add constraints of mpc.py

This commit is contained in:
Shunichi09 2018-12-26 10:44:57 +09:00
parent 36801f9fb6
commit bc9a2ebe9f
3 changed files with 82 additions and 49 deletions

View File

@ -1,6 +1,7 @@
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import math import math
import copy
from mpc_func import MpcController from mpc_func import MpcController
from control import matlab from control import matlab
@ -39,9 +40,6 @@ class FirstOrderSystem():
time history of system states time history of system states
""" """
if init_states is not None:
self.states = init_states
self.A = A self.A = A
self.B = B self.B = B
self.C = C self.C = C
@ -51,9 +49,12 @@ class FirstOrderSystem():
self.xs = np.zeros(self.A.shape[0]) self.xs = np.zeros(self.A.shape[0])
if init_states is not None:
self.xs = copy.deepcopy(init_states)
self.history_xs = [init_states] self.history_xs = [init_states]
def update_state(self, us, dt=0.01): def update_state(self, u, dt=0.01):
"""calculating input """calculating input
Parameters Parameters
------------ ------------
@ -62,34 +63,39 @@ class FirstOrderSystem():
dt : float in seconds, optional dt : float in seconds, optional
sampling time of simulation, default is 0.01 [s] sampling time of simulation, default is 0.01 [s]
""" """
temp = self.xs.reshape(-1, 1) temp_x = self.xs.reshape(-1, 1)
temp_u = u.reshape(-1, 1)
# solve Runge-Kutta # solve Runge-Kutta
k0 = dt * (np.dot(self.A, temp) + np.dot(self.B, us)) k0 = dt * (np.dot(self.A, temp_x) + np.dot(self.B, temp_u))
k1 = dt * (np.dot(self.A, temp + k0/2.) + np.dot(self.B, us)) k1 = dt * (np.dot(self.A, temp_x + k0/2.) + np.dot(self.B, temp_u))
k2 = dt * (np.dot(self.A, temp + k1/2.) + np.dot(self.B, us)) k2 = dt * (np.dot(self.A, temp_x + k1/2.) + np.dot(self.B, temp_u))
k3 = dt * (np.dot(self.A, temp + k2) + np.dot(self.B, us)) k3 = dt * (np.dot(self.A, temp_x + k2) + np.dot(self.B, temp_u))
self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten() # self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten()
# for oylar # for oylar
# self.state += k0 self.xs += k0.flatten()
# print("xs = {0}".format(self.xs))
# a = input()
# save # save
self.history_xs.append(self.xs) save_states = copy.deepcopy(self.xs)
self.history_xs.append(save_states)
# print(self.history_xs)
def main(): def main():
dt = 0.01 dt = 0.01
simulation_time = 100 # in seconds simulation_time = 300 # in seconds
iteration_num = int(simulation_time / dt) iteration_num = int(simulation_time / dt)
# you must be care about this matrix # you must be care about this matrix
# these A and B are for continuos system if you want to use discret system matrix please skip this step # these A and B are for continuos system if you want to use discret system matrix please skip this step
tau = 0.53 tau = 0.63
A = np.array([[1./tau, 0., 0., 0.], A = np.array([[-1./tau, 0., 0., 0.],
[0., 1./tau, 0., 0.], [0., -1./tau, 0., 0.],
[1., 0., 0., 0.], [1., 0., 0., 0.],
[1., 0., 0., 0.]]) [0., 1., 0., 0.]])
B = np.array([[1./tau, 0.], B = np.array([[1./tau, 0.],
[0., 1./tau], [0., 1./tau],
[0., 0.], [0., 0.],
@ -99,7 +105,8 @@ def main():
D = np.zeros((4, 2)) D = np.zeros((4, 2))
# make simulator with coninuous matrix # make simulator with coninuous matrix
plant = FirstOrderSystem(A, B, C) init_xs = np.array([0., 0., -3000., 50.])
plant = FirstOrderSystem(A, B, C, init_states=init_xs)
# create system # create system
sysc = matlab.ss(A, B, C, D) sysc = matlab.ss(A, B, C, D)
@ -111,20 +118,31 @@ def main():
# evaluation function weight # evaluation function weight
Q = np.diag([1., 1., 1., 1.]) Q = np.diag([1., 1., 1., 1.])
R = np.diag([1., 1.]) R = np.diag([100., 100.])
pre_step = 3 pre_step = 3
# make controller with discreted matrix # make controller with discreted matrix
controller = MpcController(Ad, Bd, Q, R, pre_step) controller = MpcController(Ad, Bd, Q, R, pre_step)
controller.initialize_controller() controller.initialize_controller()
xs = np.array([0., 0., 0., 0.])
for i in range(iteration_num): for i in range(iteration_num):
controller.calc_input(xs) print("simulation time = {0}".format(i))
reference = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
controller.calc_input(plant.xs, reference)
states = plant.xs
opt_u = controller.calc_input(states, reference)
plant.update_state(opt_u)
# states = plant.states history_states = np.array(plant.history_xs)
# controller.calc_input
print(history_states[:, 2])
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 0])
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 1])
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 2], linestyle="dashed")
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 3])
plt.show()
if __name__ == "__main__": if __name__ == "__main__":
main() main()

