
- terminal_g_x)
|
||||||
|
|
||||||
return ((terminal_diff)**2) * np.diag(TwoWheeledConfigModule.Sf)
|
return ((terminal_diff)**2) * np.diag(TwoWheeledConfigModule.Sf)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||||
""" gradient of costs with respect to the state
|
""" gradient of costs with respect to the state
|
||||||
|
@ -154,18 +155,18 @@ class TwoWheeledConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
l_x (numpy.ndarray): gradient of cost, shape(pred_len, state_size)
|
||||||
or shape(1, state_size)
|
or shape(1, state_size)
|
||||||
"""
|
"""
|
||||||
diff = TwoWheeledConfigModule.fit_diff_in_range(x - g_x)
|
diff = TwoWheeledConfigModule.fit_diff_in_range(x - g_x)
|
||||||
|
|
||||||
if not terminal:
|
if not terminal:
|
||||||
return 2. * (diff) * np.diag(TwoWheeledConfigModule.Q)
|
return 2. * (diff) * np.diag(TwoWheeledConfigModule.Q)
|
||||||
|
|
||||||
return (2. * (diff) \
|
return (2. * (diff)
|
||||||
* np.diag(TwoWheeledConfigModule.Sf))[np.newaxis, :]
|
* np.diag(TwoWheeledConfigModule.Sf))[np.newaxis, :]
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_cost_fn_with_input(x, u):
|
def gradient_cost_fn_with_input(x, u):
|
||||||
|
@ -174,7 +175,7 @@ class TwoWheeledConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
l_u (numpy.ndarray): gradient of cost, shape(pred_len, input_size)
|
||||||
"""
|
"""
|
||||||
|
@ -187,7 +188,7 @@ class TwoWheeledConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
g_x (numpy.ndarray): goal state, shape(pred_len, state_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_xx (numpy.ndarray): gradient of cost,
|
l_xx (numpy.ndarray): gradient of cost,
|
||||||
shape(pred_len, state_size, state_size) or
|
shape(pred_len, state_size, state_size) or
|
||||||
|
@ -195,9 +196,9 @@ class TwoWheeledConfigModule():
|
||||||
"""
|
"""
|
||||||
if not terminal:
|
if not terminal:
|
||||||
(pred_len, _) = x.shape
|
(pred_len, _) = x.shape
|
||||||
return np.tile(2.*TwoWheeledConfigModule.Q, (pred_len, 1, 1))
|
return np.tile(2.*TwoWheeledConfigModule.Q, (pred_len, 1, 1))
|
||||||
|
|
||||||
return np.tile(2.*TwoWheeledConfigModule.Sf, (1, 1, 1))
|
return np.tile(2.*TwoWheeledConfigModule.Sf, (1, 1, 1))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hessian_cost_fn_with_input(x, u):
|
def hessian_cost_fn_with_input(x, u):
|
||||||
|
@ -206,7 +207,7 @@ class TwoWheeledConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_uu (numpy.ndarray): gradient of cost,
|
l_uu (numpy.ndarray): gradient of cost,
|
||||||
shape(pred_len, input_size, input_size)
|
shape(pred_len, input_size, input_size)
|
||||||
|
@ -214,7 +215,7 @@ class TwoWheeledConfigModule():
|
||||||
(pred_len, _) = u.shape
|
(pred_len, _) = u.shape
|
||||||
|
|
||||||
return np.tile(2.*TwoWheeledConfigModule.R, (pred_len, 1, 1))
|
return np.tile(2.*TwoWheeledConfigModule.R, (pred_len, 1, 1))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def hessian_cost_fn_with_input_state(x, u):
|
def hessian_cost_fn_with_input_state(x, u):
|
||||||
""" hessian costs with respect to the state and input
|
""" hessian costs with respect to the state and input
|
||||||
|
@ -222,7 +223,7 @@ class TwoWheeledConfigModule():
|
||||||
Args:
|
Args:
|
||||||
x (numpy.ndarray): state, shape(pred_len, state_size)
|
x (numpy.ndarray): state, shape(pred_len, state_size)
|
||||||
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
u (numpy.ndarray): goal state, shape(pred_len, input_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
l_ux (numpy.ndarray): gradient of cost ,
|
l_ux (numpy.ndarray): gradient of cost ,
|
||||||
shape(pred_len, input_size, state_size)
|
shape(pred_len, input_size, state_size)
|
||||||
|
@ -230,4 +231,4 @@ class TwoWheeledConfigModule():
|
||||||
(_, state_size) = x.shape
|
(_, state_size) = x.shape
|
||||||
(pred_len, input_size) = u.shape
|
(pred_len, input_size) = u.shape
|
||||||
|
|
||||||
return np.zeros((pred_len, input_size, state_size))
|
return np.zeros((pred_len, input_size, state_size))
|
||||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class CEM(Controller):
|
class CEM(Controller):
|
||||||
""" Cross Entropy Method for linear and nonlinear method
|
""" Cross Entropy Method for linear and nonlinear method
|
||||||
|
|
||||||
|
@ -19,6 +20,7 @@ class CEM(Controller):
|
||||||
using probabilistic dynamics models.
|
using probabilistic dynamics models.
|
||||||
In Advances in Neural Information Processing Systems (pp. 4754-4765).
|
In Advances in Neural Information Processing Systems (pp. 4754-4765).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
super(CEM, self).__init__(config, model)
|
super(CEM, self).__init__(config, model)
|
||||||
|
|
||||||
|
@ -38,7 +40,7 @@ class CEM(Controller):
|
||||||
self.init_var = config.opt_config["CEM"]["init_var"]
|
self.init_var = config.opt_config["CEM"]["init_var"]
|
||||||
self.opt_dim = self.input_size * self.pred_len
|
self.opt_dim = self.input_size * self.pred_len
|
||||||
|
|
||||||
# get bound
|
# get bound
|
||||||
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
||||||
self.pred_len)
|
self.pred_len)
|
||||||
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
||||||
|
@ -50,18 +52,18 @@ class CEM(Controller):
|
||||||
self.input_cost_fn = config.input_cost_fn
|
self.input_cost_fn = config.input_cost_fn
|
||||||
|
|
||||||
# init mean
|
# init mean
|
||||||
self.init_mean = np.tile((config.INPUT_UPPER_BOUND \
|
self.init_mean = np.tile((config.INPUT_UPPER_BOUND
|
||||||
+ config.INPUT_LOWER_BOUND) / 2.,
|
+ config.INPUT_LOWER_BOUND) / 2.,
|
||||||
self.pred_len)
|
self.pred_len)
|
||||||
self.prev_sol = self.init_mean.copy()
|
self.prev_sol = self.init_mean.copy()
|
||||||
# init variance
|
# init variance
|
||||||
var = np.ones_like(config.INPUT_UPPER_BOUND) \
|
var = np.ones_like(config.INPUT_UPPER_BOUND) \
|
||||||
* config.opt_config["CEM"]["init_var"]
|
* config.opt_config["CEM"]["init_var"]
|
||||||
self.init_var = np.tile(var, self.pred_len)
|
self.init_var = np.tile(var, self.pred_len)
|
||||||
|
|
||||||
# save
|
# save
|
||||||
self.history_u = []
|
self.history_u = []
|
||||||
|
|
||||||
def clear_sol(self):
|
def clear_sol(self):
|
||||||
""" clear prev sol
|
""" clear prev sol
|
||||||
"""
|
"""
|
||||||
|
@ -77,21 +79,21 @@ class CEM(Controller):
|
||||||
Returns:
|
Returns:
|
||||||
opt_input (numpy.ndarray): optimal input, shape(input_size, )
|
opt_input (numpy.ndarray): optimal input, shape(input_size, )
|
||||||
"""
|
"""
|
||||||
# initialize
|
# initialize
|
||||||
opt_count = 0
|
opt_count = 0
|
||||||
|
|
||||||
# get configuration
|
# get configuration
|
||||||
mean = self.prev_sol.flatten().copy()
|
mean = self.prev_sol.flatten().copy()
|
||||||
var = self.init_var.flatten().copy()
|
var = self.init_var.flatten().copy()
|
||||||
|
|
||||||
# make distribution
|
# make distribution
|
||||||
X = stats.truncnorm(-1, 1,
|
X = stats.truncnorm(-1, 1,
|
||||||
loc=np.zeros_like(mean),\
|
loc=np.zeros_like(mean),
|
||||||
scale=np.ones_like(mean))
|
scale=np.ones_like(mean))
|
||||||
|
|
||||||
while (opt_count < self.max_iters) and np.max(var) > self.epsilon:
|
while (opt_count < self.max_iters) and np.max(var) > self.epsilon:
|
||||||
# constrained
|
# constrained
|
||||||
lb_dist = mean - self.input_lower_bounds
|
lb_dist = mean - self.input_lower_bounds
|
||||||
ub_dist = self.input_upper_bounds - mean
|
ub_dist = self.input_upper_bounds - mean
|
||||||
constrained_var = np.minimum(np.minimum(np.square(lb_dist),
|
constrained_var = np.minimum(np.minimum(np.square(lb_dist),
|
||||||
np.square(ub_dist)),
|
np.square(ub_dist)),
|
||||||
|
@ -99,15 +101,15 @@ class CEM(Controller):
|
||||||
|
|
||||||
# sample
|
# sample
|
||||||
samples = X.rvs(size=[self.pop_size, self.opt_dim]) \
|
samples = X.rvs(size=[self.pop_size, self.opt_dim]) \
|
||||||
* np.sqrt(constrained_var) \
|
* np.sqrt(constrained_var) \
|
||||||
+ mean
|
+ mean
|
||||||
|
|
||||||
# calc cost
|
# calc cost
|
||||||
# samples.shape = (pop_size, opt_dim)
|
# samples.shape = (pop_size, opt_dim)
|
||||||
costs = self.calc_cost(curr_x,
|
costs = self.calc_cost(curr_x,
|
||||||
samples.reshape(self.pop_size,
|
samples.reshape(self.pop_size,
|
||||||
self.pred_len,
|
self.pred_len,
|
||||||
self.input_size),
|
self.input_size),
|
||||||
g_xs)
|
g_xs)
|
||||||
|
|
||||||
# sort cost
|
# sort cost
|
||||||
|
@ -124,7 +126,7 @@ class CEM(Controller):
|
||||||
logger.debug("Var = {}".format(np.max(var)))
|
logger.debug("Var = {}".format(np.max(var)))
|
||||||
logger.debug("Costs = {}".format(np.mean(costs)))
|
logger.debug("Costs = {}".format(np.mean(costs)))
|
||||||
opt_count += 1
|
opt_count += 1
|
||||||
|
|
||||||
sol = mean.copy()
|
sol = mean.copy()
|
||||||
self.prev_sol = np.concatenate((mean[self.input_size:],
|
self.prev_sol = np.concatenate((mean[self.input_size:],
|
||||||
np.zeros(self.input_size)))
|
np.zeros(self.input_size)))
|
||||||
|
|
|
@ -2,9 +2,11 @@ import numpy as np
|
||||||
|
|
||||||
from ..envs.cost import calc_cost
|
from ..envs.cost import calc_cost
|
||||||
|
|
||||||
|
|
||||||
class Controller():
|
class Controller():
|
||||||
""" Controller class
|
""" Controller class
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -15,7 +17,7 @@ class Controller():
|
||||||
self.state_cost_fn = config.state_cost_fn
|
self.state_cost_fn = config.state_cost_fn
|
||||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||||
self.input_cost_fn = config.input_cost_fn
|
self.input_cost_fn = config.input_cost_fn
|
||||||
|
|
||||||
def obtain_sol(self, curr_x, g_xs):
|
def obtain_sol(self, curr_x, g_xs):
|
||||||
""" calculate the optimal inputs
|
""" calculate the optimal inputs
|
||||||
Args:
|
Args:
|
||||||
|
@ -26,7 +28,7 @@ class Controller():
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement the algorithm to \
|
raise NotImplementedError("Implement the algorithm to \
|
||||||
get optimal input")
|
get optimal input")
|
||||||
|
|
||||||
def calc_cost(self, curr_x, samples, g_xs):
|
def calc_cost(self, curr_x, samples, g_xs):
|
||||||
""" calculate the cost of input samples
|
""" calculate the cost of input samples
|
||||||
|
|
||||||
|
@ -46,22 +48,24 @@ class Controller():
|
||||||
|
|
||||||
# calc cost, pred_xs.shape = (pop_size, pred_len+1, state_size)
|
# calc cost, pred_xs.shape = (pop_size, pred_len+1, state_size)
|
||||||
pred_xs = self.model.predict_traj(curr_x, samples)
|
pred_xs = self.model.predict_traj(curr_x, samples)
|
||||||
|
|
||||||
# get particle cost
|
# get particle cost
|
||||||
costs = calc_cost(pred_xs, samples, g_xs,
|
costs = calc_cost(pred_xs, samples, g_xs,
|
||||||
self.state_cost_fn, self.input_cost_fn, \
|
self.state_cost_fn, self.input_cost_fn,
|
||||||
self.terminal_state_cost_fn)
|
self.terminal_state_cost_fn)
|
||||||
|
|
||||||
return costs
|
return costs
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_hamiltonian_x(x, u, lam):
|
def gradient_hamiltonian_x(x, u, lam):
|
||||||
""" gradient of hamitonian with respect to the state,
|
""" gradient of hamitonian with respect to the state,
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement gradient of hamitonian with respect to the state")
|
raise NotImplementedError(
|
||||||
|
"Implement gradient of hamitonian with respect to the state")
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def gradient_hamiltonian_u(x, u, lam):
|
def gradient_hamiltonian_u(x, u, lam):
|
||||||
""" gradient of hamitonian with respect to the input
|
""" gradient of hamitonian with respect to the input
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement gradient of hamitonian with respect to the input")
|
raise NotImplementedError(
|
||||||
|
"Implement gradient of hamitonian with respect to the input")
|
||||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class DDP(Controller):
|
class DDP(Controller):
|
||||||
""" Differential Dynamic Programming
|
""" Differential Dynamic Programming
|
||||||
|
|
||||||
|
@ -18,11 +19,12 @@ class DDP(Controller):
|
||||||
https://github.com/studywolf/control, and
|
https://github.com/studywolf/control, and
|
||||||
https://github.com/anassinator/ilqr
|
https://github.com/anassinator/ilqr
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
super(DDP, self).__init__(config, model)
|
super(DDP, self).__init__(config, model)
|
||||||
|
|
||||||
# model
|
# model
|
||||||
self.model = model
|
self.model = model
|
||||||
|
|
||||||
|
@ -56,7 +58,7 @@ class DDP(Controller):
|
||||||
self.Q = config.Q
|
self.Q = config.Q
|
||||||
self.R = config.R
|
self.R = config.R
|
||||||
self.Sf = config.Sf
|
self.Sf = config.Sf
|
||||||
|
|
||||||
# initialize
|
# initialize
|
||||||
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
||||||
|
|
||||||
|
@ -65,7 +67,7 @@ class DDP(Controller):
|
||||||
"""
|
"""
|
||||||
logger.debug("Clear Sol")
|
logger.debug("Clear Sol")
|
||||||
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
||||||
|
|
||||||
def obtain_sol(self, curr_x, g_xs):
|
def obtain_sol(self, curr_x, g_xs):
|
||||||
""" calculate the optimal inputs
|
""" calculate the optimal inputs
|
||||||
|
|
||||||
|
@ -89,26 +91,26 @@ class DDP(Controller):
|
||||||
while opt_count < self.max_iter:
|
while opt_count < self.max_iter:
|
||||||
accepted_sol = False
|
accepted_sol = False
|
||||||
|
|
||||||
# forward
|
# forward
|
||||||
if update_sol == True:
|
if update_sol == True:
|
||||||
pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu,\
|
pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu,\
|
||||||
l_x, l_xx, l_u, l_uu, l_ux = \
|
l_x, l_xx, l_u, l_uu, l_ux = \
|
||||||
self.forward(curr_x, g_xs, sol)
|
self.forward(curr_x, g_xs, sol)
|
||||||
update_sol = False
|
update_sol = False
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# backward
|
# backward
|
||||||
k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu, \
|
k, K = self.backward(f_x, f_u, f_xx, f_ux, f_uu,
|
||||||
l_x, l_xx, l_u, l_uu, l_ux)
|
l_x, l_xx, l_u, l_uu, l_ux)
|
||||||
|
|
||||||
# line search
|
# line search
|
||||||
for alpha in alphas:
|
for alpha in alphas:
|
||||||
new_pred_xs, new_sol = \
|
new_pred_xs, new_sol = \
|
||||||
self.calc_input(k, K, pred_xs, sol, alpha)
|
self.calc_input(k, K, pred_xs, sol, alpha)
|
||||||
|
|
||||||
new_cost = calc_cost(new_pred_xs[np.newaxis, :, :],
|
new_cost = calc_cost(new_pred_xs[np.newaxis, :, :],
|
||||||
new_sol[np.newaxis, :, :],
|
new_sol[np.newaxis, :, :],
|
||||||
g_xs[np.newaxis, :, :],
|
g_xs[np.newaxis, :, :],
|
||||||
self.state_cost_fn,
|
self.state_cost_fn,
|
||||||
self.input_cost_fn,
|
self.input_cost_fn,
|
||||||
self.terminal_state_cost_fn)
|
self.terminal_state_cost_fn)
|
||||||
|
@ -131,15 +133,15 @@ class DDP(Controller):
|
||||||
# accept the solution
|
# accept the solution
|
||||||
accepted_sol = True
|
accepted_sol = True
|
||||||
break
|
break
|
||||||
|
|
||||||
except np.linalg.LinAlgError as e:
|
except np.linalg.LinAlgError as e:
|
||||||
logger.debug("Non ans : {}".format(e))
|
logger.debug("Non ans : {}".format(e))
|
||||||
|
|
||||||
if not accepted_sol:
|
if not accepted_sol:
