156 lines
4.1 KiB
Python
156 lines
4.1 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
import copy
|
|
|
|
from mpc_func import MpcController
|
|
from control import matlab
|
|
|
|
class FirstOrderSystem():
|
|
"""FirstOrderSystemWithStates
|
|
|
|
Attributes
|
|
-----------
|
|
states : float
|
|
system states
|
|
A : numpy.ndarray
|
|
system matrix
|
|
B : numpy.ndarray
|
|
control matrix
|
|
C : numpy.ndarray
|
|
observation matrix
|
|
history_state : list
|
|
time history of state
|
|
"""
|
|
def __init__(self, A, B, C, D=None, init_states=None):
|
|
"""
|
|
Parameters
|
|
-----------
|
|
A : numpy.ndarray
|
|
system matrix
|
|
B : numpy.ndarray
|
|
control matrix
|
|
C : numpy.ndarray
|
|
observation matrix
|
|
C : numpy.ndarray
|
|
directly matrix
|
|
init_state : float, optional
|
|
initial state of system default is None
|
|
history_xs : list
|
|
time history of system states
|
|
"""
|
|
|
|
self.A = A
|
|
self.B = B
|
|
self.C = C
|
|
|
|
if D is not None:
|
|
self.D = D
|
|
|
|
self.xs = np.zeros(self.A.shape[0])
|
|
|
|
if init_states is not None:
|
|
self.xs = copy.deepcopy(init_states)
|
|
|
|
self.history_xs = [init_states]
|
|
|
|
def update_state(self, u, dt=0.01):
|
|
"""calculating input
|
|
Parameters
|
|
------------
|
|
u : float
|
|
input of system in some cases this means the reference
|
|
dt : float in seconds, optional
|
|
sampling time of simulation, default is 0.01 [s]
|
|
"""
|
|
temp_x = self.xs.reshape(-1, 1)
|
|
temp_u = u.reshape(-1, 1)
|
|
|
|
# solve Runge-Kutta
|
|
k0 = dt * (np.dot(self.A, temp_x) + np.dot(self.B, temp_u))
|
|
k1 = dt * (np.dot(self.A, temp_x + k0/2.) + np.dot(self.B, temp_u))
|
|
k2 = dt * (np.dot(self.A, temp_x + k1/2.) + np.dot(self.B, temp_u))
|
|
k3 = dt * (np.dot(self.A, temp_x + k2) + np.dot(self.B, temp_u))
|
|
|
|
# self.xs += ((k0 + 2 * k1 + 2 * k2 + k3) / 6.).flatten()
|
|
|
|
# for oylar
|
|
self.xs += k0.flatten()
|
|
|
|
# print("xs = {0}".format(self.xs))
|
|
# a = input()
|
|
# save
|
|
save_states = copy.deepcopy(self.xs)
|
|
self.history_xs.append(save_states)
|
|
# print(self.history_xs)
|
|
|
|
def main():
|
|
dt = 0.01
|
|
simulation_time = 300 # in seconds
|
|
iteration_num = int(simulation_time / dt)
|
|
|
|
# you must be care about this matrix
|
|
# these A and B are for continuos system if you want to use discret system matrix please skip this step
|
|
tau = 0.63
|
|
A = np.array([[-1./tau, 0., 0., 0.],
|
|
[0., -1./tau, 0., 0.],
|
|
[1., 0., 0., 0.],
|
|
[0., 1., 0., 0.]])
|
|
B = np.array([[1./tau, 0.],
|
|
[0., 1./tau],
|
|
[0., 0.],
|
|
[0., 0.]])
|
|
|
|
C = np.eye(4)
|
|
D = np.zeros((4, 2))
|
|
|
|
# make simulator with coninuous matrix
|
|
init_xs = np.array([0., 0., -3000., 50.])
|
|
plant = FirstOrderSystem(A, B, C, init_states=init_xs)
|
|
|
|
# create system
|
|
sysc = matlab.ss(A, B, C, D)
|
|
# discrete system
|
|
sysd = matlab.c2d(sysc, dt)
|
|
|
|
Ad = sysd.A
|
|
Bd = sysd.B
|
|
|
|
# evaluation function weight
|
|
Q = np.diag([1., 1., 1., 1.])
|
|
R = np.diag([100., 100.])
|
|
pre_step = 3
|
|
|
|
# make controller with discreted matrix
|
|
controller = MpcController(Ad, Bd, Q, R, pre_step)
|
|
controller.initialize_controller()
|
|
|
|
for i in range(iteration_num):
|
|
print("simulation time = {0}".format(i))
|
|
reference = np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
|
|
controller.calc_input(plant.xs, reference)
|
|
|
|
states = plant.xs
|
|
opt_u = controller.calc_input(states, reference)
|
|
plant.update_state(opt_u)
|
|
|
|
history_states = np.array(plant.history_xs)
|
|
|
|
print(history_states[:, 2])
|
|
|
|
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 0])
|
|
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 1])
|
|
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 2], linestyle="dashed")
|
|
plt.plot(np.arange(0, simulation_time+0.01, dt), history_states[:, 3])
|
|
plt.show()
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|