View File

@ -12,7 +12,7 @@ class MpcController():
""" """
def __init__(self, A, B, Q, R, pre_step, input_upper=None, input_lower=None): def __init__(self, A, B, Q, R, pre_step, initial_input=None, dt_input_upper=None, dt_input_lower=None, input_upper=None, input_lower=None):
""" """
""" """
self.A = np.array(A) self.A = np.array(A)
@ -27,8 +27,25 @@ class MpcController():
self.state_size = self.A.shape[0] self.state_size = self.A.shape[0]
self.input_size = self.B.shape[1] self.input_size = self.B.shape[1]
self.history_us = [] self.history_us = [np.zeros(self.input_size)]
# initial state
if initial_input is not None:
self.history_us = [initial_input]
# constraints
if dt_input_lower in not None:
self.dt_input_lower = dt_input_lower
if dt_input_upper in not None:
self.dt_input_upper = dt_input_upper
if input_upper in not None:
self.input_upper = input_upper
if input_lower in not None:
self.input_lower = input_lower
def initialize_controller(self): def initialize_controller(self):
""" """
make matrix to calculate optimal controller make matrix to calculate optimal controller
@ -66,6 +83,7 @@ class MpcController():
print("theta_mat = \n{0}".format(self.theta_mat)) print("theta_mat = \n{0}".format(self.theta_mat))
# evaluation function weight
diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)]) diag_Qs = np.array([np.diag(self.Q) for _ in range(self.pre_step)])
diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)]) diag_Rs = np.array([np.diag(self.R) for _ in range(self.pre_step)])
@ -75,6 +93,16 @@ class MpcController():
print("Qs = {0}".format(self.Qs)) print("Qs = {0}".format(self.Qs))
print("Rs = {0}".format(self.Rs)) print("Rs = {0}".format(self.Rs))
# constraints
# dt U
F = np.array([[], [], []])
# u
# state
def calc_input(self, states, references): def calc_input(self, states, references):
""" """
Parameters Parameters
@ -89,10 +117,10 @@ class MpcController():
""" """
temp_1 = np.dot(self.phi_mat, states) temp_1 = np.dot(self.phi_mat, states.reshape(-1, 1))
temp_2 = np.dot(self.gamma_mat, self.history_us[-1]) temp_2 = np.dot(self.gamma_mat, self.history_us[-1].reshape(-1, 1))
error = references - temp_1 - temp_2 error = references.reshape(-1, 1) - temp_1 - temp_2
G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error) ) G = 2. * np.dot(self.theta_mat.T, np.dot(self.Qs, error) )
@ -101,35 +129,22 @@ class MpcController():
def optimized_func(dt_us): def optimized_func(dt_us):
""" """
""" """
return np.dot(dt_us.T, np.dot(H, dt_us)) - np.dot(G.T, dt_us) return np.dot(dt_us.flatten(), np.dot(H, dt_us)) - np.dot(G.T, dt_us)
def constraint_func(): def constraint_func():
""" """
""" """
return return None
init_dt_us = np.zeros(self.pre_step) init_dt_us = np.zeros((self.input_size * self.pre_step, 1))
opt_result = minimize(optimized_func, init_dt_us) opt_result = minimize(optimized_func, init_dt_us)
opt_dt_us = opt_result opt_dt_us = opt_result.x
opt_us = opt_dt_us[0] + self.history_us[-1] opt_u = opt_dt_us[:self.input_size] + self.history_us[-1]
# save # save
self.history_us.append(opt_us) self.history_us.append(opt_u)
return opt_us
return opt_u