|
||||||
# increase regularization term.
|
# increase regularization term.
|
||||||
self.delta = max(1.0, self.delta) * self.init_delta
|
self.delta = max(1.0, self.delta) * self.init_delta
|
||||||
self.mu = max(self.mu_min, self.mu * self.delta)
|
self.mu = max(self.mu_min, self.mu * self.delta)
|
||||||
logger.debug("Update regularization term to {}"\
|
logger.debug("Update regularization term to {}"
|
||||||
.format(self.mu))
|
.format(self.mu))
|
||||||
if self.mu >= self.mu_max:
|
if self.mu >= self.mu_max:
|
||||||
logger.debug("Reach Max regularization term")
|
logger.debug("Reach Max regularization term")
|
||||||
|
@ -156,7 +158,7 @@ class DDP(Controller):
|
||||||
self.prev_sol[-1] = sol[-1] # last use the terminal input
|
self.prev_sol[-1] = sol[-1] # last use the terminal input
|
||||||
|
|
||||||
return sol[0]
|
return sol[0]
|
||||||
|
|
||||||
def calc_input(self, k, K, pred_xs, sol, alpha):
|
def calc_input(self, k, K, pred_xs, sol, alpha):
|
||||||
""" calc input trajectory by using k and K
|
""" calc input trajectory by using k and K
|
||||||
|
|
||||||
|
@ -183,8 +185,8 @@ class DDP(Controller):
|
||||||
|
|
||||||
for t in range(pred_len):
|
for t in range(pred_len):
|
||||||
new_sol[t] = sol[t] \
|
new_sol[t] = sol[t] \
|
||||||
+ alpha * k[t] \
|
+ alpha * k[t] \
|
||||||
+ np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
|
+ np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
|
||||||
new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t],
|
new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t],
|
||||||
new_sol[t])
|
new_sol[t])
|
||||||
|
|
||||||
|
@ -227,7 +229,7 @@ class DDP(Controller):
|
||||||
g_xs)
|
g_xs)
|
||||||
|
|
||||||
# calc gradinet in batch
|
# calc gradinet in batch
|
||||||
f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
|
f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
|
||||||
f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt)
|
f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt)
|
||||||
# calc hessian in batch
|
# calc hessian in batch
|
||||||
f_xx = self.model.calc_f_xx(pred_xs[:-1], sol, self.dt)
|
f_xx = self.model.calc_f_xx(pred_xs[:-1], sol, self.dt)
|
||||||
|
@ -237,13 +239,13 @@ class DDP(Controller):
|
||||||
# gradint of costs
|
# gradint of costs
|
||||||
l_x, l_xx, l_u, l_uu, l_ux = \
|
l_x, l_xx, l_u, l_uu, l_ux = \
|
||||||
self._calc_gradient_hessian_cost(pred_xs, g_xs, sol)
|
self._calc_gradient_hessian_cost(pred_xs, g_xs, sol)
|
||||||
|
|
||||||
return pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu, \
|
return pred_xs, cost, f_x, f_u, f_xx, f_ux, f_uu, \
|
||||||
l_x, l_xx, l_u, l_uu, l_ux
|
l_x, l_xx, l_u, l_uu, l_ux
|
||||||
|
|
||||||
def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol):
|
def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol):
|
||||||
""" calculate gradient and hessian of model and cost fn
|
""" calculate gradient and hessian of model and cost fn
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred_xs (numpy.ndarray): predict traj,
|
pred_xs (numpy.ndarray): predict traj,
|
||||||
shape(pred_len+1, state_size)
|
shape(pred_len+1, state_size)
|
||||||
|
@ -268,7 +270,7 @@ class DDP(Controller):
|
||||||
self.gradient_cost_fn_with_state(pred_xs[-1],
|
self.gradient_cost_fn_with_state(pred_xs[-1],
|
||||||
g_x[-1], terminal=True)
|
g_x[-1], terminal=True)
|
||||||
|
|
||||||
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
||||||
|
|
||||||
# l_u.shape = (pred_len, input_size)
|
# l_u.shape = (pred_len, input_size)
|
||||||
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
||||||
|
@ -281,7 +283,7 @@ class DDP(Controller):
|
||||||
g_x[-1], terminal=True)
|
g_x[-1], terminal=True)
|
||||||
|
|
||||||
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
||||||
|
|
||||||
# l_uu.shape = (pred_len, input_size, input_size)
|
# l_uu.shape = (pred_len, input_size, input_size)
|
||||||
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
||||||
|
|
||||||
|
@ -321,7 +323,7 @@ class DDP(Controller):
|
||||||
# get size
|
# get size
|
||||||
(_, state_size, _) = f_x.shape
|
(_, state_size, _) = f_x.shape
|
||||||
|
|
||||||
# initialzie
|
# initialzie
|
||||||
V_x = l_x[-1]
|
V_x = l_x[-1]
|
||||||
V_xx = l_xx[-1]
|
V_xx = l_xx[-1]
|
||||||
k = np.zeros((self.pred_len, self.input_size))
|
k = np.zeros((self.pred_len, self.input_size))
|
||||||
|
@ -388,7 +390,7 @@ class DDP(Controller):
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
state_size = len(l_x)
|
state_size = len(l_x)
|
||||||
|
|
||||||
Q_x = l_x + np.dot(f_x.T, V_x)
|
Q_x = l_x + np.dot(f_x.T, V_x)
|
||||||
Q_u = l_u + np.dot(f_u.T, V_x)
|
Q_u = l_u + np.dot(f_u.T, V_x)
|
||||||
Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x)
|
Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x)
|
||||||
|
@ -402,4 +404,4 @@ class DDP(Controller):
|
||||||
Q_ux += np.tensordot(V_x, f_ux, axes=1)
|
Q_ux += np.tensordot(V_x, f_ux, axes=1)
|
||||||
Q_uu += np.tensordot(V_x, f_uu, axes=1)
|
Q_uu += np.tensordot(V_x, f_uu, axes=1)
|
||||||
|
|
||||||
return Q_x, Q_u, Q_xx, Q_ux, Q_uu
|
return Q_x, Q_u, Q_xx, Q_ux, Q_uu
|
||||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class iLQR(Controller):
|
class iLQR(Controller):
|
||||||
""" iterative Liner Quadratique Regulator
|
""" iterative Liner Quadratique Regulator
|
||||||
|
|
||||||
|
@ -16,11 +17,12 @@ class iLQR(Controller):
|
||||||
Intelligent Robots and Systems (pp. 4906-4913). and Study Wolf,
|
Intelligent Robots and Systems (pp. 4906-4913). and Study Wolf,
|
||||||
https://github.com/studywolf/control
|
https://github.com/studywolf/control
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
super(iLQR, self).__init__(config, model)
|
super(iLQR, self).__init__(config, model)
|
||||||
|
|
||||||
# model
|
# model
|
||||||
self.model = model
|
self.model = model
|
||||||
|
|
||||||
|
@ -58,7 +60,7 @@ class iLQR(Controller):
|
||||||
"""
|
"""
|
||||||
logger.debug("Clear Sol")
|
logger.debug("Clear Sol")
|
||||||
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
||||||
|
|
||||||
def obtain_sol(self, curr_x, g_xs):
|
def obtain_sol(self, curr_x, g_xs):
|
||||||
""" calculate the optimal inputs
|
""" calculate the optimal inputs
|
||||||
|
|
||||||
|
@ -82,12 +84,12 @@ class iLQR(Controller):
|
||||||
while opt_count < self.max_iter:
|
while opt_count < self.max_iter:
|
||||||
accepted_sol = False
|
accepted_sol = False
|
||||||
|
|
||||||
# forward
|
# forward
|
||||||
if update_sol == True:
|
if update_sol == True:
|
||||||
pred_xs, cost, f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux = \
|
pred_xs, cost, f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux = \
|
||||||
self.forward(curr_x, g_xs, sol)
|
self.forward(curr_x, g_xs, sol)
|
||||||
update_sol = False
|
update_sol = False
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# backward
|
# backward
|
||||||
k, K = self.backward(f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux)
|
k, K = self.backward(f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux)
|
||||||
|
@ -96,10 +98,10 @@ class iLQR(Controller):
|
||||||
for alpha in alphas:
|
for alpha in alphas:
|
||||||
new_pred_xs, new_sol = \
|
new_pred_xs, new_sol = \
|
||||||
self.calc_input(k, K, pred_xs, sol, alpha)
|
self.calc_input(k, K, pred_xs, sol, alpha)
|
||||||
|
|
||||||
new_cost = calc_cost(new_pred_xs[np.newaxis, :, :],
|
new_cost = calc_cost(new_pred_xs[np.newaxis, :, :],
|
||||||
new_sol[np.newaxis, :, :],
|
new_sol[np.newaxis, :, :],
|
||||||
g_xs[np.newaxis, :, :],
|
g_xs[np.newaxis, :, :],
|
||||||
self.state_cost_fn,
|
self.state_cost_fn,
|
||||||
self.input_cost_fn,
|
self.input_cost_fn,
|
||||||
self.terminal_state_cost_fn)
|
self.terminal_state_cost_fn)
|
||||||
|
@ -122,15 +124,15 @@ class iLQR(Controller):
|
||||||
# accept the solution
|
# accept the solution
|
||||||
accepted_sol = True
|
accepted_sol = True
|
||||||
break
|
break
|
||||||
|
|
||||||
except np.linalg.LinAlgError as e:
|
except np.linalg.LinAlgError as e:
|
||||||
logger.debug("Non ans : {}".format(e))
|
logger.debug("Non ans : {}".format(e))
|
||||||
|
|
||||||
if not accepted_sol:
|
if not accepted_sol:
|
||||||
# increase regularization term.
|
# increase regularization term.
|
||||||
self.delta = max(1.0, self.delta) * self.init_delta
|
self.delta = max(1.0, self.delta) * self.init_delta
|
||||||
self.mu = max(self.mu_min, self.mu * self.delta)
|
self.mu = max(self.mu_min, self.mu * self.delta)
|
||||||
logger.debug("Update regularization term to {}"\
|
logger.debug("Update regularization term to {}"
|
||||||
.format(self.mu))
|
.format(self.mu))
|
||||||
if self.mu >= self.mu_max:
|
if self.mu >= self.mu_max:
|
||||||
logger.debug("Reach Max regularization term")
|
logger.debug("Reach Max regularization term")
|
||||||
|
@ -147,7 +149,7 @@ class iLQR(Controller):
|
||||||
self.prev_sol[-1] = sol[-1] # last use the terminal input
|
self.prev_sol[-1] = sol[-1] # last use the terminal input
|
||||||
|
|
||||||
return sol[0]
|
return sol[0]
|
||||||
|
|
||||||
def calc_input(self, k, K, pred_xs, sol, alpha):
|
def calc_input(self, k, K, pred_xs, sol, alpha):
|
||||||
""" calc input trajectory by using k and K
|
""" calc input trajectory by using k and K
|
||||||
|
|
||||||
|
@ -174,8 +176,8 @@ class iLQR(Controller):
|
||||||
|
|
||||||
for t in range(pred_len):
|
for t in range(pred_len):
|
||||||
new_sol[t] = sol[t] \
|
new_sol[t] = sol[t] \
|
||||||
+ alpha * k[t] \
|
+ alpha * k[t] \
|
||||||
+ np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
|
+ np.dot(K[t], (new_pred_xs[t] - pred_xs[t]))
|
||||||
new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t],
|
new_pred_xs[t+1] = self.model.predict_next_state(new_pred_xs[t],
|
||||||
new_sol[t])
|
new_sol[t])
|
||||||
|
|
||||||
|
@ -212,18 +214,18 @@ class iLQR(Controller):
|
||||||
g_xs)
|
g_xs)
|
||||||
|
|
||||||
# calc gradinet in batch
|
# calc gradinet in batch
|
||||||
f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
|
f_x = self.model.calc_f_x(pred_xs[:-1], sol, self.dt)
|
||||||
f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt)
|
f_u = self.model.calc_f_u(pred_xs[:-1], sol, self.dt)
|
||||||
|
|
||||||
# gradint of costs
|
# gradint of costs
|
||||||
l_x, l_xx, l_u, l_uu, l_ux = \
|
l_x, l_xx, l_u, l_uu, l_ux = \
|
||||||
self._calc_gradient_hessian_cost(pred_xs, g_xs, sol)
|
self._calc_gradient_hessian_cost(pred_xs, g_xs, sol)
|
||||||
|
|
||||||
return pred_xs, cost, f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux
|
return pred_xs, cost, f_x, f_u, l_x, l_xx, l_u, l_uu, l_ux
|
||||||
|
|
||||||
def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol):
|
def _calc_gradient_hessian_cost(self, pred_xs, g_x, sol):
|
||||||
""" calculate gradient and hessian of model and cost fn
|
""" calculate gradient and hessian of model and cost fn
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
pred_xs (numpy.ndarray): predict traj,
|
pred_xs (numpy.ndarray): predict traj,
|
||||||
shape(pred_len+1, state_size)
|
shape(pred_len+1, state_size)
|
||||||
|
@ -248,7 +250,7 @@ class iLQR(Controller):
|
||||||
self.gradient_cost_fn_with_state(pred_xs[-1],
|
self.gradient_cost_fn_with_state(pred_xs[-1],
|
||||||
g_x[-1], terminal=True)
|
g_x[-1], terminal=True)
|
||||||
|
|
||||||
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
||||||
|
|
||||||
# l_u.shape = (pred_len, input_size)
|
# l_u.shape = (pred_len, input_size)
|
||||||
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
||||||
|
@ -261,7 +263,7 @@ class iLQR(Controller):
|
||||||
g_x[-1], terminal=True)
|
g_x[-1], terminal=True)
|
||||||
|
|
||||||
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
||||||
|
|
||||||
# l_uu.shape = (pred_len, input_size, input_size)
|
# l_uu.shape = (pred_len, input_size, input_size)
|
||||||
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
||||||
|
|
||||||
|
@ -287,7 +289,7 @@ class iLQR(Controller):
|
||||||
shape(pred_len, input_size, input_size)
|
shape(pred_len, input_size, input_size)
|
||||||
l_ux (numpy.ndarray): hessian of cost with respect
|
l_ux (numpy.ndarray): hessian of cost with respect
|
||||||
to state and input, shape(pred_len, input_size, state_size)
|
to state and input, shape(pred_len, input_size, state_size)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
k (numpy.ndarray): gain, shape(pred_len, input_size)
|
k (numpy.ndarray): gain, shape(pred_len, input_size)
|
||||||
K (numpy.ndarray): gain, shape(pred_len, input_size, state_size)
|
K (numpy.ndarray): gain, shape(pred_len, input_size, state_size)
|
||||||
|
@ -295,7 +297,7 @@ class iLQR(Controller):
|
||||||
# get size
|
# get size
|
||||||
(_, state_size, _) = f_x.shape
|
(_, state_size, _) = f_x.shape
|
||||||
|
|
||||||
# initialzie
|
# initialzie
|
||||||
V_x = l_x[-1]
|
V_x = l_x[-1]
|
||||||
V_xx = l_xx[-1]
|
V_xx = l_xx[-1]
|
||||||
k = np.zeros((self.pred_len, self.input_size))
|
k = np.zeros((self.pred_len, self.input_size))
|
||||||
|
@ -352,7 +354,7 @@ class iLQR(Controller):
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
state_size = len(l_x)
|
state_size = len(l_x)
|
||||||
|
|
||||||
Q_x = l_x + np.dot(f_x.T, V_x)
|
Q_x = l_x + np.dot(f_x.T, V_x)
|
||||||
Q_u = l_u + np.dot(f_u.T, V_x)
|
Q_u = l_u + np.dot(f_u.T, V_x)
|
||||||
Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x)
|
Q_xx = l_xx + np.dot(np.dot(f_x.T, V_xx), f_x)
|
||||||
|
@ -361,4 +363,4 @@ class iLQR(Controller):
|
||||||
Q_ux = l_ux + np.dot(np.dot(f_u.T, (V_xx + reg)), f_x)
|
Q_ux = l_ux + np.dot(np.dot(f_u.T, (V_xx + reg)), f_x)
|
||||||
Q_uu = l_uu + np.dot(np.dot(f_u.T, (V_xx + reg)), f_u)
|
Q_uu = l_uu + np.dot(np.dot(f_u.T, (V_xx + reg)), f_u)
|
||||||
|
|
||||||
return Q_x, Q_u, Q_xx, Q_ux, Q_uu
|
return Q_x, Q_u, Q_xx, Q_ux, Q_uu
|
||||||
|
|
|
@ -6,6 +6,7 @@ from .mppi_williams import MPPIWilliams
|
||||||
from .ilqr import iLQR
|
from .ilqr import iLQR
|
||||||
from .ddp import DDP
|
from .ddp import DDP
|
||||||
|
|
||||||
|
|
||||||
def make_controller(args, config, model):
|
def make_controller(args, config, model):
|
||||||
|
|
||||||
if args.controller_type == "MPC":
|
if args.controller_type == "MPC":
|
||||||
|
@ -22,5 +23,5 @@ def make_controller(args, config, model):
|
||||||
return iLQR(config, model)
|
return iLQR(config, model)
|
||||||
elif args.controller_type == "DDP":
|
elif args.controller_type == "DDP":
|
||||||
return DDP(config, model)
|
return DDP(config, model)
|
||||||
|
|
||||||
raise ValueError("No controller: {}".format(args.controller_type))
|
raise ValueError("No controller: {}".format(args.controller_type))
|
||||||
|
|
|
@ -9,6 +9,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class LinearMPC(Controller):
|
class LinearMPC(Controller):
|
||||||
""" Model Predictive Controller for linear model
|
""" Model Predictive Controller for linear model
|
||||||
|
|
||||||
|
@ -21,6 +22,7 @@ class LinearMPC(Controller):
|
||||||
Ref:
|
Ref:
|
||||||
Maciejowski, J. M. (2002). Predictive control: with constraints.
|
Maciejowski, J. M. (2002). Predictive control: with constraints.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
|
@ -55,7 +57,7 @@ class LinearMPC(Controller):
|
||||||
self.dt_input_upper_bound = config.DT_INPUT_UPPER_BOUND
|
self.dt_input_upper_bound = config.DT_INPUT_UPPER_BOUND
|
||||||
self.input_lower_bound = config.INPUT_LOWER_BOUND
|
self.input_lower_bound = config.INPUT_LOWER_BOUND
|
||||||
self.input_upper_bound = config.INPUT_UPPER_BOUND
|
self.input_upper_bound = config.INPUT_UPPER_BOUND
|
||||||
|
|
||||||
# setup controllers
|
# setup controllers
|
||||||
self.W = None
|
self.W = None
|
||||||
self.omega = None
|
self.omega = None
|
||||||
|
@ -66,7 +68,7 @@ class LinearMPC(Controller):
|
||||||
|
|
||||||
# history
|
# history
|
||||||
self.history_u = [np.zeros(self.input_size)]
|
self.history_u = [np.zeros(self.input_size)]
|
||||||
|
|
||||||
def setup(self):
|
def setup(self):
|
||||||
"""
|
"""
|
||||||
setup Model Predictive Control as a quadratic programming
|
setup Model Predictive Control as a quadratic programming
|
||||||
|
@ -77,11 +79,11 @@ class LinearMPC(Controller):
|
||||||
for _ in range(self.pred_len - 1):
|
for _ in range(self.pred_len - 1):
|
||||||
temp_mat = np.matmul(A_factorials[-1], self.A)
|
temp_mat = np.matmul(A_factorials[-1], self.A)
|
||||||
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
|
self.phi_mat = np.vstack((self.phi_mat, temp_mat))
|
||||||
A_factorials.append(temp_mat) # after we use this factorials
|
A_factorials.append(temp_mat) # after we use this factorials
|
||||||
|
|
||||||
self.gamma_mat = self.B.copy()
|
self.gamma_mat = self.B.copy()
|
||||||
gammma_mat_temp = self.B.copy()
|
gammma_mat_temp = self.B.copy()
|
||||||
|
|
||||||
for i in range(self.pred_len - 1):
|
for i in range(self.pred_len - 1):
|
||||||
temp_1_mat = np.matmul(A_factorials[i], self.B)
|
temp_1_mat = np.matmul(A_factorials[i], self.B)
|
||||||
gammma_mat_temp = temp_1_mat + gammma_mat_temp
|
gammma_mat_temp = temp_1_mat + gammma_mat_temp
|
||||||
|
@ -91,8 +93,8 @@ class LinearMPC(Controller):
|
||||||
|
|
||||||
for i in range(self.pred_len - 1):
|
for i in range(self.pred_len - 1):
|
||||||
temp_mat = np.zeros_like(self.gamma_mat)
|
temp_mat = np.zeros_like(self.gamma_mat)
|
||||||
temp_mat[int((i + 1)*self.state_size): , :] =\
|
temp_mat[int((i + 1)*self.state_size):, :] =\
|
||||||
self.gamma_mat[:-int((i + 1)*self.state_size) , :]
|
self.gamma_mat[:-int((i + 1)*self.state_size), :]
|
||||||
|
|
||||||
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
|
self.theta_mat = np.hstack((self.theta_mat, temp_mat))
|
||||||
|
|
||||||
|
@ -114,12 +116,12 @@ class LinearMPC(Controller):
|
||||||
|
|
||||||
for i in range(self.pred_len - 1):
|
for i in range(self.pred_len - 1):
|
||||||
for j in range(self.input_size):
|
for j in range(self.input_size):
|
||||||
temp_F[j * 2: (j + 1) * 2,\
|
temp_F[j * 2: (j + 1) * 2,
|
||||||
((i+1) * self.input_size) + j] = np.array([1., -1.])
|
((i+1) * self.input_size) + j] = np.array([1., -1.])
|
||||||
self.F = np.vstack((self.F, temp_F))
|
self.F = np.vstack((self.F, temp_F))
|
||||||
|
|
||||||
self.F1 = self.F[:, :self.input_size]
|
self.F1 = self.F[:, :self.input_size]
|
||||||
|
|
||||||
temp_f = []
|
temp_f = []
|
||||||
for i in range(self.input_size):
|
for i in range(self.input_size):
|
||||||
temp_f.append(-1 * self.input_upper_bound[i])
|
temp_f.append(-1 * self.input_upper_bound[i])
|
||||||
|
@ -168,7 +170,7 @@ class LinearMPC(Controller):
|
||||||
H = H * 0.5
|
H = H * 0.5
|
||||||
|
|
||||||
# constraints
|
# constraints
|
||||||
A = []
|
A = []
|
||||||
b = []
|
b = []
|
||||||
|
|
||||||
if self.W is not None:
|
if self.W is not None:
|
||||||
|
@ -187,14 +189,14 @@ class LinearMPC(Controller):
|
||||||
|
|
||||||
# using cvxopt
|
# using cvxopt
|
||||||
def optimized_func(dt_us):
|
def optimized_func(dt_us):
|
||||||
return (np.dot(dt_us, np.dot(H, dt_us.reshape(-1, 1))) \
|
return (np.dot(dt_us, np.dot(H, dt_us.reshape(-1, 1)))
|
||||||
- np.dot(G.T, dt_us.reshape(-1, 1)))[0]
|
- np.dot(G.T, dt_us.reshape(-1, 1)))[0]
|
||||||
|
|
||||||
# constraint
|
# constraint
|
||||||
lb = np.array([-np.inf for _ in range(len(ub))]) # one side cons
|
lb = np.array([-np.inf for _ in range(len(ub))]) # one side cons
|
||||||
cons = LinearConstraint(A, lb, ub)
|
cons = LinearConstraint(A, lb, ub)
|
||||||
# solve
|
# solve
|
||||||
opt_sol = minimize(optimized_func, self.prev_sol.flatten(),\
|
opt_sol = minimize(optimized_func, self.prev_sol.flatten(),
|
||||||
constraints=[cons])
|
constraints=[cons])
|
||||||
opt_dt_us = opt_sol.x
|
opt_dt_us = opt_sol.x
|
||||||
|
|
||||||
|
@ -213,21 +215,21 @@ class LinearMPC(Controller):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# to dt form
|
# to dt form
|
||||||
opt_dt_u_seq = np.cumsum(opt_dt_us.reshape(self.pred_len,\
|
opt_dt_u_seq = np.cumsum(opt_dt_us.reshape(self.pred_len,
|
||||||
self.input_size),
|
self.input_size),
|
||||||
axis=0)
|
axis=0)
|
||||||
self.prev_sol = opt_dt_u_seq.copy()
|
self.prev_sol = opt_dt_u_seq.copy()
|
||||||
|
|
||||||
opt_u_seq = opt_dt_u_seq + self.history_u[-1]
|
opt_u_seq = opt_dt_u_seq + self.history_u[-1]
|
||||||
|
|
||||||
# save
|
# save
|
||||||
self.history_u.append(opt_u_seq[0])
|
self.history_u.append(opt_u_seq[0])
|
||||||
|
|
||||||
# check costs
|
# check costs
|
||||||
costs = self.calc_cost(curr_x,
|
costs = self.calc_cost(curr_x,
|
||||||
opt_u_seq.reshape(1,
|
opt_u_seq.reshape(1,
|
||||||
self.pred_len,
|
self.pred_len,
|
||||||
self.input_size),
|
self.input_size),
|
||||||
g_xs)
|
g_xs)
|
||||||
|
|
||||||
logger.debug("Cost = {}".format(costs))
|
logger.debug("Cost = {}".format(costs))
|
||||||
|
@ -235,4 +237,4 @@ class LinearMPC(Controller):
|
||||||
return opt_u_seq[0]
|
return opt_u_seq[0]
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return "LinearMPC"
|
return "LinearMPC"
|
||||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class MPPI(Controller):
|
class MPPI(Controller):
|
||||||
""" Model Predictive Path Integral for linear and nonlinear method
|
""" Model Predictive Path Integral for linear and nonlinear method
|
||||||
|
|
||||||
|
@ -18,6 +19,7 @@ class MPPI(Controller):
|
||||||
Deep Dynamics Models for Learning Dexterous Manipulation.
