write readme of mpc
This commit is contained in:
parent
dca46b0889
commit
61e6ef20fd
|
@ -0,0 +1,64 @@
|
|||
# Model Predictive Control Tool
|
||||
This program is about template, function of linear model predictive control
|
||||
|
||||
# Documentation of this function
|
||||
Linear model predicitive control should have state equation.
|
||||
So if you want to use this function, you should model the plant as state equation.
|
||||
Therefore, the parameters of this class are as following
|
||||
|
||||
Parameters :
|
||||
|
||||
- A : numpy.ndarray
|
||||
- system matrix
|
||||
- B : numpy.ndarray
|
||||
- input matrix
|
||||
- Q : numpy.ndarray
|
||||
- evaluation function weight
|
||||
- R : numpy.ndarray
|
||||
- evaluation function weight
|
||||
- pre_step : int
|
||||
- prediction step
|
||||
- dt_input_upper : numpy.ndarray
|
||||
- constraints of input dt
|
||||
- dt_input_lower : numpy.ndarray
|
||||
- constraints of input dt
|
||||
- input_upper : numpy.ndarray
|
||||
- constraints of input
|
||||
- input_lower : numpy.ndarray
|
||||
- constraints of input
|
||||
|
||||
We have two function, mpc_func_with_cvxopt.py and mpc_func_with_scipy.py
|
||||
Both function have same variable and member function. however the solver is different.
|
||||
Plese choose the right method for your environment
|
||||
|
||||
## Example
|
||||
# Problem Formulation and Expected results
|
||||
|
||||
- updating soon!!
|
||||
|
||||
# Usage
|
||||
|
||||
- for example
|
||||
|
||||
```
|
||||
$ python main_example.py
|
||||
```
|
||||
|
||||
- for comparing two methods
|
||||
|
||||
```
|
||||
$ python test_compare_methods.py
|
||||
```
|
||||
|
||||
# Requirement
|
||||
|
||||
- python3.5 or more
|
||||
- numpy
|
||||
- matplotlib
|
||||
- cvxopt
|
||||
- scipy1.2.0 or more
|
||||
|
||||
# Reference
|
||||
I`m sorry that main references are written in Japanese
|
||||
|
||||
- モデル予測制御―制約のもとでの最適制御 著:Jan M. Maciejowski 訳:足立修一 東京電機大学出版局
|
Loading…
Reference in New Issue