|
Deep Dynamics Models for Learning Dexterous Manipulation.
|
||||||
arXiv preprint arXiv:1909.11652.
|
arXiv preprint arXiv:1909.11652.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
super(MPPI, self).__init__(config, model)
|
super(MPPI, self).__init__(config, model)
|
||||||
|
|
||||||
|
@ -35,7 +37,7 @@ class MPPI(Controller):
|
||||||
self.noise_sigma = config.opt_config["MPPI"]["noise_sigma"]
|
self.noise_sigma = config.opt_config["MPPI"]["noise_sigma"]
|
||||||
self.opt_dim = self.input_size * self.pred_len
|
self.opt_dim = self.input_size * self.pred_len
|
||||||
|
|
||||||
# get bound
|
# get bound
|
||||||
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
||||||
(self.pred_len, 1))
|
(self.pred_len, 1))
|
||||||
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
||||||
|
@ -47,14 +49,14 @@ class MPPI(Controller):
|
||||||
self.input_cost_fn = config.input_cost_fn
|
self.input_cost_fn = config.input_cost_fn
|
||||||
|
|
||||||
# init mean
|
# init mean
|
||||||
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND \
|
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND
|
||||||
+ config.INPUT_LOWER_BOUND) / 2.,
|
+ config.INPUT_LOWER_BOUND) / 2.,
|
||||||
self.pred_len)
|
self.pred_len)
|
||||||
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
||||||
|
|
||||||
# save
|
# save
|
||||||
self.history_u = [np.zeros(self.input_size)]
|
self.history_u = [np.zeros(self.input_size)]
|
||||||
|
|
||||||
def clear_sol(self):
|
def clear_sol(self):
|
||||||
""" clear prev sol
|
""" clear prev sol
|
||||||
"""
|
"""
|
||||||
|
@ -74,24 +76,24 @@ class MPPI(Controller):
|
||||||
"""
|
"""
|
||||||
# get noised inputs
|
# get noised inputs
|
||||||
noise = np.random.normal(
|
noise = np.random.normal(
|
||||||
loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
|
loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
|
||||||
self.input_size)) * self.noise_sigma
|
self.input_size)) * self.noise_sigma
|
||||||
noised_inputs = noise.copy()
|
noised_inputs = noise.copy()
|
||||||
|
|
||||||
for t in range(self.pred_len):
|
for t in range(self.pred_len):
|
||||||
if t > 0:
|
if t > 0:
|
||||||
noised_inputs[:, t, :] = self.beta \
|
noised_inputs[:, t, :] = self.beta \
|
||||||
* (self.prev_sol[t, :] \
|
* (self.prev_sol[t, :]
|
||||||
+ noise[:, t, :]) \
|
+ noise[:, t, :]) \
|
||||||
+ (1 - self.beta) \
|
+ (1 - self.beta) \
|
||||||
* noised_inputs[:, t-1, :]
|
* noised_inputs[:, t-1, :]
|
||||||
else:
|
else:
|
||||||
noised_inputs[:, t, :] = self.beta \
|
noised_inputs[:, t, :] = self.beta \
|
||||||
* (self.prev_sol[t, :] \
|
* (self.prev_sol[t, :]
|
||||||
+ noise[:, t, :]) \
|
+ noise[:, t, :]) \
|
||||||
+ (1 - self.beta) \
|
+ (1 - self.beta) \
|
||||||
* self.history_u[-1]
|
* self.history_u[-1]
|
||||||
|
|
||||||
# clip actions
|
# clip actions
|
||||||
noised_inputs = np.clip(
|
noised_inputs = np.clip(
|
||||||
noised_inputs, self.input_lower_bounds, self.input_upper_bounds)
|
noised_inputs, self.input_lower_bounds, self.input_upper_bounds)
|
||||||
|
@ -108,7 +110,7 @@ class MPPI(Controller):
|
||||||
|
|
||||||
# weight actions
|
# weight actions
|
||||||
weighted_inputs = exp_rewards[:, np.newaxis, np.newaxis] \
|
weighted_inputs = exp_rewards[:, np.newaxis, np.newaxis] \
|
||||||
* noised_inputs
|
* noised_inputs
|
||||||
sol = np.sum(weighted_inputs, 0) / denom
|
sol = np.sum(weighted_inputs, 0) / denom
|
||||||
|
|
||||||
# update
|
# update
|
||||||
|
@ -121,4 +123,4 @@ class MPPI(Controller):
|
||||||
return sol[0]
|
return sol[0]
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return "MPPI"
|
return "MPPI"
|
||||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class MPPIWilliams(Controller):
|
class MPPIWilliams(Controller):
|
||||||
""" Model Predictive Path Integral for linear and nonlinear method
|
""" Model Predictive Path Integral for linear and nonlinear method
|
||||||
|
|
||||||
|
@ -19,6 +20,7 @@ class MPPIWilliams(Controller):
|
||||||
2017 IEEE International Conference on Robotics and Automation (ICRA),
|
2017 IEEE International Conference on Robotics and Automation (ICRA),
|
||||||
Singapore, 2017, pp. 1714-1721.
|
Singapore, 2017, pp. 1714-1721.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
super(MPPIWilliams, self).__init__(config, model)
|
super(MPPIWilliams, self).__init__(config, model)
|
||||||
|
|
||||||
|
@ -35,7 +37,7 @@ class MPPIWilliams(Controller):
|
||||||
self.noise_sigma = config.opt_config["MPPIWilliams"]["noise_sigma"]
|
self.noise_sigma = config.opt_config["MPPIWilliams"]["noise_sigma"]
|
||||||
self.opt_dim = self.input_size * self.pred_len
|
self.opt_dim = self.input_size * self.pred_len
|
||||||
|
|
||||||
# get bound
|
# get bound
|
||||||
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
||||||
(self.pred_len, 1))
|
(self.pred_len, 1))
|
||||||
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
||||||
|
@ -47,14 +49,14 @@ class MPPIWilliams(Controller):
|
||||||
self.input_cost_fn = config.input_cost_fn
|
self.input_cost_fn = config.input_cost_fn
|
||||||
|
|
||||||
# init mean
|
# init mean
|
||||||
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND \
|
self.prev_sol = np.tile((config.INPUT_UPPER_BOUND
|
||||||
+ config.INPUT_LOWER_BOUND) / 2.,
|
+ config.INPUT_LOWER_BOUND) / 2.,
|
||||||
self.pred_len)
|
self.pred_len)
|
||||||
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
||||||
|
|
||||||
# save
|
# save
|
||||||
self.history_u = [np.zeros(self.input_size)]
|
self.history_u = [np.zeros(self.input_size)]
|
||||||
|
|
||||||
def clear_sol(self):
|
def clear_sol(self):
|
||||||
""" clear prev sol
|
""" clear prev sol
|
||||||
"""
|
"""
|
||||||
|
@ -62,7 +64,7 @@ class MPPIWilliams(Controller):
|
||||||
self.prev_sol = \
|
self.prev_sol = \
|
||||||
(self.input_upper_bounds + self.input_lower_bounds) / 2.
|
(self.input_upper_bounds + self.input_lower_bounds) / 2.
|
||||||
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
self.prev_sol = self.prev_sol.reshape(self.pred_len, self.input_size)
|
||||||
|
|
||||||
def calc_cost(self, curr_x, samples, g_xs):
|
def calc_cost(self, curr_x, samples, g_xs):
|
||||||
""" calculate the cost of input samples by using MPPI's eq
|
""" calculate the cost of input samples by using MPPI's eq
|
||||||
|
|
||||||
|
@ -82,12 +84,12 @@ class MPPIWilliams(Controller):
|
||||||
|
|
||||||
# calc cost, pred_xs.shape = (pop_size, pred_len+1, state_size)
|
# calc cost, pred_xs.shape = (pop_size, pred_len+1, state_size)
|
||||||
pred_xs = self.model.predict_traj(curr_x, samples)
|
pred_xs = self.model.predict_traj(curr_x, samples)
|
||||||
|
|
||||||
# get particle cost
|
# get particle cost
|
||||||
costs = calc_cost(pred_xs, samples, g_xs,
|
costs = calc_cost(pred_xs, samples, g_xs,
|
||||||
self.state_cost_fn, None, \
|
self.state_cost_fn, None,
|
||||||
self.terminal_state_cost_fn)
|
self.terminal_state_cost_fn)
|
||||||
|
|
||||||
return costs
|
return costs
|
||||||
|
|
||||||
def obtain_sol(self, curr_x, g_xs):
|
def obtain_sol(self, curr_x, g_xs):
|
||||||
|
@ -101,9 +103,9 @@ class MPPIWilliams(Controller):
|
||||||
"""
|
"""
|
||||||
# get noised inputs
|
# get noised inputs
|
||||||
noise = np.random.normal(
|
noise = np.random.normal(
|
||||||
loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
|
loc=0, scale=1.0, size=(self.pop_size, self.pred_len,
|
||||||
self.input_size)) * self.noise_sigma
|
self.input_size)) * self.noise_sigma
|
||||||
|
|
||||||
noised_inputs = self.prev_sol + noise
|
noised_inputs = self.prev_sol + noise
|
||||||
|
|
||||||
# clip actions
|
# clip actions
|
||||||
|
@ -120,7 +122,7 @@ class MPPIWilliams(Controller):
|
||||||
# mppi update
|
# mppi update
|
||||||
beta = np.min(costs)
|
beta = np.min(costs)
|
||||||
eta = np.sum(np.exp(- 1. / self.lam * (costs - beta)), axis=0) \
|
eta = np.sum(np.exp(- 1. / self.lam * (costs - beta)), axis=0) \
|
||||||
+ 1e-10
|
+ 1e-10
|
||||||
|
|
||||||
# weight
|
# weight
|
||||||
# eta.shape = (pred_len, input_size)
|
# eta.shape = (pred_len, input_size)
|
||||||
|
@ -128,7 +130,7 @@ class MPPIWilliams(Controller):
|
||||||
|
|
||||||
# update inputs
|
# update inputs
|
||||||
sol = self.prev_sol \
|
sol = self.prev_sol \
|
||||||
+ np.sum(weights[:, np.newaxis, np.newaxis] * noise, axis=0)
|
+ np.sum(weights[:, np.newaxis, np.newaxis] * noise, axis=0)
|
||||||
|
|
||||||
# update
|
# update
|
||||||
self.prev_sol[:-1] = sol[1:]
|
self.prev_sol[:-1] = sol[1:]
|
||||||
|
@ -140,4 +142,4 @@ class MPPIWilliams(Controller):
|
||||||
return sol[0]
|
return sol[0]
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return "MPPIWilliams"
|
return "MPPIWilliams"
|
||||||
|
|
|
@ -8,6 +8,7 @@ from ..envs.cost import calc_cost
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class RandomShooting(Controller):
|
class RandomShooting(Controller):
|
||||||
""" Random Shooting Method for linear and nonlinear method
|
""" Random Shooting Method for linear and nonlinear method
|
||||||
|
|
||||||
|
@ -19,6 +20,7 @@ class RandomShooting(Controller):
|
||||||
using probabilistic dynamics models.
|
using probabilistic dynamics models.
|
||||||
In Advances in Neural Information Processing Systems (pp. 4754-4765).
|
In Advances in Neural Information Processing Systems (pp. 4754-4765).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, model):
|
def __init__(self, config, model):
|
||||||
super(RandomShooting, self).__init__(config, model)
|
super(RandomShooting, self).__init__(config, model)
|
||||||
|
|
||||||
|
@ -33,7 +35,7 @@ class RandomShooting(Controller):
|
||||||
self.pop_size = config.opt_config["Random"]["popsize"]
|
self.pop_size = config.opt_config["Random"]["popsize"]
|
||||||
self.opt_dim = self.input_size * self.pred_len
|
self.opt_dim = self.input_size * self.pred_len
|
||||||
|
|
||||||
# get bound
|
# get bound
|
||||||
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
self.input_upper_bounds = np.tile(config.INPUT_UPPER_BOUND,
|
||||||
self.pred_len)
|
self.pred_len)
|
||||||
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
self.input_lower_bounds = np.tile(config.INPUT_LOWER_BOUND,
|
||||||
|
@ -46,7 +48,7 @@ class RandomShooting(Controller):
|
||||||
|
|
||||||
# save
|
# save
|
||||||
self.history_u = []
|
self.history_u = []
|
||||||
|
|
||||||
def obtain_sol(self, curr_x, g_xs):
|
def obtain_sol(self, curr_x, g_xs):
|
||||||
""" calculate the optimal inputs
|
""" calculate the optimal inputs
|
||||||
|
|
||||||
|
@ -65,8 +67,8 @@ class RandomShooting(Controller):
|
||||||
# calc cost
|
# calc cost
|
||||||
costs = self.calc_cost(curr_x,
|
costs = self.calc_cost(curr_x,
|
||||||
samples.reshape(self.pop_size,
|
samples.reshape(self.pop_size,
|
||||||
self.pred_len,
|
self.pred_len,
|
||||||
self.input_size),
|
self.input_size),
|
||||||
g_xs)
|
g_xs)
|
||||||
# solution
|
# solution
|
||||||
sol = samples[np.argmin(costs)]
|
sol = samples[np.argmin(costs)]
|
||||||
|
@ -74,4 +76,4 @@ class RandomShooting(Controller):
|
||||||
return sol.reshape(self.pred_len, self.input_size).copy()[0]
|
return sol.reshape(self.pred_len, self.input_size).copy()[0]
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return "RandomShooting"
|
return "RandomShooting"
|
||||||
|
|
|
@ -5,4 +5,4 @@ from PythonLinearNonlinearControl.envs.first_order_lag \
|
||||||
from PythonLinearNonlinearControl.envs.two_wheeled \
|
from PythonLinearNonlinearControl.envs.two_wheeled \
|
||||||
import TwoWheeledConstEnv # NOQA
|
import TwoWheeledConstEnv # NOQA
|
||||||
from PythonLinearNonlinearControl.envs.two_wheeled \
|
from PythonLinearNonlinearControl.envs.two_wheeled \
|
||||||
import TwoWheeledTrackEnv # NOQA
|
import TwoWheeledTrackEnv # NOQA
|
||||||
|
|
|
@ -4,6 +4,7 @@ from matplotlib.axes import Axes
|
||||||
from .env import Env
|
from .env import Env
|
||||||
from ..plotters.plot_objs import square
|
from ..plotters.plot_objs import square
|
||||||
|
|
||||||
|
|
||||||
class CartPoleEnv(Env):
|
class CartPoleEnv(Env):
|
||||||
""" Cartpole Environment
|
""" Cartpole Environment
|
||||||
|
|
||||||
|
@ -13,13 +14,14 @@ class CartPoleEnv(Env):
|
||||||
6-832-underactuated-robotics-spring-2009/readings/
|
6-832-underactuated-robotics-spring-2009/readings/
|
||||||
MIT6_832s09_read_ch03.pdf
|
MIT6_832s09_read_ch03.pdf
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
self.config = {"state_size" : 4,
|
self.config = {"state_size": 4,
|
||||||
"input_size" : 1,
|
"input_size": 1,
|
||||||
"dt" : 0.02,
|
"dt": 0.02,
|
||||||
"max_step" : 500,
|
"max_step": 500,
|
||||||
"input_lower_bound": [-3.],
|
"input_lower_bound": [-3.],
|
||||||
"input_upper_bound": [3.],
|
"input_upper_bound": [3.],
|
||||||
"mp": 0.2,
|
"mp": 0.2,
|
||||||
|
@ -30,7 +32,7 @@ class CartPoleEnv(Env):
|
||||||
}
|
}
|
||||||
|
|
||||||
super(CartPoleEnv, self).__init__(self.config)
|
super(CartPoleEnv, self).__init__(self.config)
|
||||||
|
|
||||||
def reset(self, init_x=None):
|
def reset(self, init_x=None):
|
||||||
""" reset state
|
""" reset state
|
||||||
|
|
||||||
|
@ -39,7 +41,7 @@ class CartPoleEnv(Env):
|
||||||
info (dict): information
|
info (dict): information
|
||||||
"""
|
"""
|
||||||
self.step_count = 0
|
self.step_count = 0
|
||||||
|
|
||||||
theta = np.random.randn(1)
|
theta = np.random.randn(1)
|
||||||
self.curr_x = np.array([0., 0., theta[0], 0.])
|
self.curr_x = np.array([0., 0., theta[0], 0.])
|
||||||
|
|
||||||
|
@ -48,7 +50,7 @@ class CartPoleEnv(Env):
|
||||||
|
|
||||||
# goal
|
# goal
|
||||||
self.g_x = np.array([0., 0., -np.pi, 0.])
|
self.g_x = np.array([0., 0., -np.pi, 0.])
|
||||||
|
|
||||||
# clear memory
|
# clear memory
|
||||||
self.history_x = []
|
self.history_x = []
|
||||||
self.history_g_x = []
|
self.history_g_x = []
|
||||||
|
@ -76,50 +78,50 @@ class CartPoleEnv(Env):
|
||||||
# x
|
# x
|
||||||
d_x0 = self.curr_x[1]
|
d_x0 = self.curr_x[1]
|
||||||
# v_x
|
# v_x
|
||||||
d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2]) \
|
d_x1 = (u[0] + self.config["mp"] * np.sin(self.curr_x[2])
|
||||||
* (self.config["l"] * (self.curr_x[3]**2) \
|
* (self.config["l"] * (self.curr_x[3]**2)
|
||||||
+ self.config["g"] * np.cos(self.curr_x[2]))) \
|
+ self.config["g"] * np.cos(self.curr_x[2]))) \
|
||||||
/ (self.config["mc"] + self.config["mp"] \
|
/ (self.config["mc"] + self.config["mp"]
|
||||||
* (np.sin(self.curr_x[2])**2))
|
* (np.sin(self.curr_x[2])**2))
|
||||||
# theta
|
# theta
|
||||||
d_x2 = self.curr_x[3]
|
d_x2 = self.curr_x[3]
|
||||||
|
|
||||||
# v_theta
|
# v_theta
|
||||||
d_x3 = (-u[0] * np.cos(self.curr_x[2]) \
|
d_x3 = (-u[0] * np.cos(self.curr_x[2])
|
||||||
- self.config["mp"] * self.config["l"] * (self.curr_x[3]**2) \
|
- self.config["mp"] * self.config["l"] * (self.curr_x[3]**2)
|
||||||
* np.cos(self.curr_x[2]) * np.sin(self.curr_x[2]) \
|
* np.cos(self.curr_x[2]) * np.sin(self.curr_x[2])
|
||||||
- (self.config["mc"] + self.config["mp"]) * self.config["g"] \
|
- (self.config["mc"] + self.config["mp"]) * self.config["g"]
|
||||||
* np.sin(self.curr_x[2])) \
|
* np.sin(self.curr_x[2])) \
|
||||||
/ (self.config["l"] * (self.config["mc"] + self.config["mp"] \
|
/ (self.config["l"] * (self.config["mc"] + self.config["mp"]
|
||||||
* (np.sin(self.curr_x[2])**2)))
|
* (np.sin(self.curr_x[2])**2)))
|
||||||
|
|
||||||
next_x = self.curr_x +\
|
next_x = self.curr_x +\
|
||||||
np.array([d_x0, d_x1, d_x2, d_x3]) * self.config["dt"]
|
np.array([d_x0, d_x1, d_x2, d_x3]) * self.config["dt"]
|
||||||
|
|
||||||
# TODO: costs
|
# TODO: costs
|
||||||
costs = 0.
|
costs = 0.
|
||||||
costs += 0.1 * np.sum(u**2)
|
costs += 0.1 * np.sum(u**2)
|
||||||
costs += 6. * self.curr_x[0]**2 \
|
costs += 6. * self.curr_x[0]**2 \
|
||||||
+ 12. * (np.cos(self.curr_x[2]) + 1.)**2 \
|
+ 12. * (np.cos(self.curr_x[2]) + 1.)**2 \
|
||||||
+ 0.1 * self.curr_x[1]**2 \
|
+ 0.1 * self.curr_x[1]**2 \
|
||||||
+ 0.1 * self.curr_x[3]**2
|
+ 0.1 * self.curr_x[3]**2
|
||||||
|
|
||||||
# save history
|
# save history
|
||||||
self.history_x.append(next_x.flatten())
|
self.history_x.append(next_x.flatten())
|
||||||
self.history_g_x.append(self.g_x.flatten())
|
self.history_g_x.append(self.g_x.flatten())
|
||||||
|
|
||||||
# update
|
# update
|
||||||
self.curr_x = next_x.flatten().copy()
|
self.curr_x = next_x.flatten().copy()
|
||||||
# update costs
|
# update costs
|
||||||
self.step_count += 1
|
self.step_count += 1
|
||||||
|
|
||||||
return next_x.flatten(), costs, \
|
return next_x.flatten(), costs, \
|
||||||
self.step_count > self.config["max_step"], \
|
self.step_count > self.config["max_step"], \
|
||||||
{"goal_state" : self.g_x}
|
{"goal_state": self.g_x}
|
||||||
|
|
||||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||||
""" plot cartpole object function
|
""" plot cartpole object function
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
to_plot (axis or imgs): plotted objects
|
to_plot (axis or imgs): plotted objects
|
||||||
i (int): frame count
|
i (int): frame count
|
||||||
|
@ -131,29 +133,29 @@ class CartPoleEnv(Env):
|
||||||
"""
|
"""
|
||||||
if isinstance(to_plot, Axes):
|
if isinstance(to_plot, Axes):
|
||||||
imgs = {} # create new imgs
|
imgs = {} # create new imgs
|
||||||
|
|
||||||
imgs["cart"] = to_plot.plot([], [], c="k")[0]
|
imgs["cart"] = to_plot.plot([], [], c="k")[0]
|
||||||
imgs["pole"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
imgs["pole"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
||||||
imgs["center"] = to_plot.plot([], [], marker="o", c="k",\
|
imgs["center"] = to_plot.plot([], [], marker="o", c="k",
|
||||||
markersize=10)[0]
|
markersize=10)[0]
|
||||||
# centerline
|
# centerline
|
||||||
to_plot.plot(np.linspace(-1., 1., num=50), np.zeros(50),\
|
to_plot.plot(np.linspace(-1., 1., num=50), np.zeros(50),
|
||||||
c="k", linestyle="dashed")
|
c="k", linestyle="dashed")
|
||||||
|
|
||||||
# set axis
|
# set axis
|
||||||
to_plot.set_xlim([-1., 1.])
|
to_plot.set_xlim([-1., 1.])
|
||||||
to_plot.set_ylim([-0.55, 1.5])
|
to_plot.set_ylim([-0.55, 1.5])
|
||||||
|
|
||||||
return imgs
|
return imgs
|
||||||
|
|
||||||
# set imgs
|
# set imgs
|
||||||
cart_x, cart_y, pole_x, pole_y = \
|
cart_x, cart_y, pole_x, pole_y = \
|
||||||
self._plot_cartpole(history_x[i])
|
self._plot_cartpole(history_x[i])
|
||||||
|
|
||||||
to_plot["cart"].set_data(cart_x, cart_y)
|
to_plot["cart"].set_data(cart_x, cart_y)
|
||||||
to_plot["pole"].set_data(pole_x, pole_y)
|
to_plot["pole"].set_data(pole_x, pole_y)
|
||||||
to_plot["center"].set_data(history_x[i][0], 0.)
|
to_plot["center"].set_data(history_x[i][0], 0.)
|
||||||
|
|
||||||
def _plot_cartpole(self, curr_x):
|
def _plot_cartpole(self, curr_x):
|
||||||
""" plot cartpole fucntions
|
""" plot cartpole fucntions
|
||||||
|
|
||||||
|
@ -166,13 +168,13 @@ class CartPoleEnv(Env):
|
||||||
pole_y (numpy.ndarray): y data of pole
|
pole_y (numpy.ndarray): y data of pole
|
||||||
"""
|
"""
|
||||||
# cart
|
# cart
|
||||||
cart_x, cart_y = square(curr_x[0], 0.,\
|
cart_x, cart_y = square(curr_x[0], 0.,
|
||||||
self.config["cart_size"], 0.)
|
self.config["cart_size"], 0.)
|
||||||
|
|
||||||
# pole
|
|
||||||
pole_x = np.array([curr_x[0], curr_x[0] + self.config["l"] \
|
|
||||||
* np.cos(curr_x[2]-np.pi/2)])
|
|
||||||
pole_y = np.array([0., self.config["l"] \
|
|
||||||
* np.sin(curr_x[2]-np.pi/2)])
|
|
||||||
|
|
||||||
return cart_x, cart_y, pole_x, pole_y
|
# pole
|
||||||
|
pole_x = np.array([curr_x[0], curr_x[0] + self.config["l"]
|
||||||
|
* np.cos(curr_x[2]-np.pi/2)])
|
||||||
|
pole_y = np.array([0., self.config["l"]
|
||||||
|
* np.sin(curr_x[2]-np.pi/2)])
|
||||||
|
|
||||||
|
return cart_x, cart_y, pole_x, pole_y
|
||||||
|
|
|
@ -4,6 +4,7 @@ import numpy as np
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def calc_cost(pred_xs, input_sample, g_xs,
|
def calc_cost(pred_xs, input_sample, g_xs,
|
||||||
state_cost_fn, input_cost_fn, terminal_state_cost_fn):
|
state_cost_fn, input_cost_fn, terminal_state_cost_fn):
|
||||||
""" calculate the cost
|
""" calculate the cost
|
||||||
|
@ -24,20 +25,21 @@ def calc_cost(pred_xs, input_sample, g_xs,
|
||||||
# state cost
|
# state cost
|
||||||
state_cost = 0.
|
state_cost = 0.
|
||||||
if state_cost_fn is not None:
|
if state_cost_fn is not None:
|
||||||
state_pred_par_cost = state_cost_fn(pred_xs[:, 1:-1, :], g_xs[:, 1:-1, :])
|
state_pred_par_cost = state_cost_fn(
|
||||||
|
pred_xs[:, 1:-1, :], g_xs[:, 1:-1, :])
|
||||||
state_cost = np.sum(np.sum(state_pred_par_cost, axis=-1), axis=-1)
|
state_cost = np.sum(np.sum(state_pred_par_cost, axis=-1), axis=-1)
|
||||||
|
|
||||||
# terminal cost
|
# terminal cost
|
||||||
terminal_state_cost = 0.
|
terminal_state_cost = 0.
|
||||||
if terminal_state_cost_fn is not None:
|
if terminal_state_cost_fn is not None:
|
||||||
terminal_state_par_cost = terminal_state_cost_fn(pred_xs[:, -1, :],
|
terminal_state_par_cost = terminal_state_cost_fn(pred_xs[:, -1, :],
|
||||||
g_xs[:, -1, :])
|
g_xs[:, -1, :])
|
||||||
terminal_state_cost = np.sum(terminal_state_par_cost, axis=-1)
|
terminal_state_cost = np.sum(terminal_state_par_cost, axis=-1)
|
||||||
|
|
||||||
# act cost
|
# act cost
|
||||||
act_cost = 0.
|
act_cost = 0.
|
||||||
if input_cost_fn is not None:
|
if input_cost_fn is not None:
|
||||||
act_pred_par_cost = input_cost_fn(input_sample)
|
act_pred_par_cost = input_cost_fn(input_sample)
|
||||||
act_cost = np.sum(np.sum(act_pred_par_cost, axis=-1), axis=-1)
|
act_cost = np.sum(np.sum(act_pred_par_cost, axis=-1), axis=-1)
|
||||||
|
|
||||||
return state_cost + terminal_state_cost + act_cost
|
return state_cost + terminal_state_cost + act_cost
|
||||||
|
|
|
@ -1,13 +1,15 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class Env():
|
class Env():
|
||||||
""" Environments class
|
""" Environments class
|
||||||
Attributes:
|
Attributes:
|
||||||
|
|
||||||
curr_x (numpy.ndarray): current state
|
curr_x (numpy.ndarray): current state
|
||||||
history_x (list[numpy.ndarray]): historty of state, shape(step_count*state_size)
|
history_x (list[numpy.ndarray]): historty of state, shape(step_count*state_size)
|
||||||
step_count (int): step count
|
step_count (int): step count
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -25,12 +27,12 @@ class Env():
|
||||||
info (dict): information
|
info (dict): information
|
||||||
"""
|
"""
|
||||||
self.step_count = 0
|
self.step_count = 0
|
||||||
|
|
||||||
self.curr_x = np.zeros(self.config["state_size"])
|
self.curr_x = np.zeros(self.config["state_size"])
|
||||||
|
|
||||||
if init_x is not None:
|
if init_x is not None:
|
||||||
self.curr_x = init_x
|
self.curr_x = init_x
|
||||||
|
|
||||||
# clear memory
|
# clear memory
|
||||||
self.history_x = []
|
self.history_x = []
|
||||||
self.history_g_x = []
|
self.history_g_x = []
|
||||||
|
@ -52,4 +54,4 @@ class Env():
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
return self.config
|
return self.config
|
||||||
|
|
|
@ -3,25 +3,27 @@ import scipy
|
||||||
from scipy import integrate
|
from scipy import integrate
|
||||||
from .env import Env
|
from .env import Env
|
||||||
|
|
||||||
|
|
||||||
class FirstOrderLagEnv(Env):
|
class FirstOrderLagEnv(Env):
|
||||||
""" First Order Lag System Env
|
""" First Order Lag System Env
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, tau=0.63):
|
def __init__(self, tau=0.63):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
self.config = {"state_size" : 4,\
|
self.config = {"state_size": 4,
|
||||||
"input_size" : 2,\
|
"input_size": 2,
|
||||||
"dt" : 0.05,\
|
"dt": 0.05,
|
||||||
"max_step" : 500,\
|
"max_step": 500,
|
||||||
"input_lower_bound": [-0.5, -0.5],\
|
"input_lower_bound": [-0.5, -0.5],
|
||||||
"input_upper_bound": [0.5, 0.5],
|
"input_upper_bound": [0.5, 0.5],
|
||||||
}
|
}
|
||||||
|
|
||||||
super(FirstOrderLagEnv, self).__init__(self.config)
|
super(FirstOrderLagEnv, self).__init__(self.config)
|
||||||
|
|
||||||
# to get discrete system matrix
|
# to get discrete system matrix
|
||||||
self.A, self.B = self._to_state_space(tau, dt=self.config["dt"])
|
self.A, self.B = self._to_state_space(tau, dt=self.config["dt"])
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _to_state_space(tau, dt=0.05):
|
def _to_state_space(tau, dt=0.05):
|
||||||
"""
|
"""
|
||||||
|
@ -34,13 +36,13 @@ class FirstOrderLagEnv(Env):
|
||||||
"""
|
"""
|
||||||
# continuous
|
# continuous
|
||||||
Ac = np.array([[-1./tau, 0., 0., 0.],
|
Ac = np.array([[-1./tau, 0., 0., 0.],
|
||||||
[0., -1./tau, 0., 0.],
|
[0., -1./tau, 0., 0.],
|
||||||
[1., 0., 0., 0.],
|
[1., 0., 0., 0.],
|
||||||
[0., 1., 0., 0.]])
|
[0., 1., 0., 0.]])
|
||||||
Bc = np.array([[1./tau, 0.],
|
Bc = np.array([[1./tau, 0.],
|
||||||
[0., 1./tau],
|
[0., 1./tau],
|
||||||
[0., 0.],
|
[0., 0.],
|
||||||
[0., 0.]])
|
[0., 0.]])
|
||||||
# to discrete system
|
# to discrete system
|
||||||
A = scipy.linalg.expm(dt*Ac)
|
A = scipy.linalg.expm(dt*Ac)
|
||||||
# B = np.matmul(np.matmul(scipy.linalg.expm(Ac*dt) -
|
# B = np.matmul(np.matmul(scipy.linalg.expm(Ac*dt) -
|
||||||
|
@ -55,7 +57,7 @@ class FirstOrderLagEnv(Env):
|
||||||
B[m, n] = sol[0]
|
B[m, n] = sol[0]
|
||||||
|
|
||||||
return A, B
|
return A, B
|
||||||
|
|
||||||
def reset(self, init_x=None):
|
def reset(self, init_x=None):
|
||||||
""" reset state
|
""" reset state
|
||||||
Returns:
|
Returns:
|
||||||
|
@ -63,7 +65,7 @@ class FirstOrderLagEnv(Env):
|
||||||
info (dict): information
|
info (dict): information
|
||||||
"""
|
"""
|
||||||
self.step_count = 0
|
self.step_count = 0
|
||||||
|
|
||||||
self.curr_x = np.zeros(self.config["state_size"])
|
self.curr_x = np.zeros(self.config["state_size"])
|
||||||
|
|
||||||
if init_x is not None:
|
if init_x is not None:
|
||||||
|
@ -71,7 +73,7 @@ class FirstOrderLagEnv(Env):
|
||||||
|
|
||||||
# goal
|
# goal
|
||||||
self.g_x = np.array([0., 0, -2., 3.])
|
self.g_x = np.array([0., 0, -2., 3.])
|
||||||
|
|
||||||
# clear memory
|
# clear memory
|
||||||
self.history_x = []
|
self.history_x = []
|
||||||
self.history_g_x = []
|
self.history_g_x = []
|
||||||
|
@ -94,7 +96,7 @@ class FirstOrderLagEnv(Env):
|
||||||
self.config["input_upper_bound"])
|
self.config["input_upper_bound"])
|
||||||
|
|
||||||
next_x = np.matmul(self.A, self.curr_x[:, np.newaxis]) \
|
next_x = np.matmul(self.A, self.curr_x[:, np.newaxis]) \
|
||||||
+ np.matmul(self.B, u[:, np.newaxis])
|
+ np.matmul(self.B, u[:, np.newaxis])
|
||||||
|
|
||||||
# cost
|
# cost
|
||||||
cost = 0
|
cost = 0
|
||||||
|
@ -104,17 +106,17 @@ class FirstOrderLagEnv(Env):
|
||||||
# save history
|
# save history
|
||||||
self.history_x.append(next_x.flatten())
|
self.history_x.append(next_x.flatten())
|
||||||
self.history_g_x.append(self.g_x.flatten())
|
self.history_g_x.append(self.g_x.flatten())
|
||||||
|
|
||||||
# update
|
# update
|
||||||
self.curr_x = next_x.flatten()
|
self.curr_x = next_x.flatten()
|
||||||
# update costs
|
# update costs
|
||||||
self.step_count += 1
|
self.step_count += 1
|
||||||
|
|
||||||
return next_x.flatten(), cost, \
|
return next_x.flatten(), cost, \
|
||||||
self.step_count > self.config["max_step"], \
|
self.step_count > self.config["max_step"], \
|
||||||
{"goal_state" : self.g_x}
|
{"goal_state": self.g_x}
|
||||||
|
|
||||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
raise ValueError("FirstOrderLag does not have animation")
|
raise ValueError("FirstOrderLag does not have animation")
|
||||||
|
|
|
@ -2,6 +2,8 @@ from .first_order_lag import FirstOrderLagEnv
|
||||||
from .two_wheeled import TwoWheeledConstEnv
|
from .two_wheeled import TwoWheeledConstEnv
|
||||||
from .two_wheeled import TwoWheeledTrackEnv
|
from .two_wheeled import TwoWheeledTrackEnv
|
||||||
from .cartpole import CartPoleEnv
|
from .cartpole import CartPoleEnv
|
||||||
|
from .nonlinear_sample_system import NonlinearSampleSystemEnv
|
||||||
|
|
||||||
|
|
||||||
def make_env(args):
|
def make_env(args):
|
||||||
|
|
||||||
|
@ -13,5 +15,7 @@ def make_env(args):
|
||||||
return TwoWheeledTrackEnv()
|
return TwoWheeledTrackEnv()
|
||||||
elif args.env == "CartPole":
|
elif args.env == "CartPole":
|
||||||
return CartPoleEnv()
|
return CartPoleEnv()
|
||||||
|
elif args.env == "NonlinearSample":
|
||||||
raise NotImplementedError("There is not {} Env".format(args.env))
|
return NonlinearSampleSystemEnv()
|
||||||
|
|
||||||
|
raise NotImplementedError("There is not {} Env".format(args.env))
|
||||||
|
|
|
@ -0,0 +1,97 @@
|
||||||
|
import numpy as np
|
||||||
|
import scipy
|
||||||
|
from scipy import integrate
|
||||||
|
from .env import Env
|
||||||
|
from ..common.utils import update_state_with_Runge_Kutta
|
||||||
|
|
||||||
|
|
||||||
|
class NonlinearSampleSystemEnv(Env):
|
||||||
|
""" Nonlinear Sample Env
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
self.config = {"state_size": 2,
|
||||||
|
"input_size": 1,
|
||||||
|
"dt": 0.01,
|
||||||
|
"max_step": 2000,
|
||||||
|
"input_lower_bound": [-0.5],
|
||||||
|
"input_upper_bound": [0.5],
|
||||||
|
}
|
||||||
|
|
||||||
|
super(NonlinearSampleSystemEnv, self).__init__(self.config)
|
||||||
|
|
||||||
|
def reset(self, init_x=np.array([2., 0.])):
|
||||||
|
""" reset state
|
||||||
|
Returns:
|
||||||
|
init_x (numpy.ndarray): initial state, shape(state_size, )
|
||||||
|
info (dict): information
|
||||||
|
"""
|
||||||
|
self.step_count = 0
|
||||||
|
|
||||||
|
self.curr_x = np.zeros(self.config["state_size"])
|
||||||
|
|
||||||
|
if init_x is not None:
|
||||||
|
self.curr_x = init_x
|
||||||
|
|
||||||
|
# goal
|
||||||
|
self.g_x = np.array([0., 0.])
|
||||||
|
|
||||||
|
# clear memory
|
||||||
|
self.history_x = []
|
||||||
|
self.history_g_x = []
|
||||||
|
|
||||||
|
return self.curr_x, {"goal_state": self.g_x}
|
||||||
|
|
||||||
|
def step(self, u):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
u (numpy.ndarray) : input, shape(input_size, )
|
||||||
|
Returns:
|
||||||
|
next_x (numpy.ndarray): next state, shape(state_size, )
|
||||||
|
cost (float): costs
|
||||||
|
done (bool): end the simulation or not
|
||||||
|
info (dict): information
|
||||||
|
"""
|
||||||
|
# clip action
|
||||||
|
u = np.clip(u,
|
||||||
|
self.config["input_lower_bound"],
|
||||||
|
self.config["input_upper_bound"])
|
||||||
|
|
||||||
|
functions = [self._func_x_1, self._func_x_2]
|
||||||
|
|
||||||
|
next_x = update_state_with_Runge_Kutta(self.curr_x, u,
|
||||||
|
functions, self.config["dt"],
|
||||||
|
batch=False)
|
||||||
|
|
||||||
|
# cost
|
||||||
|
cost = 0
|
||||||
|
cost = np.sum(u**2)
|
||||||
|
cost += np.sum((self.curr_x - self.g_x)**2)
|
||||||
|
|
||||||
|
# save history
|
||||||
|
self.history_x.append(next_x.flatten())
|
||||||
|
self.history_g_x.append(self.g_x.flatten())
|
||||||
|
|
||||||
|
# update
|
||||||
|
self.curr_x = next_x.flatten()
|
||||||
|
# update costs
|
||||||
|
self.step_count += 1
|
||||||
|
|
||||||
|
return next_x.flatten(), cost, \
|
||||||
|
self.step_count > self.config["max_step"], \
|
||||||
|
{"goal_state": self.g_x}
|
||||||
|
|
||||||
|
def _func_x_1(self, x, u):
|
||||||
|
x_dot = x[1]
|
||||||
|
return x_dot
|
||||||
|
|
||||||
|
def _func_x_2(self, x, u):
|
||||||
|
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
|
||||||
|
return x_dot
|
||||||
|
|
||||||
|
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
raise ValueError("NonlinearSampleSystemEnv does not have animation")
|
|
@ -5,47 +5,50 @@ import matplotlib.pyplot as plt
|
||||||
from .env import Env
|
from .env import Env
|
||||||
from ..plotters.plot_objs import circle_with_angle, square, circle
|
from ..plotters.plot_objs import circle_with_angle, square, circle
|
||||||
|
|
||||||
|
|
||||||
def step_two_wheeled_env(curr_x, u, dt, method="Oylar"):
|
def step_two_wheeled_env(curr_x, u, dt, method="Oylar"):
|
||||||
""" step two wheeled enviroment
|
""" step two wheeled enviroment
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||||
u (numpy.ndarray): input, shape(input_size, )
|
u (numpy.ndarray): input, shape(input_size, )
|
||||||
dt (float): sampling time
|
dt (float): sampling time
|
||||||
Returns:
|
Returns:
|
||||||
next_x (numpy.ndarray): next state, shape(state_size. )
|
next_x (numpy.ndarray): next state, shape(state_size. )
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
TODO: deal with another method, like Runge Kutta
|
TODO: deal with another method, like Runge Kutta
|
||||||
"""
|
"""
|
||||||
B = np.array([[np.cos(curr_x[-1]), 0.],
|
B = np.array([[np.cos(curr_x[-1]), 0.],
|
||||||
[np.sin(curr_x[-1]), 0.],
|
[np.sin(curr_x[-1]), 0.],
|
||||||
[0., 1.]])
|
[0., 1.]])
|
||||||
|
|
||||||
x_dot = np.matmul(B, u[:, np.newaxis])
|
x_dot = np.matmul(B, u[:, np.newaxis])
|
||||||
|
|
||||||
next_x = x_dot.flatten() * dt + curr_x
|
next_x = x_dot.flatten() * dt + curr_x
|
||||||
|
|
||||||
return next_x
|
return next_x
|
||||||
|
|
||||||
|
|
||||||
class TwoWheeledConstEnv(Env):
|
class TwoWheeledConstEnv(Env):
|
||||||
""" Two wheeled robot with constant goal Env
|
""" Two wheeled robot with constant goal Env
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
self.config = {"state_size" : 3,\
|
self.config = {"state_size": 3,
|
||||||
"input_size" : 2,\
|
"input_size": 2,
|
||||||
"dt" : 0.01,\
|
"dt": 0.01,
|
||||||
"max_step" : 500,\
|
"max_step": 500,
|
||||||
"input_lower_bound": (-1.5, -3.14),\
|
"input_lower_bound": (-1.5, -3.14),
|
||||||
"input_upper_bound": (1.5, 3.14),\
|
"input_upper_bound": (1.5, 3.14),
|
||||||
"car_size": 0.2,\
|
"car_size": 0.2,
|
||||||
"wheel_size": (0.075, 0.015)
|
"wheel_size": (0.075, 0.015)
|
||||||
}
|
}
|
||||||
|
|
||||||
super(TwoWheeledConstEnv, self).__init__(self.config)
|
super(TwoWheeledConstEnv, self).__init__(self.config)
|
||||||
|
|
||||||
def reset(self, init_x=None):
|
def reset(self, init_x=None):
|
||||||
""" reset state
|
""" reset state
|
||||||
|
|
||||||
|
@ -54,7 +57,7 @@ class TwoWheeledConstEnv(Env):
|
||||||
info (dict): information
|
info (dict): information
|
||||||
"""
|
"""
|
||||||
self.step_count = 0
|
self.step_count = 0
|
||||||
|
|
||||||
self.curr_x = np.zeros(self.config["state_size"])
|
self.curr_x = np.zeros(self.config["state_size"])
|
||||||
|
|
||||||
if init_x is not None:
|
if init_x is not None:
|
||||||
|
@ -62,7 +65,7 @@ class TwoWheeledConstEnv(Env):
|
||||||
|
|
||||||
# goal
|
# goal
|
||||||
self.g_x = np.array([2.5, 2.5, 0.])
|
self.g_x = np.array([2.5, 2.5, 0.])
|
||||||
|
|
||||||
# clear memory
|
# clear memory
|
||||||
self.history_x = []
|
self.history_x = []
|
||||||
self.history_g_x = []
|
self.history_g_x = []
|
||||||
|
@ -96,32 +99,32 @@ class TwoWheeledConstEnv(Env):
|
||||||
# save history
|
# save history
|
||||||
self.history_x.append(next_x.flatten())
|
self.history_x.append(next_x.flatten())
|
||||||
self.history_g_x.append(self.g_x.flatten())
|
self.history_g_x.append(self.g_x.flatten())
|
||||||
|
|
||||||
# update
|
# update
|
||||||
self.curr_x = next_x.flatten()
|
self.curr_x = next_x.flatten()
|
||||||
# update costs
|
# update costs
|
||||||
self.step_count += 1
|
self.step_count += 1
|
||||||
|
|
||||||
return next_x.flatten(), costs, \
|
return next_x.flatten(), costs, \
|
||||||
self.step_count > self.config["max_step"], \
|
self.step_count > self.config["max_step"], \
|
||||||
{"goal_state" : self.g_x}
|
{"goal_state": self.g_x}
|
||||||
|
|
||||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||||
""" plot cartpole object function
|
""" plot cartpole object function
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
to_plot (axis or imgs): plotted objects
|
to_plot (axis or imgs): plotted objects
|
||||||
i (int): frame count
|
i (int): frame count
|
||||||
history_x (numpy.ndarray): history of state, shape(iters, state)
|
history_x (numpy.ndarray): history of state, shape(iters, state)
|
||||||
history_g_x (numpy.ndarray): history of goal state,
|
history_g_x (numpy.ndarray): history of goal state,
|
||||||
shape(iters, state)
|
shape(iters, state)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
None or imgs : imgs order is ["cart_img", "pole_img"]
|
None or imgs : imgs order is ["cart_img", "pole_img"]
|
||||||
"""
|
"""
|
||||||
if isinstance(to_plot, Axes):
|
if isinstance(to_plot, Axes):
|
||||||
imgs = {} # create new imgs
|
imgs = {} # create new imgs
|
||||||
|
|
||||||
imgs["car"] = to_plot.plot([], [], c="k")[0]
|
imgs["car"] = to_plot.plot([], [], c="k")[0]
|
||||||
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
|
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
|
||||||
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
||||||
|
@ -139,9 +142,9 @@ class TwoWheeledConstEnv(Env):
|
||||||
# set imgs
|
# set imgs
|
||||||
# car imgs
|
# car imgs
|
||||||
car_x, car_y, car_angle_x, car_angle_y, \
|
car_x, car_y, car_angle_x, car_angle_y, \
|
||||||
left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
|
left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
|
||||||
self._plot_car(history_x[i])
|
self._plot_car(history_x[i])
|
||||||
|
|
||||||
to_plot["car"].set_data(car_x, car_y)
|
to_plot["car"].set_data(car_x, car_y)
|
||||||
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
|
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
|
||||||
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
|
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
|
||||||
|
@ -150,7 +153,7 @@ class TwoWheeledConstEnv(Env):
|
||||||
# goal and trajs
|
# goal and trajs
|
||||||
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
|
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
|
||||||
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
|
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
|
||||||
|
|
||||||
def _plot_car(self, curr_x):
|
def _plot_car(self, curr_x):
|
||||||
""" plot car fucntions
|
""" plot car fucntions
|
||||||
"""
|
"""
|
||||||
|
@ -158,53 +161,55 @@ class TwoWheeledConstEnv(Env):
|
||||||
car_x, car_y, car_angle_x, car_angle_y = \
|
car_x, car_y, car_angle_x, car_angle_y = \
|
||||||
circle_with_angle(curr_x[0], curr_x[1],
|
circle_with_angle(curr_x[0], curr_x[1],
|
||||||
self.config["car_size"], curr_x[2])
|
self.config["car_size"], curr_x[2])
|
||||||
|
|
||||||
# left tire
|
# left tire
|
||||||
center_x = (self.config["car_size"] \
|
center_x = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
|
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
|
||||||
center_y = (self.config["car_size"] \
|
center_y = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
|
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
|
||||||
|
|
||||||
left_tire_x, left_tire_y = \
|
left_tire_x, left_tire_y = \
|
||||||
square(center_x, center_y,
|
square(center_x, center_y,
|
||||||
self.config["wheel_size"], curr_x[2])
|
self.config["wheel_size"], curr_x[2])
|
||||||
|
|
||||||
# right tire
|
# right tire
|
||||||
center_x = (self.config["car_size"] \
|
center_x = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
|
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
|
||||||
center_y = (self.config["car_size"] \
|
center_y = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
|
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
|
||||||
|
|
||||||
right_tire_x, right_tire_y = \
|
right_tire_x, right_tire_y = \
|
||||||
square(center_x, center_y,
|
square(center_x, center_y,
|
||||||
self.config["wheel_size"], curr_x[2])
|
self.config["wheel_size"], curr_x[2])
|
||||||
|
|
||||||
return car_x, car_y, car_angle_x, car_angle_y,\
|
return car_x, car_y, car_angle_x, car_angle_y,\
|
||||||
left_tire_x, left_tire_y,\
|
left_tire_x, left_tire_y,\
|
||||||
right_tire_x, right_tire_y
|
right_tire_x, right_tire_y
|
||||||
|
|
||||||
|
|
||||||
class TwoWheeledTrackEnv(Env):
|
class TwoWheeledTrackEnv(Env):
|
||||||
""" Two wheeled robot with constant goal Env
|
""" Two wheeled robot with constant goal Env
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
self.config = {"state_size" : 3,\
|
self.config = {"state_size": 3,
|
||||||
"input_size" : 2,\
|
"input_size": 2,
|
||||||
"dt" : 0.01,\
|
"dt": 0.01,
|
||||||
"max_step" : 1000,\
|
"max_step": 1000,
|
||||||
"input_lower_bound": (-1.5, -3.14),\
|
"input_lower_bound": (-1.5, -3.14),
|
||||||
"input_upper_bound": (1.5, 3.14),\
|
"input_upper_bound": (1.5, 3.14),
|
||||||
"car_size": 0.2,\
|
"car_size": 0.2,
|
||||||
"wheel_size": (0.075, 0.015)
|
"wheel_size": (0.075, 0.015)
|
||||||
}
|
}
|
||||||
|
|
||||||
super(TwoWheeledTrackEnv, self).__init__(self.config)
|
super(TwoWheeledTrackEnv, self).__init__(self.config)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def make_road(linelength=3., circle_radius=1.):
|
def make_road(linelength=3., circle_radius=1.):
|
||||||
""" make track
|
""" make track
|
||||||
|
@ -220,23 +225,23 @@ class TwoWheeledTrackEnv(Env):
|
||||||
|
|
||||||
# circle
|
# circle
|
||||||
circle_1_x, circle_1_y = circle(linelength/2., circle_radius,
|
circle_1_x, circle_1_y = circle(linelength/2., circle_radius,
|
||||||
circle_radius, start=-np.pi/2., end=np.pi/2., n_point=50)
|
circle_radius, start=-np.pi/2., end=np.pi/2., n_point=50)
|
||||||
circle_1 = np.stack((circle_1_x , circle_1_y), axis=1)
|
circle_1 = np.stack((circle_1_x, circle_1_y), axis=1)
|
||||||
|
|
||||||
circle_2_x, circle_2_y = circle(-linelength/2., circle_radius,
|
circle_2_x, circle_2_y = circle(-linelength/2., circle_radius,
|
||||||
circle_radius, start=np.pi/2., end=3*np.pi/2., n_point=50)
|
circle_radius, start=np.pi/2., end=3*np.pi/2., n_point=50)
|
||||||
circle_2 = np.stack((circle_2_x , circle_2_y), axis=1)
|
circle_2 = np.stack((circle_2_x, circle_2_y), axis=1)
|
||||||
|
|
||||||
road_pos = np.concatenate((line_1, circle_1, line_2, circle_2), axis=0)
|
road_pos = np.concatenate((line_1, circle_1, line_2, circle_2), axis=0)
|
||||||
|
|
||||||
# calc road angle
|
# calc road angle
|
||||||
road_diff = road_pos[1:] - road_pos[:-1]
|
road_diff = road_pos[1:] - road_pos[:-1]
|
||||||
road_angle = np.arctan2(road_diff[:, 1], road_diff[:, 0])
|
road_angle = np.arctan2(road_diff[:, 1], road_diff[:, 0])
|
||||||
road_angle = np.concatenate((np.zeros(1), road_angle))
|
road_angle = np.concatenate((np.zeros(1), road_angle))
|
||||||
|
|
||||||
road = np.concatenate((road_pos, road_angle[:, np.newaxis]), axis=1)
|
road = np.concatenate((road_pos, road_angle[:, np.newaxis]), axis=1)
|
||||||
|
|
||||||
return np.tile(road, (3, 1))
|
return np.tile(road, (3, 1))
|
||||||
|
|
||||||
def reset(self, init_x=None):
|
def reset(self, init_x=None):
|
||||||
""" reset state
|
""" reset state
|
||||||
|
@ -246,7 +251,7 @@ class TwoWheeledTrackEnv(Env):
|
||||||
info (dict): information
|
info (dict): information
|
||||||
"""
|
"""
|
||||||
self.step_count = 0
|
self.step_count = 0
|
||||||
|
|
||||||
self.curr_x = np.zeros(self.config["state_size"])
|
self.curr_x = np.zeros(self.config["state_size"])
|
||||||
|
|
||||||
if init_x is not None:
|
if init_x is not None:
|
||||||
|
@ -254,7 +259,7 @@ class TwoWheeledTrackEnv(Env):
|
||||||
|
|
||||||
# goal
|
# goal
|
||||||
self.g_traj = self.make_road()
|
self.g_traj = self.make_road()
|
||||||
|
|
||||||
# clear memory
|
# clear memory
|
||||||
self.history_x = []
|
self.history_x = []
|
||||||
self.history_g_x = []
|
self.history_g_x = []
|
||||||
|
@ -286,32 +291,32 @@ class TwoWheeledTrackEnv(Env):
|
||||||
|
|
||||||
# save history
|
# save history
|
||||||
self.history_x.append(next_x.flatten())
|
self.history_x.append(next_x.flatten())
|
||||||
|
|
||||||
# update
|
# update
|
||||||
self.curr_x = next_x.flatten()
|
self.curr_x = next_x.flatten()
|
||||||
# update costs
|
# update costs
|
||||||
self.step_count += 1
|
self.step_count += 1
|
||||||
|
|
||||||
return next_x.flatten(), costs, \
|
return next_x.flatten(), costs, \
|
||||||
self.step_count > self.config["max_step"], \
|
self.step_count > self.config["max_step"], \
|
||||||
{"goal_state" : self.g_traj}
|
{"goal_state": self.g_traj}
|
||||||
|
|
||||||
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
def plot_func(self, to_plot, i=None, history_x=None, history_g_x=None):
|
||||||
""" plot cartpole object function
|
""" plot cartpole object function
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
to_plot (axis or imgs): plotted objects
|
to_plot (axis or imgs): plotted objects
|
||||||
i (int): frame count
|
i (int): frame count
|
||||||
history_x (numpy.ndarray): history of state, shape(iters, state)
|
history_x (numpy.ndarray): history of state, shape(iters, state)
|
||||||
history_g_x (numpy.ndarray): history of goal state,
|
history_g_x (numpy.ndarray): history of goal state,
|
||||||
shape(iters, state)
|
shape(iters, state)
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
None or imgs : imgs order is ["cart_img", "pole_img"]
|
None or imgs : imgs order is ["cart_img", "pole_img"]
|
||||||
"""
|
"""
|
||||||
if isinstance(to_plot, Axes):
|
if isinstance(to_plot, Axes):
|
||||||
imgs = {} # create new imgs
|
imgs = {} # create new imgs
|
||||||
|
|
||||||
imgs["car"] = to_plot.plot([], [], c="k")[0]
|
imgs["car"] = to_plot.plot([], [], c="k")[0]
|
||||||
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
|
imgs["car_angle"] = to_plot.plot([], [], c="k")[0]
|
||||||
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
imgs["left_tire"] = to_plot.plot([], [], c="k", linewidth=5)[0]
|
||||||
|
@ -333,9 +338,9 @@ class TwoWheeledTrackEnv(Env):
|
||||||
# set imgs
|
# set imgs
|
||||||
# car imgs
|
# car imgs
|
||||||
car_x, car_y, car_angle_x, car_angle_y, \
|
car_x, car_y, car_angle_x, car_angle_y, \
|
||||||
left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
|
left_tire_x, left_tire_y, right_tire_x, right_tire_y = \
|
||||||
self._plot_car(history_x[i])
|
self._plot_car(history_x[i])
|
||||||
|
|
||||||
to_plot["car"].set_data(car_x, car_y)
|
to_plot["car"].set_data(car_x, car_y)
|
||||||
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
|
to_plot["car_angle"].set_data(car_angle_x, car_angle_y)
|
||||||
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
|
to_plot["left_tire"].set_data(left_tire_x, left_tire_y,)
|
||||||
|
@ -344,7 +349,7 @@ class TwoWheeledTrackEnv(Env):
|
||||||
# goal and trajs
|
# goal and trajs
|
||||||
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
|
to_plot["goal"].set_data(history_g_x[i, 0], history_g_x[i, 1])
|
||||||
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
|
to_plot["traj"].set_data(history_x[:i, 0], history_x[:i, 1])
|
||||||
|
|
||||||
def _plot_car(self, curr_x):
|
def _plot_car(self, curr_x):
|
||||||
""" plot car fucntions
|
""" plot car fucntions
|
||||||
"""
|
"""
|
||||||
|
@ -352,31 +357,31 @@ class TwoWheeledTrackEnv(Env):
|
||||||
car_x, car_y, car_angle_x, car_angle_y = \
|
car_x, car_y, car_angle_x, car_angle_y = \
|
||||||
circle_with_angle(curr_x[0], curr_x[1],
|
circle_with_angle(curr_x[0], curr_x[1],
|
||||||
self.config["car_size"], curr_x[2])
|
self.config["car_size"], curr_x[2])
|
||||||
|
|
||||||
# left tire
|
# left tire
|
||||||
center_x = (self.config["car_size"] \
|
center_x = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
|
* np.cos(curr_x[2]-np.pi/2.) + curr_x[0]
|
||||||
center_y = (self.config["car_size"] \
|
center_y = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
|
* np.sin(curr_x[2]-np.pi/2.) + curr_x[1]
|
||||||
|
|
||||||
left_tire_x, left_tire_y = \
|
left_tire_x, left_tire_y = \
|
||||||
square(center_x, center_y,
|
square(center_x, center_y,
|
||||||
self.config["wheel_size"], curr_x[2])
|
self.config["wheel_size"], curr_x[2])
|
||||||
|
|
||||||
# right tire
|
# right tire
|
||||||
center_x = (self.config["car_size"] \
|
center_x = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
|
* np.cos(curr_x[2]+np.pi/2.) + curr_x[0]
|
||||||
center_y = (self.config["car_size"] \
|
center_y = (self.config["car_size"]
|
||||||
+ self.config["wheel_size"][1]) \
|
+ self.config["wheel_size"][1]) \
|
||||||
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
|
* np.sin(curr_x[2]+np.pi/2.) + curr_x[1]
|
||||||
|
|
||||||
right_tire_x, right_tire_y = \
|
right_tire_x, right_tire_y = \
|
||||||
square(center_x, center_y,
|
square(center_x, center_y,
|
||||||
self.config["wheel_size"], curr_x[2])
|
self.config["wheel_size"], curr_x[2])
|
||||||
|
|
||||||
return car_x, car_y, car_angle_x, car_angle_y,\
|
return car_x, car_y, car_angle_x, car_angle_y,\
|
||||||
left_tire_x, left_tire_y,\
|
left_tire_x, left_tire_y,\
|
||||||
right_tire_x, right_tire_y
|
right_tire_x, right_tire_y
|
||||||
|
|
|
@ -7,6 +7,7 @@ import six
|
||||||
import pickle
|
import pickle
|
||||||
from logging import DEBUG, basicConfig, getLogger, FileHandler, StreamHandler, Formatter, Logger
|
from logging import DEBUG, basicConfig, getLogger, FileHandler, StreamHandler, Formatter, Logger
|
||||||
|
|
||||||
|
|
||||||
def make_logger(save_dir):
|
def make_logger(save_dir):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
|
@ -21,7 +22,7 @@ def make_logger(save_dir):
|
||||||
# mypackage log level
|
# mypackage log level
|
||||||
logger = getLogger("PythonLinearNonlinearControl")
|
logger = getLogger("PythonLinearNonlinearControl")
|
||||||
logger.setLevel(DEBUG)
|
logger.setLevel(DEBUG)
|
||||||
|
|
||||||
# file handler
|
# file handler
|
||||||
log_path = os.path.join(save_dir, "log.txt")
|
log_path = os.path.join(save_dir, "log.txt")
|
||||||
file_handler = FileHandler(log_path)
|
file_handler = FileHandler(log_path)
|
||||||
|
@ -33,6 +34,7 @@ def make_logger(save_dir):
|
||||||
# sh_handler = StreamHandler()
|
# sh_handler = StreamHandler()
|
||||||
# logger.addHandler(sh_handler)
|
# logger.addHandler(sh_handler)
|
||||||
|
|
||||||
|
|
||||||
def int_tuple(s):
|
def int_tuple(s):
|
||||||
""" transform str to tuple
|
""" transform str to tuple
|
||||||
Args:
|
Args:
|
||||||
|
@ -42,6 +44,7 @@ def int_tuple(s):
|
||||||
"""
|
"""
|
||||||
return tuple(int(i) for i in s.split(','))
|
return tuple(int(i) for i in s.split(','))
|
||||||
|
|
||||||
|
|
||||||
def bool_flag(s):
|
def bool_flag(s):
|
||||||
""" transform str to bool flg
|
""" transform str to bool flg
|
||||||
Args:
|
Args:
|
||||||
|
@ -54,6 +57,7 @@ def bool_flag(s):
|
||||||
msg = 'Invalid value "%s" for bool flag (should be 0 or 1)'
|
msg = 'Invalid value "%s" for bool flag (should be 0 or 1)'
|
||||||
raise ValueError(msg % s)
|
raise ValueError(msg % s)
|
||||||
|
|
||||||
|
|
||||||
def file_exists(path):
|
def file_exists(path):
|
||||||
""" Check file existence on given path
|
""" Check file existence on given path
|
||||||
Args:
|
Args:
|
||||||
|
@ -63,6 +67,7 @@ def file_exists(path):
|
||||||
"""
|
"""
|
||||||
return os.path.exists(path)
|
return os.path.exists(path)
|
||||||
|
|
||||||
|
|
||||||
def create_dir_if_not_exist(outdir):
|
def create_dir_if_not_exist(outdir):
|
||||||
""" Check directory existence and creates new directory if not exist
|
""" Check directory existence and creates new directory if not exist
|
||||||
Args:
|
Args:
|
||||||
|
@ -77,6 +82,7 @@ def create_dir_if_not_exist(outdir):
|
||||||
return
|
return
|
||||||
os.makedirs(outdir)
|
os.makedirs(outdir)
|
||||||
|
|
||||||
|
|
||||||
def write_text_to_file(file_path, data):
|
def write_text_to_file(file_path, data):
|
||||||
""" Write given text data to file
|
""" Write given text data to file
|
||||||
Args:
|
Args:
|
||||||
|
@ -86,6 +92,7 @@ def write_text_to_file(file_path, data):
|
||||||
with open(file_path, 'w') as f:
|
with open(file_path, 'w') as f:
|
||||||
f.write(data)
|
f.write(data)
|
||||||
|
|
||||||
|
|
||||||
def read_text_from_file(file_path):
|
def read_text_from_file(file_path):
|
||||||
""" Read given file as text
|
""" Read given file as text
|
||||||
Args:
|
Args:
|
||||||
|
@ -96,6 +103,7 @@ def read_text_from_file(file_path):
|
||||||
with open(file_path, 'r') as f:
|
with open(file_path, 'r') as f:
|
||||||
return f.read()
|
return f.read()
|
||||||
|
|
||||||
|
|
||||||
def save_pickle(file_path, data):
|
def save_pickle(file_path, data):
|
||||||
""" pickle given data to file
|
""" pickle given data to file
|
||||||
Args:
|
Args:
|
||||||
|
@ -105,6 +113,7 @@ def save_pickle(file_path, data):
|
||||||
with open(file_path, 'wb') as f:
|
with open(file_path, 'wb') as f:
|
||||||
pickle.dump(data, f)
|
pickle.dump(data, f)
|
||||||
|
|
||||||
|
|
||||||
def load_pickle(file_path):
|
def load_pickle(file_path):
|
||||||
""" load pickled data from file
|
""" load pickled data from file
|
||||||
Args:
|
Args:
|
||||||
|
@ -118,6 +127,7 @@ def load_pickle(file_path):
|
||||||
else:
|
else:
|
||||||
return pickle.load(f, encoding='bytes')
|
return pickle.load(f, encoding='bytes')
|
||||||
|
|
||||||
|
|
||||||
def prepare_output_dir(base_dir, args, time_format='%Y-%m-%d-%H%M%S'):
|
def prepare_output_dir(base_dir, args, time_format='%Y-%m-%d-%H%M%S'):
|
||||||
""" prepare a directory with current datetime as name.
|
""" prepare a directory with current datetime as name.
|
||||||
created directory contains the command and args when the script was called as text file.
|
created directory contains the command and args when the script was called as text file.
|
||||||
|
@ -144,4 +154,4 @@ def prepare_output_dir(base_dir, args, time_format='%Y-%m-%d-%H%M%S'):
|
||||||
argv = ' '.join(sys.argv)
|
argv = ' '.join(sys.argv)
|
||||||
write_text_to_file(argv_file_path, argv)
|
write_text_to_file(argv_file_path, argv)
|
||||||
|
|
||||||
return outdir
|
return outdir
|
||||||
|
|
|
@ -2,9 +2,11 @@ import numpy as np
|
||||||
|
|
||||||
from .model import Model
|
from .model import Model
|
||||||
|
|
||||||
|
|
||||||
class CartPoleModel(Model):
|
class CartPoleModel(Model):
|
||||||
""" cartpole model
|
""" cartpole model
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -17,7 +19,7 @@ class CartPoleModel(Model):
|
||||||
|
|
||||||
def predict_next_state(self, curr_x, u):
|
def predict_next_state(self, curr_x, u):
|
||||||
""" predict next state
|
""" predict next state
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
||||||
shape(pop_size, state_size)
|
shape(pop_size, state_size)
|
||||||
|
@ -31,59 +33,59 @@ class CartPoleModel(Model):
|
||||||
# x
|
# x
|
||||||
d_x0 = curr_x[1]
|
d_x0 = curr_x[1]
|
||||||
# v_x
|
# v_x
|
||||||
d_x1 = (u[0] + self.mp * np.sin(curr_x[2]) \
|
d_x1 = (u[0] + self.mp * np.sin(curr_x[2])
|
||||||
* (self.l * (curr_x[3]**2) \
|
* (self.l * (curr_x[3]**2)
|
||||||
+ self.g * np.cos(curr_x[2]))) \
|
+ self.g * np.cos(curr_x[2]))) \
|
||||||
/ (self.mc + self.mp * (np.sin(curr_x[2])**2))
|
/ (self.mc + self.mp * (np.sin(curr_x[2])**2))
|
||||||
# theta
|
# theta
|
||||||
d_x2 = curr_x[3]
|
d_x2 = curr_x[3]
|
||||||
# v_theta
|
# v_theta
|
||||||
d_x3 = (-u[0] * np.cos(curr_x[2]) \
|
d_x3 = (-u[0] * np.cos(curr_x[2])
|
||||||
- self.mp * self.l * (curr_x[3]**2) \
|
- self.mp * self.l * (curr_x[3]**2)
|
||||||
* np.cos(curr_x[2]) * np.sin(curr_x[2]) \
|
* np.cos(curr_x[2]) * np.sin(curr_x[2])
|
||||||
- (self.mc + self.mp) * self.g * np.sin(curr_x[2])) \
|
- (self.mc + self.mp) * self.g * np.sin(curr_x[2])) \
|
||||||
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
|
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[2])**2)))
|
||||||
|
|
||||||
next_x = curr_x +\
|
next_x = curr_x +\
|
||||||
np.array([d_x0, d_x1, d_x2, d_x3]) * self.dt
|
np.array([d_x0, d_x1, d_x2, d_x3]) * self.dt
|
||||||
|
|
||||||
return next_x
|
return next_x
|
||||||
|
|
||||||
elif len(u.shape) == 2:
|
elif len(u.shape) == 2:
|
||||||
# x
|
# x
|
||||||
d_x0 = curr_x[:, 1]
|
d_x0 = curr_x[:, 1]
|
||||||
# v_x
|
# v_x
|
||||||
d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2]) \
|
d_x1 = (u[:, 0] + self.mp * np.sin(curr_x[:, 2])
|
||||||
* (self.l * (curr_x[:, 3]**2) \
|
* (self.l * (curr_x[:, 3]**2)
|
||||||
+ self.g * np.cos(curr_x[:, 2]))) \
|
+ self.g * np.cos(curr_x[:, 2]))) \
|
||||||
/ (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
|
/ (self.mc + self.mp * (np.sin(curr_x[:, 2])**2))
|
||||||
# theta
|
# theta
|
||||||
d_x2 = curr_x[:, 3]
|
d_x2 = curr_x[:, 3]
|
||||||
# v_theta
|
# v_theta
|
||||||
d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2]) \
|
d_x3 = (-u[:, 0] * np.cos(curr_x[:, 2])
|
||||||
- self.mp * self.l * (curr_x[:, 3]**2) \
|
- self.mp * self.l * (curr_x[:, 3]**2)
|
||||||
* np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2]) \
|
* np.cos(curr_x[:, 2]) * np.sin(curr_x[:, 2])
|
||||||
- (self.mc + self.mp) * self.g * np.sin(curr_x[:, 2])) \
|
- (self.mc + self.mp) * self.g * np.sin(curr_x[:, 2])) \
|
||||||
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
|
/ (self.l * (self.mc + self.mp * (np.sin(curr_x[:, 2])**2)))
|
||||||
|
|
||||||
next_x = curr_x +\
|
next_x = curr_x +\
|
||||||
np.stack((d_x0, d_x1, d_x2, d_x3), axis=1) * self.dt
|
np.stack((d_x0, d_x1, d_x2, d_x3), axis=1) * self.dt
|
||||||
|
|
||||||
return next_x
|
return next_x
|
||||||
|
|
||||||
def calc_f_x(self, xs, us, dt):
|
def calc_f_x(self, xs, us, dt):
|
||||||
""" gradient of model with respect to the state in batch form
|
""" gradient of model with respect to the state in batch form
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_x (numpy.ndarray): gradient of model with respect to x,
|
f_x (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, state_size)
|
shape(pred_len, state_size, state_size)
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
This should be discrete form !!
|
This should be discrete form !!
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
(_, state_size) = xs.shape
|
(_, state_size) = xs.shape
|
||||||
(pred_len, _) = us.shape
|
(pred_len, _) = us.shape
|
||||||
|
@ -95,36 +97,36 @@ class CartPoleModel(Model):
|
||||||
|
|
||||||
# f_theta
|
# f_theta
|
||||||
tmp = ((self.mc + self.mp * np.sin(xs[:, 2])**2)**(-2)) \
|
tmp = ((self.mc + self.mp * np.sin(xs[:, 2])**2)**(-2)) \
|
||||||
* self.mp * 2. * np.sin(xs[:, 2]) * np.cos(xs[:, 2])
|
* self.mp * 2. * np.sin(xs[:, 2]) * np.cos(xs[:, 2])
|
||||||
tmp2 = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
|
tmp2 = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
|
||||||
|
|
||||||
f_x[:, 1, 2] = - us[:, 0] * tmp \
|
f_x[:, 1, 2] = - us[:, 0] * tmp \
|
||||||
- tmp * (self.mp * np.sin(xs[:, 2]) \
|
- tmp * (self.mp * np.sin(xs[:, 2])
|
||||||
* (self.l * xs[:, 3]**2 \
|
* (self.l * xs[:, 3]**2
|
||||||
+ self.g * np.cos(xs[:, 2]))) \
|
+ self.g * np.cos(xs[:, 2]))) \
|
||||||
+ tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l \
|
+ tmp2 * (self.mp * np.cos(xs[:, 2]) * self.l
|
||||||
* xs[:, 3]**2 \
|
* xs[:, 3]**2
|
||||||
+ self.mp * self.g * (np.cos(xs[:, 2])**2 \
|
+ self.mp * self.g * (np.cos(xs[:, 2])**2
|
||||||
- np.sin(xs[:, 2])**2))
|
- np.sin(xs[:, 2])**2))
|
||||||
f_x[:, 3, 2] = - 1. / self.l * tmp \
|
f_x[:, 3, 2] = - 1. / self.l * tmp \
|
||||||
* (-us[:, 0] * np.cos(xs[:, 2]) \
|
* (-us[:, 0] * np.cos(xs[:, 2])
|
||||||
- self.mp * self.l * (xs[:, 3]**2) \
|
- self.mp * self.l * (xs[:, 3]**2)
|
||||||
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]) \
|
* np.cos(xs[:, 2]) * np.sin(xs[:, 2])
|
||||||
- (self.mc + self.mp) * self.g * np.sin(xs[:, 2])) \
|
- (self.mc + self.mp) * self.g * np.sin(xs[:, 2])) \
|
||||||
+ 1. / self.l * tmp2 \
|
+ 1. / self.l * tmp2 \
|
||||||
* (us[:, 0] * np.sin(xs[:, 2]) \
|
* (us[:, 0] * np.sin(xs[:, 2])
|
||||||
- self.mp * self.l * xs[:, 3]**2 \
|
- self.mp * self.l * xs[:, 3]**2
|
||||||
* (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2) \
|
* (np.cos(xs[:, 2])**2 - np.sin(xs[:, 2])**2)
|
||||||
- (self.mc + self.mp) \
|
- (self.mc + self.mp)
|
||||||
* self.g * np.cos(xs[:, 2]))
|
* self.g * np.cos(xs[:, 2]))
|
||||||
|
|
||||||
# f_theta_dot
|
# f_theta_dot
|
||||||
f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2]) \
|
f_x[:, 1, 3] = tmp2 * (self.mp * np.sin(xs[:, 2])
|
||||||
* self.l * 2 * xs[:, 3])
|
* self.l * 2 * xs[:, 3])
|
||||||
f_x[:, 2, 3] = np.ones(pred_len)
|
f_x[:, 2, 3] = np.ones(pred_len)
|
||||||
f_x[:, 3, 3] = 1. / self.l * tmp2 \
|
f_x[:, 3, 3] = 1. / self.l * tmp2 \
|
||||||
* (-2. * self.mp * self.l * xs[:, 3] \
|
* (-2. * self.mp * self.l * xs[:, 3]
|
||||||
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]))
|
* np.cos(xs[:, 2]) * np.sin(xs[:, 2]))
|
||||||
|
|
||||||
return f_x * dt + np.eye(state_size) # to discrete form
|
return f_x * dt + np.eye(state_size) # to discrete form
|
||||||
|
|
||||||
|
@ -133,25 +135,25 @@ class CartPoleModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_u (numpy.ndarray): gradient of model with respect to x,
|
f_u (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, input_size)
|
shape(pred_len, state_size, input_size)
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
This should be discrete form !!
|
This should be discrete form !!
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
(_, state_size) = xs.shape
|
(_, state_size) = xs.shape
|
||||||
(pred_len, input_size) = us.shape
|
(pred_len, input_size) = us.shape
|
||||||
|
|
||||||
f_u = np.zeros((pred_len, state_size, input_size))
|
f_u = np.zeros((pred_len, state_size, input_size))
|
||||||
|
|
||||||
f_u[:, 1, 0] = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
|
f_u[:, 1, 0] = 1. / (self.mc + self.mp * (np.sin(xs[:, 2])**2))
|
||||||
|
|
||||||
f_u[:, 3, 0] = -np.cos(xs[:, 2]) \
|
f_u[:, 3, 0] = -np.cos(xs[:, 2]) \
|
||||||
/ (self.l * (self.mc \
|
/ (self.l * (self.mc
|
||||||
+ self.mp * (np.sin(xs[:, 2])**2)))
|
+ self.mp * (np.sin(xs[:, 2])**2)))
|
||||||
|
|
||||||
return f_u * dt # to discrete form
|
return f_u * dt # to discrete form
|
||||||
|
|
||||||
|
@ -161,7 +163,7 @@ class CartPoleModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_xx (numpy.ndarray): gradient of model with respect to x,
|
f_xx (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, state_size, state_size)
|
shape(pred_len, state_size, state_size, state_size)
|
||||||
|
@ -180,7 +182,7 @@ class CartPoleModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_ux (numpy.ndarray): gradient of model with respect to x,
|
f_ux (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, input_size, state_size)
|
shape(pred_len, state_size, input_size, state_size)
|
||||||
|
@ -199,7 +201,7 @@ class CartPoleModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_uu (numpy.ndarray): gradient of model with respect to x,
|
f_uu (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, input_size, input_size)
|
shape(pred_len, state_size, input_size, input_size)
|
||||||
|
@ -210,4 +212,4 @@ class CartPoleModel(Model):
|
||||||
|
|
||||||
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
||||||
|
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
|
@ -3,6 +3,7 @@ import scipy.linalg
|
||||||
from scipy import integrate
|
from scipy import integrate
|
||||||
from .model import LinearModel
|
from .model import LinearModel
|
||||||
|
|
||||||
|
|
||||||
class FirstOrderLagModel(LinearModel):
|
class FirstOrderLagModel(LinearModel):
|
||||||
""" first order lag model
|
""" first order lag model
|
||||||
Attributes:
|
Attributes:
|
||||||
|
@ -10,13 +11,15 @@ class FirstOrderLagModel(LinearModel):
|
||||||
u (numpy.ndarray):
|
u (numpy.ndarray):
|
||||||
history_pred_xs (numpy.ndarray):
|
history_pred_xs (numpy.ndarray):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config, tau=0.63):
|
def __init__(self, config, tau=0.63):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
tau (float): time constant
|
tau (float): time constant
|
||||||
"""
|
"""
|
||||||
# param
|
# param
|
||||||
self.A, self.B = self._to_state_space(tau, dt=config.DT) # discrete system
|
self.A, self.B = self._to_state_space(
|
||||||
|
tau, dt=config.DT) # discrete system
|
||||||
super(FirstOrderLagModel, self).__init__(self.A, self.B)
|
super(FirstOrderLagModel, self).__init__(self.A, self.B)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@ -31,21 +34,22 @@ class FirstOrderLagModel(LinearModel):
|
||||||
"""
|
"""
|
||||||
# continuous
|
# continuous
|
||||||
Ac = np.array([[-1./tau, 0., 0., 0.],
|
Ac = np.array([[-1./tau, 0., 0., 0.],
|
||||||
[0., -1./tau, 0., 0.],
|
[0., -1./tau, 0., 0.],
|
||||||
[1., 0., 0., 0.],
|
[1., 0., 0., 0.],
|
||||||
[0., 1., 0., 0.]])
|
[0., 1., 0., 0.]])
|
||||||
Bc = np.array([[1./tau, 0.],
|
Bc = np.array([[1./tau, 0.],
|
||||||
[0., 1./tau],
|
[0., 1./tau],
|
||||||
[0., 0.],
|
[0., 0.],
|
||||||
[0., 0.]])
|
[0., 0.]])
|
||||||
# to discrete system
|
# to discrete system
|
||||||
A = scipy.linalg.expm(dt*Ac)
|
A = scipy.linalg.expm(dt*Ac)
|
||||||
# B = np.matmul(np.matmul(scipy.linalg.expm(Ac*dt)-scipy.linalg.expm(Ac*0.), np.linalg.inv(Ac)), Bc)
|
# B = np.matmul(np.matmul(scipy.linalg.expm(Ac*dt)-scipy.linalg.expm(Ac*0.), np.linalg.inv(Ac)), Bc)
|
||||||
B = np.zeros_like(Bc)
|
B = np.zeros_like(Bc)
|
||||||
for m in range(Bc.shape[0]):
|
for m in range(Bc.shape[0]):
|
||||||
for n in range(Bc.shape[1]):
|
for n in range(Bc.shape[1]):
|
||||||
integrate_fn = lambda tau: np.matmul(scipy.linalg.expm(Ac*tau), Bc)[m, n]
|
def integrate_fn(tau): return np.matmul(
|
||||||
|
scipy.linalg.expm(Ac*tau), Bc)[m, n]
|
||||||
sol = integrate.quad(integrate_fn, 0, dt)
|
sol = integrate.quad(integrate_fn, 0, dt)
|
||||||
B[m, n] = sol[0]
|
B[m, n] = sol[0]
|
||||||
|
|
||||||
return A, B
|
return A, B
|
||||||
|
|
|
@ -1,14 +1,18 @@
|
||||||
from .first_order_lag import FirstOrderLagModel
|
from .first_order_lag import FirstOrderLagModel
|
||||||
from .two_wheeled import TwoWheeledModel
|
from .two_wheeled import TwoWheeledModel
|
||||||
from .cartpole import CartPoleModel
|
from .cartpole import CartPoleModel
|
||||||
|
from .nonlinear_sample_system import NonlinearSampleSystemModel
|
||||||
|
|
||||||
|
|
||||||
def make_model(args, config):
|
def make_model(args, config):
|
||||||
|
|
||||||
if args.env == "FirstOrderLag":
|
if args.env == "FirstOrderLag":
|
||||||
return FirstOrderLagModel(config)
|
return FirstOrderLagModel(config)
|
||||||
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
|
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
|
||||||
return TwoWheeledModel(config)
|
return TwoWheeledModel(config)
|
||||||
elif args.env == "CartPole":
|
elif args.env == "CartPole":
|
||||||
return CartPoleModel(config)
|
return CartPoleModel(config)
|
||||||
|
elif args.env == "NonlinearSample":
|
||||||
raise NotImplementedError("There is not {} Model".format(args.env))
|
return NonlinearSampleSystemModel(config)
|
||||||
|
|
||||||
|
raise NotImplementedError("There is not {} Model".format(args.env))
|
||||||
|
|
|
@ -1,8 +1,10 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class Model():
|
class Model():
|
||||||
""" base class of model
|
""" base class of model
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -22,17 +24,17 @@ class Model():
|
||||||
or shape(pop_size, pred_len+1, state_size)
|
or shape(pop_size, pred_len+1, state_size)
|
||||||
"""
|
"""
|
||||||
if len(us.shape) == 3:
|
if len(us.shape) == 3:
|
||||||
pred_xs =self._predict_traj_alltogether(curr_x, us)
|
pred_xs = self._predict_traj_alltogether(curr_x, us)
|
||||||
elif len(us.shape) == 2:
|
elif len(us.shape) == 2:
|
||||||
pred_xs = self._predict_traj(curr_x, us)
|
pred_xs = self._predict_traj(curr_x, us)
|
||||||
else:
|
else:
|
||||||
raise ValueError("Invalid us")
|
raise ValueError("Invalid us")
|
||||||
|
|
||||||
return pred_xs
|
return pred_xs
|
||||||
|
|
||||||
def _predict_traj(self, curr_x, us):
|
def _predict_traj(self, curr_x, us):
|
||||||
""" predict trajectories
|
""" predict trajectories
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||||
us (numpy.ndarray): inputs, shape(pred_len, input_size)
|
us (numpy.ndarray): inputs, shape(pred_len, input_size)
|
||||||
|
@ -53,10 +55,10 @@ class Model():
|
||||||
x = next_x
|
x = next_x
|
||||||
|
|
||||||
return pred_xs
|
return pred_xs
|
||||||
|
|
||||||
def _predict_traj_alltogether(self, curr_x, us):
|
def _predict_traj_alltogether(self, curr_x, us):
|
||||||
""" predict trajectories for all samples
|
""" predict trajectories for all samples
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
curr_x (numpy.ndarray): current state, shape(pop_size, state_size)
|
curr_x (numpy.ndarray): current state, shape(pop_size, state_size)
|
||||||
us (numpy.ndarray): inputs, shape(pop_size, pred_len, input_size)
|
us (numpy.ndarray): inputs, shape(pop_size, pred_len, input_size)
|
||||||
|
@ -75,12 +77,12 @@ class Model():
|
||||||
# next_x.shape = (pop_size, state_size)
|
# next_x.shape = (pop_size, state_size)
|
||||||
next_x = self.predict_next_state(x, us[t])
|
next_x = self.predict_next_state(x, us[t])
|
||||||
# update
|
# update
|
||||||
pred_xs = np.concatenate((pred_xs, next_x[np.newaxis, :, :]),\
|
pred_xs = np.concatenate((pred_xs, next_x[np.newaxis, :, :]),
|
||||||
axis=0)
|
axis=0)
|
||||||
x = next_x
|
x = next_x
|
||||||
|
|
||||||
return np.transpose(pred_xs, (1, 0, 2))
|
return np.transpose(pred_xs, (1, 0, 2))
|
||||||
|
|
||||||
def predict_next_state(self, curr_x, u):
|
def predict_next_state(self, curr_x, u):
|
||||||
""" predict next state
|
""" predict next state
|
||||||
"""
|
"""
|
||||||
|
@ -99,23 +101,23 @@ class Model():
|
||||||
# get size
|
# get size
|
||||||
(pred_len, input_size) = us.shape
|
(pred_len, input_size) = us.shape
|
||||||
# pred final adjoint state
|
# pred final adjoint state
|
||||||
lam = self.predict_terminal_adjoint_state(xs[-1],\
|
lam = self.predict_terminal_adjoint_state(xs[-1],
|
||||||
terminal_g_x=g_xs[-1])
|
terminal_g_x=g_xs[-1])
|
||||||
lams = lam[np.newaxis, :]
|
lams = lam[np.newaxis, :]
|
||||||
|
|
||||||
for t in range(pred_len-1, 0, -1):
|
for t in range(pred_len-1, 0, -1):
|
||||||
prev_lam = \
|
prev_lam = \
|
||||||
self.predict_adjoint_state(lam, xs[t], us[t],\
|
self.predict_adjoint_state(lam, xs[t], us[t],
|
||||||
goal=g_xs[t], t=t)
|
goal=g_xs[t], t=t)
|
||||||
# update
|
# update
|
||||||
lams = np.concatenate((prev_lam[np.newaxis, :], lams), axis=0)
|
lams = np.concatenate((prev_lam[np.newaxis, :], lams), axis=0)
|
||||||
lam = prev_lam
|
lam = prev_lam
|
||||||
|
|
||||||
return lams
|
return lams
|
||||||
|
|
||||||
def predict_adjoint_state(self, lam, x, u, goal=None, t=None):
|
def predict_adjoint_state(self, lam, x, u, goal=None, t=None):
|
||||||
""" predict adjoint states
|
""" predict adjoint states
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
lam (numpy.ndarray): adjoint state, shape(state_size, )
|
lam (numpy.ndarray): adjoint state, shape(state_size, )
|
||||||
x (numpy.ndarray): state, shape(state_size, )
|
x (numpy.ndarray): state, shape(state_size, )
|
||||||
|
@ -129,7 +131,7 @@ class Model():
|
||||||
|
|
||||||
def predict_terminal_adjoint_state(self, terminal_x, terminal_g_x=None):
|
def predict_terminal_adjoint_state(self, terminal_x, terminal_g_x=None):
|
||||||
""" predict terminal adjoint state
|
""" predict terminal adjoint state
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
terminal_x (numpy.ndarray): terminal state, shape(state_size, )
|
terminal_x (numpy.ndarray): terminal state, shape(state_size, )
|
||||||
terminal_g_x (numpy.ndarray): terminal goal state,
|
terminal_g_x (numpy.ndarray): terminal goal state,
|
||||||
|
@ -143,7 +145,7 @@ class Model():
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_f_x(xs, us, dt):
|
def calc_f_x(xs, us, dt):
|
||||||
""" gradient of model with respect to the state in batch form
|
""" gradient of model with respect to the state in batch form
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement gradient of model \
|
raise NotImplementedError("Implement gradient of model \
|
||||||
with respect to the state")
|
with respect to the state")
|
||||||
|
|
||||||
|
@ -153,11 +155,11 @@ class Model():
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement gradient of model \
|
raise NotImplementedError("Implement gradient of model \
|
||||||
with respect to the input")
|
with respect to the input")
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_f_xx(xs, us, dt):
|
def calc_f_xx(xs, us, dt):
|
||||||
""" hessian of model with respect to the state in batch form
|
""" hessian of model with respect to the state in batch form
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement hessian of model \
|
raise NotImplementedError("Implement hessian of model \
|
||||||
with respect to the state")
|
with respect to the state")
|
||||||
|
|
||||||
|
@ -171,27 +173,29 @@ class Model():
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_f_uu(xs, us, dt):
|
def calc_f_uu(xs, us, dt):
|
||||||
""" hessian of model with respect to the state in batch form
|
""" hessian of model with respect to the state in batch form
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement hessian of model \
|
raise NotImplementedError("Implement hessian of model \
|
||||||
with respect to the input")
|
with respect to the input")
|
||||||
|
|
||||||
|
|
||||||
class LinearModel(Model):
|
class LinearModel(Model):
|
||||||
""" discrete linear model, x[k+1] = Ax[k] + Bu[k]
|
""" discrete linear model, x[k+1] = Ax[k] + Bu[k]
|
||||||
|
|
||||||
Attributes:
|
Attributes:
|
||||||
A (numpy.ndarray): shape(state_size, state_size)
|
A (numpy.ndarray): shape(state_size, state_size)
|
||||||
B (numpy.ndarray): shape(state_size, input_size)
|
B (numpy.ndarray): shape(state_size, input_size)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, A, B):
|
def __init__(self, A, B):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
super(LinearModel, self).__init__()
|
super(LinearModel, self).__init__()
|
||||||
self.A = A
|
self.A = A
|
||||||
self.B = B
|
self.B = B
|
||||||
|
|
||||||
def predict_next_state(self, curr_x, u):
|
def predict_next_state(self, curr_x, u):
|
||||||
""" predict next state
|
""" predict next state
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
||||||
shape(pop_size, state_size)
|
shape(pop_size, state_size)
|
||||||
|
@ -203,7 +207,7 @@ class LinearModel(Model):
|
||||||
"""
|
"""
|
||||||
if len(u.shape) == 1:
|
if len(u.shape) == 1:
|
||||||
next_x = np.matmul(self.A, curr_x[:, np.newaxis]) \
|
next_x = np.matmul(self.A, curr_x[:, np.newaxis]) \
|
||||||
+ np.matmul(self.B, u[:, np.newaxis])
|
+ np.matmul(self.B, u[:, np.newaxis])
|
||||||
|
|
||||||
return next_x.flatten()
|
return next_x.flatten()
|
||||||
|
|
||||||
|
@ -211,7 +215,7 @@ class LinearModel(Model):
|
||||||
next_x = np.matmul(curr_x, self.A.T) + np.matmul(u, self.B.T)
|
next_x = np.matmul(curr_x, self.A.T) + np.matmul(u, self.B.T)
|
||||||
|
|
||||||
return next_x
|
return next_x
|
||||||
|
|
||||||
def calc_f_x(self, xs, us, dt):
|
def calc_f_x(self, xs, us, dt):
|
||||||
""" gradient of model with respect to the state in batch form
|
""" gradient of model with respect to the state in batch form
|
||||||
|
|
||||||
|
@ -223,7 +227,7 @@ class LinearModel(Model):
|
||||||
shape(pred_len, state_size, state_size)
|
shape(pred_len, state_size, state_size)
|
||||||
Notes:
|
Notes:
|
||||||
This should be discrete form !!
|
This should be discrete form !!
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
(pred_len, _) = us.shape
|
(pred_len, _) = us.shape
|
||||||
|
|
||||||
|
@ -240,7 +244,7 @@ class LinearModel(Model):
|
||||||
shape(pred_len, state_size, input_size)
|
shape(pred_len, state_size, input_size)
|
||||||
Notes:
|
Notes:
|
||||||
This should be discrete form !!
|
This should be discrete form !!
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
(pred_len, input_size) = us.shape
|
(pred_len, input_size) = us.shape
|
||||||
|
|
||||||
|
@ -283,7 +287,7 @@ class LinearModel(Model):
|
||||||
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
|
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
|
||||||
|
|
||||||
return f_ux
|
return f_ux
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_f_uu(xs, us, dt):
|
def calc_f_uu(xs, us, dt):
|
||||||
""" hessian of model with respect to input in batch form
|
""" hessian of model with respect to input in batch form
|
||||||
|
@ -301,4 +305,4 @@ class LinearModel(Model):
|
||||||
|
|
||||||
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
||||||
|
|
||||||
return f_uu
|
return f_uu
|
||||||
|
|
|
@ -0,0 +1,164 @@
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from .model import Model
|
||||||
|
from ..common.utils import update_state_with_Runge_Kutta
|
||||||
|
|
||||||
|
|
||||||
|
class NonlinearSampleSystemModel(Model):
|
||||||
|
""" nonlinear sample system model
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
"""
|
||||||
|
"""
|
||||||
|
super(NonlinearSampleSystemModel, self).__init__()
|
||||||
|
self.dt = config.DT
|
||||||
|
|
||||||
|
def predict_next_state(self, curr_x, u):
|
||||||
|
""" predict next state
|
||||||
|
|
||||||
|
Args:
|
||||||
|
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
||||||
|
shape(pop_size, state_size)
|
||||||
|
u (numpy.ndarray): input, shape(input_size, ) or
|
||||||
|
shape(pop_size, input_size)
|
||||||
|
Returns:
|
||||||
|
next_x (numpy.ndarray): next state, shape(state_size, ) or
|
||||||
|
shape(pop_size, state_size)
|
||||||
|
"""
|
||||||
|
if len(u.shape) == 1:
|
||||||
|
func_1 = self._func_x_1
|
||||||
|
func_2 = self._func_x_2
|
||||||
|
functions = [func_1, func_2]
|
||||||
|
next_x = update_state_with_Runge_Kutta(
|
||||||
|
curr_x, u, functions, batch=False)
|
||||||
|
return next_x
|
||||||
|
|
||||||
|
elif len(u.shape) == 2:
|
||||||
|
def func_1(xs, us): return self._func_x_1(xs, us, batch=True)
|
||||||
|
def func_2(xs, us): return self._func_x_2(xs, us, batch=True)
|
||||||
|
functions = [func_1, func_2]
|
||||||
|
next_x = update_state_with_Runge_Kutta(
|
||||||
|
curr_x, u, functions, batch=True)
|
||||||
|
|
||||||
|
return next_x
|
||||||
|
|
||||||
|
def _func_x_1(self, x, u, batch=False):
|
||||||
|
if not batch:
|
||||||
|
x_dot = x[1]
|
||||||
|
else:
|
||||||
|
x_dot = x[:, 1]
|
||||||
|
return x_dot
|
||||||
|
|
||||||
|
def _func_x_2(self, x, u, batch=False):
|
||||||
|
if not batch:
|
||||||
|
x_dot = (1. - x[0]**2 - x[1]**2) * x[1] - x[0] + u[0]
|
||||||
|
else:
|
||||||
|
x_dot = (1. - x[:, 0]**2 - x[:, 1]**2) * \
|
||||||
|
x[:, 1] - x[:, 0] + u[:, 0]
|
||||||
|
return x_dot
|
||||||
|
|
||||||
|
def calc_f_x(self, xs, us, dt):
|
||||||
|
""" gradient of model with respect to the state in batch form
|
||||||
|
Args:
|
||||||
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
|
Return:
|
||||||
|
f_x (numpy.ndarray): gradient of model with respect to x,
|
||||||
|
shape(pred_len, state_size, state_size)
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
This should be discrete form !!
|
||||||
|
"""
|
||||||
|
# get size
|
||||||
|
(_, state_size) = xs.shape
|
||||||
|
(pred_len, _) = us.shape
|
||||||
|
|
||||||
|
f_x = np.zeros((pred_len, state_size, state_size))
|
||||||
|
f_x[:, 0, 1] = 1.
|
||||||
|
f_x[:, 1, 0] = 2. * xs[:, 0] * xs[:, 1] - 1.
|
||||||
|
f_x[:, 1, 1] = - 2. * xs[:, 1] * xs[:, 1] + \
|
||||||
|
(1. - xs[:, 0]**2 - xs[:, 1]**2)
|
||||||
|
|
||||||
|
return f_x * dt + np.eye(state_size) # to discrete form
|
||||||
|
|
||||||
|
def calc_f_u(self, xs, us, dt):
|
||||||
|
""" gradient of model with respect to the input in batch form
|
||||||
|
Args:
|
||||||
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
|
Return:
|
||||||
|
f_u (numpy.ndarray): gradient of model with respect to x,
|
||||||
|
shape(pred_len, state_size, input_size)
|
||||||
|
|
||||||
|
Notes:
|
||||||
|
This should be discrete form !!
|
||||||
|
"""
|
||||||
|
# get size
|
||||||
|
(_, state_size) = xs.shape
|
||||||
|
(pred_len, input_size) = us.shape
|
||||||
|
|
||||||
|
f_u = np.zeros((pred_len, state_size, input_size))
|
||||||
|
|
||||||
|
f_u[:, 1, 0] = 1.
|
||||||
|
|
||||||
|
return f_u * dt # to discrete form
|
||||||
|
|
||||||
|
def calc_f_xx(self, xs, us, dt):
|
||||||
|
""" hessian of model with respect to the state in batch form
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
|
Return:
|
||||||
|
f_xx (numpy.ndarray): gradient of model with respect to x,
|
||||||
|
shape(pred_len, state_size, state_size, state_size)
|
||||||
|
"""
|
||||||
|
# get size
|
||||||
|
(_, state_size) = xs.shape
|
||||||
|
(pred_len, _) = us.shape
|
||||||
|
|
||||||
|
f_xx = np.zeros((pred_len, state_size, state_size, state_size))
|
||||||
|
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def calc_f_ux(self, xs, us, dt):
|
||||||
|
""" hessian of model with respect to state and input in batch form
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
|
Return:
|
||||||
|
f_ux (numpy.ndarray): gradient of model with respect to x,
|
||||||
|
shape(pred_len, state_size, input_size, state_size)
|
||||||
|
"""
|
||||||
|
# get size
|
||||||
|
(_, state_size) = xs.shape
|
||||||
|
(pred_len, input_size) = us.shape
|
||||||
|
|
||||||
|
f_ux = np.zeros((pred_len, state_size, input_size, state_size))
|
||||||
|
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def calc_f_uu(self, xs, us, dt):
|
||||||
|
""" hessian of model with respect to input in batch form
|
||||||
|
|
||||||
|
Args:
|
||||||
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
|
Return:
|
||||||
|
f_uu (numpy.ndarray): gradient of model with respect to x,
|
||||||
|
shape(pred_len, state_size, input_size, input_size)
|
||||||
|
"""
|
||||||
|
# get size
|
||||||
|
(_, state_size) = xs.shape
|
||||||
|
(pred_len, input_size) = us.shape
|
||||||
|
|
||||||
|
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
||||||
|
|
||||||
|
raise NotImplementedError
|
|
@ -2,9 +2,11 @@ import numpy as np
|
||||||
|
|
||||||
from .model import Model
|
from .model import Model
|
||||||
|
|
||||||
|
|
||||||
class TwoWheeledModel(Model):
|
class TwoWheeledModel(Model):
|
||||||
""" two wheeled model
|
""" two wheeled model
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -13,7 +15,7 @@ class TwoWheeledModel(Model):
|
||||||
|
|
||||||
def predict_next_state(self, curr_x, u):
|
def predict_next_state(self, curr_x, u):
|
||||||
""" predict next state
|
""" predict next state
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
curr_x (numpy.ndarray): current state, shape(state_size, ) or
|
||||||
shape(pop_size, state_size)
|
shape(pop_size, state_size)
|
||||||
|
@ -50,21 +52,21 @@ class TwoWheeledModel(Model):
|
||||||
next_x = x_dot[:, :, 0] * self.dt + curr_x
|
next_x = x_dot[:, :, 0] * self.dt + curr_x
|
||||||
|
|
||||||
return next_x
|
return next_x
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_f_x(xs, us, dt):
|
def calc_f_x(xs, us, dt):
|
||||||
""" gradient of model with respect to the state in batch form
|
""" gradient of model with respect to the state in batch form
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_x (numpy.ndarray): gradient of model with respect to x,
|
f_x (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, state_size)
|
shape(pred_len, state_size, state_size)
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
This should be discrete form !!
|
This should be discrete form !!
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
(_, state_size) = xs.shape
|
(_, state_size) = xs.shape
|
||||||
(pred_len, _) = us.shape
|
(pred_len, _) = us.shape
|
||||||
|
@ -81,14 +83,14 @@ class TwoWheeledModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_u (numpy.ndarray): gradient of model with respect to x,
|
f_u (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, input_size)
|
shape(pred_len, state_size, input_size)
|
||||||
|
|
||||||
Notes:
|
Notes:
|
||||||
This should be discrete form !!
|
This should be discrete form !!
|
||||||
"""
|
"""
|
||||||
# get size
|
# get size
|
||||||
(_, state_size) = xs.shape
|
(_, state_size) = xs.shape
|
||||||
(pred_len, input_size) = us.shape
|
(pred_len, input_size) = us.shape
|
||||||
|
@ -107,7 +109,7 @@ class TwoWheeledModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_xx (numpy.ndarray): gradient of model with respect to x,
|
f_xx (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, state_size, state_size)
|
shape(pred_len, state_size, state_size, state_size)
|
||||||
|
@ -130,7 +132,7 @@ class TwoWheeledModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_ux (numpy.ndarray): gradient of model with respect to x,
|
f_ux (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, input_size, state_size)
|
shape(pred_len, state_size, input_size, state_size)
|
||||||
|
@ -145,7 +147,7 @@ class TwoWheeledModel(Model):
|
||||||
f_ux[:, 1, 0, 2] = np.cos(xs[:, 2])
|
f_ux[:, 1, 0, 2] = np.cos(xs[:, 2])
|
||||||
|
|
||||||
return f_ux * dt
|
return f_ux * dt
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def calc_f_uu(xs, us, dt):
|
def calc_f_uu(xs, us, dt):
|
||||||
""" hessian of model with respect to input in batch form
|
""" hessian of model with respect to input in batch form
|
||||||
|
@ -153,7 +155,7 @@ class TwoWheeledModel(Model):
|
||||||
Args:
|
Args:
|
||||||
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
xs (numpy.ndarray): state, shape(pred_len+1, state_size)
|
||||||
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
us (numpy.ndarray): input, shape(pred_len, input_size,)
|
||||||
|
|
||||||
Return:
|
Return:
|
||||||
f_uu (numpy.ndarray): gradient of model with respect to x,
|
f_uu (numpy.ndarray): gradient of model with respect to x,
|
||||||
shape(pred_len, state_size, input_size, input_size)
|
shape(pred_len, state_size, input_size, input_size)
|
||||||
|
@ -164,4 +166,4 @@ class TwoWheeledModel(Model):
|
||||||
|
|
||||||
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
f_uu = np.zeros((pred_len, state_size, input_size, input_size))
|
||||||
|
|
||||||
return f_uu * dt
|
return f_uu * dt
|
||||||
|
|
|
@ -1,9 +1,11 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from .planner import Planner
|
from .planner import Planner
|
||||||
|
|
||||||
|
|
||||||
class ClosestPointPlanner(Planner):
|
class ClosestPointPlanner(Planner):
|
||||||
""" This planner make goal state according to goal path
|
""" This planner make goal state according to goal path
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -24,7 +26,7 @@ class ClosestPointPlanner(Planner):
|
||||||
min_idx = np.argmin(np.linalg.norm(curr_x[:-1] - g_traj[:, :-1],
|
min_idx = np.argmin(np.linalg.norm(curr_x[:-1] - g_traj[:, :-1],
|
||||||
axis=1))
|
axis=1))
|
||||||
|
|
||||||
start = (min_idx+self.n_ahead)
|
start = (min_idx+self.n_ahead)
|
||||||
if start > len(g_traj):
|
if start > len(g_traj):
|
||||||
start = len(g_traj)
|
start = len(g_traj)
|
||||||
|
|
||||||
|
@ -32,8 +34,8 @@ class ClosestPointPlanner(Planner):
|
||||||
|
|
||||||
if (min_idx+self.n_ahead+self.pred_len+1) > len(g_traj):
|
if (min_idx+self.n_ahead+self.pred_len+1) > len(g_traj):
|
||||||
end = len(g_traj)
|
end = len(g_traj)
|
||||||
|
|
||||||
if abs(start - end) != self.pred_len + 1:
|
if abs(start - end) != self.pred_len + 1:
|
||||||
return np.tile(g_traj[-1], (self.pred_len+1, 1))
|
return np.tile(g_traj[-1], (self.pred_len+1, 1))
|
||||||
|
|
||||||
return g_traj[start:end]
|
return g_traj[start:end]
|
||||||
|
|
|
@ -1,9 +1,11 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from .planner import Planner
|
from .planner import Planner
|
||||||
|
|
||||||
|
|
||||||
class ConstantPlanner(Planner):
|
class ConstantPlanner(Planner):
|
||||||
""" This planner make constant goal state
|
""" This planner make constant goal state
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -20,4 +22,4 @@ class ConstantPlanner(Planner):
|
||||||
Returns:
|
Returns:
|
||||||
g_xs (numpy.ndarrya): goal state, shape(pred_len, state_size)
|
g_xs (numpy.ndarrya): goal state, shape(pred_len, state_size)
|
||||||
"""
|
"""
|
||||||
return np.tile(g_x, (self.pred_len+1, 1))
|
return np.tile(g_x, (self.pred_len+1, 1))
|
||||||
|
|
|
@ -1,8 +1,9 @@
|
||||||
from .const_planner import ConstantPlanner
|
from .const_planner import ConstantPlanner
|
||||||
from .closest_point_planner import ClosestPointPlanner
|
from .closest_point_planner import ClosestPointPlanner
|
||||||
|
|
||||||
|
|
||||||
def make_planner(args, config):
|
def make_planner(args, config):
|
||||||
|
|
||||||
if args.env == "FirstOrderLag":
|
if args.env == "FirstOrderLag":
|
||||||
return ConstantPlanner(config)
|
return ConstantPlanner(config)
|
||||||
elif args.env == "TwoWheeledConst":
|
elif args.env == "TwoWheeledConst":
|
||||||
|
@ -11,5 +12,8 @@ def make_planner(args, config):
|
||||||
return ClosestPointPlanner(config)
|
return ClosestPointPlanner(config)
|
||||||
elif args.env == "CartPole":
|
elif args.env == "CartPole":
|
||||||
return ConstantPlanner(config)
|
return ConstantPlanner(config)
|
||||||
|
elif args.env == "NonlinearSample":
|
||||||
raise NotImplementedError("There is not {} Planner".format(args.planner_type))
|
return ConstantPlanner(config)
|
||||||
|
|
||||||
|
raise NotImplementedError(
|
||||||
|
"There is not {} Planner".format(args.planner_type))
|
||||||
|
|
|
@ -1,8 +1,10 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
class Planner():
|
class Planner():
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -15,4 +17,4 @@ class Planner():
|
||||||
Returns:
|
Returns:
|
||||||
g_xs (numpy.ndarrya): goal state, shape(pred_len, state_size)
|
g_xs (numpy.ndarrya): goal state, shape(pred_len, state_size)
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError("Implement plan func")
|
raise NotImplementedError("Implement plan func")
|
||||||
|
|
|
@ -8,9 +8,11 @@ import matplotlib.animation as animation
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class Animator():
|
class Animator():
|
||||||
""" animation class
|
""" animation class
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, env, args=None):
|
def __init__(self, env, args=None):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -34,7 +36,7 @@ class Animator():
|
||||||
# make fig
|
# make fig
|
||||||
self.anim_fig = plt.figure()
|
self.anim_fig = plt.figure()
|
||||||
|
|
||||||
# axis
|
# axis
|
||||||
self.axis = self.anim_fig.add_subplot(111)
|
self.axis = self.anim_fig.add_subplot(111)
|
||||||
self.axis.set_aspect('equal', adjustable='box')
|
self.axis.set_aspect('equal', adjustable='box')
|
||||||
|
|
||||||
|
@ -65,12 +67,12 @@ class Animator():
|
||||||
"""
|
"""
|
||||||
# set up animation figures
|
# set up animation figures
|
||||||
self._setup()
|
self._setup()
|
||||||
_update_img = lambda i: self._update_img(i, history_x, history_g_x)
|
def _update_img(i): return self._update_img(i, history_x, history_g_x)
|
||||||
|
|
||||||
# Set up formatting for the movie files
|
# Set up formatting for the movie files
|
||||||
Writer = animation.writers['ffmpeg']
|
Writer = animation.writers['ffmpeg']
|
||||||
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
|
writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)
|
||||||
|
|
||||||
# call funcanimation
|
# call funcanimation
|
||||||
ani = FuncAnimation(
|
ani = FuncAnimation(
|
||||||
self.anim_fig,
|
self.anim_fig,
|
||||||
|
@ -79,6 +81,6 @@ class Animator():
|
||||||
# save animation
|
# save animation
|
||||||
path = os.path.join(self.result_dir, self.controller_type,
|
path = os.path.join(self.result_dir, self.controller_type,
|
||||||
"animation-" + self.env_name + ".mp4")
|
"animation-" + self.env_name + ".mp4")
|
||||||
logger.info("Saved Animation to {} ...".format(path))
|
logger.info("Saved Animation to {} ...".format(path))
|
||||||
|
|
||||||
ani.save(path, writer=writer)
|
ani.save(path, writer=writer)
|
||||||
|
|
|
@ -5,6 +5,7 @@ import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from ..helper import save_pickle, load_pickle
|
from ..helper import save_pickle, load_pickle
|
||||||
|
|
||||||
|
|
||||||
def plot_result(history, history_g=None, ylabel="x",
|
def plot_result(history, history_g=None, ylabel="x",
|
||||||
save_dir="./result", name="state_history"):
|
save_dir="./result", name="state_history"):
|
||||||
"""
|
"""
|
||||||
|
@ -28,14 +29,14 @@ def plot_result(history, history_g=None, ylabel="x",
|
||||||
def plot(axis, history, history_g=None):
|
def plot(axis, history, history_g=None):
|
||||||
axis.plot(range(iters), history, c="r", linewidth=3)
|
axis.plot(range(iters), history, c="r", linewidth=3)
|
||||||
if history_g is not None:
|
if history_g is not None:
|
||||||
axis.plot(range(iters), history_g,\
|
axis.plot(range(iters), history_g,
|
||||||
c="b", linewidth=3, label="goal")
|
c="b", linewidth=3, label="goal")
|
||||||
|
|
||||||
if i < size:
|
if i < size:
|
||||||
plot(axis1, history[:, i], history_g=history_g[:, i])
|
plot(axis1, history[:, i], history_g=history_g[:, i])
|
||||||
if i+1 < size:
|
if i+1 < size:
|
||||||
plot(axis2, history[:, i+1], history_g=history_g[:, i+1])
|
plot(axis2, history[:, i+1], history_g=history_g[:, i+1])
|
||||||
if i+2 < size:
|
if i+2 < size:
|
||||||
plot(axis3, history[:, i+2], history_g=history_g[:, i+2])
|
plot(axis3, history[:, i+2], history_g=history_g[:, i+2])
|
||||||
|
|
||||||
# save
|
# save
|
||||||
|
@ -47,6 +48,7 @@ def plot_result(history, history_g=None, ylabel="x",
|
||||||
axis1.legend(ncol=1, bbox_to_anchor=(0., 1.02, 1., 0.102), loc=3)
|
axis1.legend(ncol=1, bbox_to_anchor=(0., 1.02, 1., 0.102), loc=3)
|
||||||
figure.savefig(path, bbox_inches="tight", pad_inches=0.05)
|
figure.savefig(path, bbox_inches="tight", pad_inches=0.05)
|
||||||
|
|
||||||
|
|
||||||
def plot_results(history_x, history_u, history_g=None, args=None):
|
def plot_results(history_x, history_u, history_g=None, args=None):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -64,12 +66,13 @@ def plot_results(history_x, history_u, history_g=None, args=None):
|
||||||
controller_type = args.controller_type
|
controller_type = args.controller_type
|
||||||
|
|
||||||
plot_result(history_x, history_g=history_g, ylabel="x",
|
plot_result(history_x, history_g=history_g, ylabel="x",
|
||||||
name= env + "-state_history",
|
name=env + "-state_history",
|
||||||
save_dir="./result/" + controller_type)
|
save_dir="./result/" + controller_type)
|
||||||
plot_result(history_u, history_g=np.zeros_like(history_u), ylabel="u",
|
plot_result(history_u, history_g=np.zeros_like(history_u), ylabel="u",
|
||||||
name= env + "-input_history",
|
name=env + "-input_history",
|
||||||
save_dir="./result/" + controller_type)
|
save_dir="./result/" + controller_type)
|
||||||
|
|
||||||
|
|
||||||
def save_plot_data(history_x, history_u, history_g=None, args=None):
|
def save_plot_data(history_x, history_u, history_g=None, args=None):
|
||||||
""" save plot data
|
""" save plot data
|
||||||
|
|
||||||
|
@ -98,6 +101,7 @@ def save_plot_data(history_x, history_u, history_g=None, args=None):
|
||||||
env + "-history_g.pkl")
|
env + "-history_g.pkl")
|
||||||
save_pickle(path, history_g)
|
save_pickle(path, history_g)
|
||||||
|
|
||||||
|
|
||||||
def load_plot_data(env, controller_type, result_dir="./result"):
|
def load_plot_data(env, controller_type, result_dir="./result"):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
|
@ -123,6 +127,7 @@ def load_plot_data(env, controller_type, result_dir="./result"):
|
||||||
|
|
||||||
return history_x, history_u, history_g
|
return history_x, history_u, history_g
|
||||||
|
|
||||||
|
|
||||||
def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
|
def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
|
||||||
save_dir="./result", name="state_history"):
|
save_dir="./result", name="state_history"):
|
||||||
"""
|
"""
|
||||||
|
@ -130,7 +135,7 @@ def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
|
||||||
history (numpy.ndarray): history, shape(iters, size)
|
history (numpy.ndarray): history, shape(iters, size)
|
||||||
"""
|
"""
|
||||||
(_, iters, size) = histories.shape
|
(_, iters, size) = histories.shape
|
||||||
|
|
||||||
for i in range(0, size, 2):
|
for i in range(0, size, 2):
|
||||||
|
|
||||||
figure = plt.figure()
|
figure = plt.figure()
|
||||||
|
@ -146,17 +151,17 @@ def plot_multi_result(histories, histories_g=None, labels=None, ylabel="x",
|
||||||
axis.plot(range(iters), history,
|
axis.plot(range(iters), history,
|
||||||
linewidth=3, label=label, alpha=0.7, linestyle="dashed")
|
linewidth=3, label=label, alpha=0.7, linestyle="dashed")
|
||||||
if history_g is not None:
|
if history_g is not None:
|
||||||
axis.plot(range(iters), history_g,\
|
axis.plot(range(iters), history_g,
|
||||||
c="b", linewidth=3)
|
c="b", linewidth=3)
|
||||||
|
|
||||||
if i < size:
|
if i < size:
|
||||||
for j, (history, history_g) \
|
for j, (history, history_g) \
|
||||||
in enumerate(zip(histories, histories_g)):
|
in enumerate(zip(histories, histories_g)):
|
||||||
plot(axis1, history[:, i],
|
plot(axis1, history[:, i],
|
||||||
history_g=history_g[:, i], label=labels[j])
|
history_g=history_g[:, i], label=labels[j])
|
||||||
if i+1 < size:
|
if i+1 < size:
|
||||||
for j, (history, history_g) in \
|
for j, (history, history_g) in \
|
||||||
enumerate(zip(histories, histories_g)):
|
enumerate(zip(histories, histories_g)):
|
||||||
plot(axis2, history[:, i+1],
|
plot(axis2, history[:, i+1],
|
||||||
history_g=history_g[:, i+1], label=labels[j])
|
history_g=history_g[:, i+1], label=labels[j])
|
||||||
|
|
||||||
|
|
|
@ -5,9 +5,10 @@ import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from ..common.utils import rotate_pos
|
from ..common.utils import rotate_pos
|
||||||
|
|
||||||
|
|
||||||
def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
|
def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
|
||||||
""" Create circle matrix
|
""" Create circle matrix
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
center_x (float): the center x position of the circle
|
center_x (float): the center x position of the circle
|
||||||
center_y (float): the center y position of the circle
|
center_y (float): the center y position of the circle
|
||||||
|
@ -29,6 +30,7 @@ def circle(center_x, center_y, radius, start=0., end=2*np.pi, n_point=100):
|
||||||
|
|
||||||
return np.array(circle_xs), np.array(circle_ys)
|
return np.array(circle_xs), np.array(circle_ys)
|
||||||
|
|
||||||
|
|
||||||
def circle_with_angle(center_x, center_y, radius, angle):
|
def circle_with_angle(center_x, center_y, radius, angle):
|
||||||
""" Create circle matrix with angle line matrix
|
""" Create circle matrix with angle line matrix
|
||||||
|
|
||||||
|
@ -50,6 +52,7 @@ def circle_with_angle(center_x, center_y, radius, angle):
|
||||||
|
|
||||||
return circle_x, circle_y, angle_x, angle_y
|
return circle_x, circle_y, angle_x, angle_y
|
||||||
|
|
||||||
|
|
||||||
def square(center_x, center_y, shape, angle):
|
def square(center_x, center_y, shape, angle):
|
||||||
""" Create square
|
""" Create square
|
||||||
|
|
||||||
|
@ -74,9 +77,10 @@ def square(center_x, center_y, shape, angle):
|
||||||
trans_points = rotate_pos(square_xy, angle)
|
trans_points = rotate_pos(square_xy, angle)
|
||||||
# translation
|
# translation
|
||||||
trans_points += np.array([center_x, center_y])
|
trans_points += np.array([center_x, center_y])
|
||||||
|
|
||||||
return trans_points[:, 0], trans_points[:, 1]
|
return trans_points[:, 0], trans_points[:, 1]
|
||||||
|
|
||||||
|
|
||||||
def square_with_angle(center_x, center_y, shape, angle):
|
def square_with_angle(center_x, center_y, shape, angle):
|
||||||
""" Create square with angle line
|
""" Create square with angle line
|
||||||
|
|
||||||
|
@ -96,4 +100,4 @@ def square_with_angle(center_x, center_y, shape, angle):
|
||||||
angle_x = np.array([center_x, center_x + np.cos(angle) * shape[0]])
|
angle_x = np.array([center_x, center_x + np.cos(angle) * shape[0]])
|
||||||
angle_y = np.array([center_y, center_y + np.sin(angle) * shape[1]])
|
angle_y = np.array([center_y, center_y + np.sin(angle) * shape[1]])
|
||||||
|
|
||||||
return square_x, square_y, angle_x, angle_y
|
return square_x, square_y, angle_x, angle_y
|
||||||
|
|
|
@ -1,2 +1,2 @@
|
||||||
from PythonLinearNonlinearControl.runners.runner \
|
from PythonLinearNonlinearControl.runners.runner \
|
||||||
import ExpRunner # NOQA
|
import ExpRunner # NOQA
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from .runner import ExpRunner
|
from .runner import ExpRunner
|
||||||
|
|
||||||
|
|
||||||
def make_runner(args):
|
def make_runner(args):
|
||||||
return ExpRunner()
|
return ExpRunner()
|
||||||
|
|
|
@ -4,9 +4,11 @@ import numpy as np
|
||||||
|
|
||||||
logger = getLogger(__name__)
|
logger = getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
class ExpRunner():
|
class ExpRunner():
|
||||||
""" experiment runner
|
""" experiment runner
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
"""
|
"""
|
||||||
"""
|
"""
|
||||||
|
@ -46,6 +48,6 @@ class ExpRunner():
|
||||||
score += cost
|
score += cost
|
||||||
step_count += 1
|
step_count += 1
|
||||||
|
|
||||||
logger.debug("Controller type = {}, Score = {}"\
|
logger.debug("Controller type = {}, Score = {}"
|
||||||
.format(controller, score))
|
.format(controller, score))
|
||||||
return np.array(history_x), np.array(history_u), np.array(history_g)
|
return np.array(history_x), np.array(history_u), np.array(history_g)
|
||||||
|
|
|
@ -71,6 +71,7 @@ There are 4 example environments, "FirstOrderLag", "TwoWheeledConst", "TwoWheele
|
||||||
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
|
| Two wheeled System (Constant Goal) | x | ✓ | 3 | 2 |
|
||||||
| Two wheeled System (Moving Goal) | x | ✓ | 3 | 2 |
|
| Two wheeled System (Moving Goal) | x | ✓ | 3 | 2 |
|
||||||
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
|
| Cartpole (Swing up) | x | ✓ | 4 | 1 |
|
||||||
|
| Nonlinear Sample System Env | x | ✓ | 2 | 1 |
|
||||||
|
|
||||||
All states and inputs of environments are continuous.
|
All states and inputs of environments are continuous.
|
||||||
**It should be noted that the algorithms for linear model could be applied to nonlinear enviroments if you have linealized the model of nonlinear environments.**
|
**It should be noted that the algorithms for linear model could be applied to nonlinear enviroments if you have linealized the model of nonlinear environments.**
|
||||||
|
|
Binary file not shown.
After Width: | Height: | Size: 20 KiB |
Binary file not shown.
After Width: | Height: | Size: 28 KiB |
|
@ -6,7 +6,8 @@ import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \
|
from PythonLinearNonlinearControl.plotters.plot_func import load_plot_data, \
|
||||||
plot_multi_result
|
plot_multi_result
|
||||||
|
|
||||||
|
|
||||||
def run(args):
|
def run(args):
|
||||||
|
|
||||||
|
@ -17,7 +18,7 @@ def run(args):
|
||||||
history_gs = None
|
history_gs = None
|
||||||
|
|
||||||
# load data
|
# load data
|
||||||
for controller in controllers:
|
for controller in controllers:
|
||||||
history_x, history_u, history_g = \
|
history_x, history_u, history_g = \
|
||||||
load_plot_data(args.env, controller,
|
load_plot_data(args.env, controller,
|
||||||
result_dir=args.result_dir)
|
result_dir=args.result_dir)
|
||||||
|
@ -27,19 +28,20 @@ def run(args):
|
||||||
history_us = history_u[np.newaxis, :]
|
history_us = history_u[np.newaxis, :]
|
||||||
history_gs = history_g[np.newaxis, :]
|
history_gs = history_g[np.newaxis, :]
|
||||||
continue
|
continue
|
||||||
|
|
||||||
history_xs = np.concatenate((history_xs,
|
history_xs = np.concatenate((history_xs,
|
||||||
history_x[np.newaxis, :]), axis=0)
|
history_x[np.newaxis, :]), axis=0)
|
||||||
history_us = np.concatenate((history_us,
|
history_us = np.concatenate((history_us,
|
||||||
history_u[np.newaxis, :]), axis=0)
|
history_u[np.newaxis, :]), axis=0)
|
||||||
history_gs = np.concatenate((history_gs,
|
history_gs = np.concatenate((history_gs,
|
||||||
history_g[np.newaxis, :]), axis=0)
|
history_g[np.newaxis, :]), axis=0)
|
||||||
|
|
||||||
plot_multi_result(history_xs, histories_g=history_gs, labels=controllers,
|
plot_multi_result(history_xs, histories_g=history_gs, labels=controllers,
|
||||||
ylabel="x")
|
ylabel="x")
|
||||||
|
|
||||||
plot_multi_result(history_us, histories_g=np.zeros_like(history_us),
|
plot_multi_result(history_us, histories_g=np.zeros_like(history_us),
|
||||||
labels=controllers, ylabel="u", name="input_history")
|
labels=controllers, ylabel="u", name="input_history")
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
@ -51,5 +53,6 @@ def main():
|
||||||
|
|
||||||
run(args)
|
run(args)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
|
@ -8,9 +8,10 @@ from PythonLinearNonlinearControl.models.make_models import make_model
|
||||||
from PythonLinearNonlinearControl.envs.make_envs import make_env
|
from PythonLinearNonlinearControl.envs.make_envs import make_env
|
||||||
from PythonLinearNonlinearControl.runners.make_runners import make_runner
|
from PythonLinearNonlinearControl.runners.make_runners import make_runner
|
||||||
from PythonLinearNonlinearControl.plotters.plot_func import plot_results, \
|
from PythonLinearNonlinearControl.plotters.plot_func import plot_results, \
|
||||||
save_plot_data
|
save_plot_data
|
||||||
from PythonLinearNonlinearControl.plotters.animator import Animator
|
from PythonLinearNonlinearControl.plotters.animator import Animator
|
||||||
|
|
||||||
|
|
||||||
def run(args):
|
def run(args):
|
||||||
# logger
|
# logger
|
||||||
make_logger(args.result_dir)
|
make_logger(args.result_dir)
|
||||||
|
@ -18,23 +19,23 @@ def run(args):
|
||||||
# make envs
|
# make envs
|
||||||
env = make_env(args)
|
env = make_env(args)
|
||||||
|
|
||||||
# make config
|
# make config
|
||||||
config = make_config(args)
|
config = make_config(args)
|
||||||
|
|
||||||
# make planner
|
# make planner
|
||||||
planner = make_planner(args, config)
|
planner = make_planner(args, config)
|
||||||
|
|
||||||
# make model
|
# make model
|
||||||
model = make_model(args, config)
|
model = make_model(args, config)
|
||||||
|
|
||||||
# make controller
|
# make controller
|
||||||
controller = make_controller(args, config, model)
|
controller = make_controller(args, config, model)
|
||||||
|
|
||||||
# make simulator
|
# make simulator
|
||||||
runner = make_runner(args)
|
runner = make_runner(args)
|
||||||
|
|
||||||
# run experiment
|
# run experiment
|
||||||
history_x, history_u, history_g = runner.run(env, controller, planner)
|
history_x, history_u, history_g = runner.run(env, controller, planner)
|
||||||
|
|
||||||
# plot results
|
# plot results
|
||||||
plot_results(history_x, history_u, history_g=history_g, args=args)
|
plot_results(history_x, history_u, history_g=history_g, args=args)
|
||||||
|
@ -44,17 +45,19 @@ def run(args):
|
||||||
animator = Animator(env, args=args)
|
animator = Animator(env, args=args)
|
||||||
animator.draw(history_x, history_g)
|
animator.draw(history_x, history_g)
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
parser.add_argument("--controller_type", type=str, default="CEM")
|
parser.add_argument("--controller_type", type=str, default="DDP")
|
||||||
parser.add_argument("--env", type=str, default="TwoWheeledTrack")
|
parser.add_argument("--env", type=str, default="NonlinearSample")
|
||||||
parser.add_argument("--save_anim", type=bool_flag, default=1)
|
parser.add_argument("--save_anim", type=bool_flag, default=0)
|
||||||
parser.add_argument("--result_dir", type=str, default="./result")
|
parser.add_argument("--result_dir", type=str, default="./result")
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
run(args)
|
run(args)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
|
|
Loading…
Reference in New Issue