add mpc
This commit is contained in:
parent
20b9a9e7f4
commit
ef49e5f1b2
|
@ -68,197 +68,3 @@ class FirstOrderSystem():
|
|||
|
||||
return y_dot
|
||||
|
||||
class LyapunovMRAC():
|
||||
"""LyapunovMRAC
|
||||
|
||||
Attributes
|
||||
-----------
|
||||
input : float
|
||||
system state, this system should have one input - one output
|
||||
a : float
|
||||
parameter of reference model
|
||||
alpha_1 : float
|
||||
parameter of the controller
|
||||
alpha_2 : float
|
||||
parameter of the controller
|
||||
theta_1 : float
|
||||
state of the controller
|
||||
theta_2 : float
|
||||
state of the controller
|
||||
history_input : list
|
||||
time history of input
|
||||
"""
|
||||
def __init__(self, g_1, g_2, init_theta_1=0.0, init_theta_2=0.0, init_input=0.0):
|
||||
"""
|
||||
Parameters
|
||||
-----------
|
||||
g_1 : float
|
||||
parameter of the controller
|
||||
g_2 : float
|
||||
parameter of the controller
|
||||
theta_1 : float, optional
|
||||
state of the controller default is 0.0
|
||||
theta_2 : float, optional
|
||||
state of the controller default is 0.0
|
||||
init_input : float, optional
|
||||
initial input of controller default is 0.0
|
||||
"""
|
||||
self.input = init_input
|
||||
|
||||
# parameters
|
||||
self.g_1 = g_1
|
||||
self.g_2 = g_2
|
||||
|
||||
# states
|
||||
self.theta_1 = init_theta_1
|
||||
self.theta_2 = init_theta_2
|
||||
|
||||
self.history_input = [init_input]
|
||||
|
||||
def update_input(self, e, r, y, dt=0.01):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
e : float
|
||||
error value of system
|
||||
r : float
|
||||
reference value
|
||||
y : float
|
||||
output the model value
|
||||
dt : float in seconds, optional
|
||||
sampling time of simulation, default is 0.01 [s]
|
||||
"""
|
||||
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
||||
k0 = [0.0 for _ in range(4)]
|
||||
k1 = [0.0 for _ in range(4)]
|
||||
k2 = [0.0 for _ in range(4)]
|
||||
k3 = [0.0 for _ in range(4)]
|
||||
|
||||
functions = [self._func_theta_1, self._func_theta_2]
|
||||
|
||||
# solve Runge-Kutta
|
||||
for i, func in enumerate(functions):
|
||||
k0[i] = dt * func(self.theta_1, self.theta_2, e, r, y)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k1[i] = dt * func(self.theta_1 + k0[0]/2.0, self.theta_2 + k0[1]/2.0, e, r, y)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k2[i] = dt * func(self.theta_1 + k1[0]/2.0, self.theta_2 + k1[1]/2.0, e, r, y)
|
||||
|
||||
for i, func in enumerate(functions):
|
||||
k3[i] = dt * func(self.theta_1 + k2[0], self.theta_2 + k2[1], e, r, y)
|
||||
|
||||
self.theta_1 += (k0[0] + 2 * k1[0] + 2 * k2[0] + k3[0]) / 6.0
|
||||
self.theta_2 += (k0[1] + 2 * k1[1] + 2 * k2[1] + k3[1]) / 6.0
|
||||
|
||||
# for oylar
|
||||
"""
|
||||
self.theta_1 += k0[0]
|
||||
self.u_1 += k0[1]
|
||||
self.theta_2 += k0[2]
|
||||
self.u_2 += k0[3]
|
||||
"""
|
||||
# calc input
|
||||
self.input = self.theta_1 * r + self.theta_2 * y
|
||||
|
||||
# save
|
||||
self.history_input.append(self.input)
|
||||
|
||||
def _func_theta_1(self, theta_1, theta_2, e, r, y):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
theta_1 : float
|
||||
state of the controller
|
||||
theta_2 : float
|
||||
state of the controller
|
||||
e : float
|
||||
error
|
||||
r : float
|
||||
reference
|
||||
y : float
|
||||
output of system
|
||||
"""
|
||||
y_dot = self.g_1 * r * e
|
||||
|
||||
return y_dot
|
||||
|
||||
def _func_theta_2(self, theta_1, theta_2, e, r, y):
|
||||
"""
|
||||
Parameters
|
||||
------------
|
||||
Parameters
|
||||
------------
|
||||
theta_1 : float
|
||||
state of the controller
|
||||
theta_2 : float
|
||||
state of the controller
|
||||
e : float
|
||||
error
|
||||
r : float
|
||||
reference
|
||||
y : float
|
||||
output of system
|
||||
"""
|
||||
y_dot = self.g_2 * y * e
|
||||
|
||||
return y_dot
|
||||
|
||||
|
||||
def main():
|
||||
# control plant
|
||||
a = -0.5
|
||||
b = 0.5
|
||||
plant = FirstOrderSystem(a, b)
|
||||
|
||||
# reference model
|
||||
a = 1.
|
||||
b = 1.
|
||||
reference_model = FirstOrderSystem(a, b)
|
||||
|
||||
# controller
|
||||
g_1 = 5.
|
||||
g_2 = 5.
|
||||
controller = LyapunovMRAC(g_1, g_2)
|
||||
|
||||
simulation_time = 50 # in second
|
||||
dt = 0.01
|
||||
simulation_iterations = int(simulation_time / dt) # dt is 0.01
|
||||
|
||||
history_error = [0.0]
|
||||
history_r = [0.0]
|
||||
|
||||
for i in range(1, simulation_iterations): # skip the first
|
||||
# reference input
|
||||
r = math.sin(dt * i)
|
||||
# update reference
|
||||
reference_model.update_state(r, dt=dt)
|
||||
# update plant
|
||||
plant.update_state(controller.input, dt=dt)
|
||||
|
||||
# calc error
|
||||
e = reference_model.state - plant.state
|
||||
y = plant.state
|
||||
history_error.append(e)
|
||||
history_r.append(r)
|
||||
|
||||
# make the gradient
|
||||
controller.update_input(e, r, y, dt=dt)
|
||||
|
||||
# fig
|
||||
plt.plot(np.arange(simulation_iterations)*dt, plant.history_state, label="plant y", linestyle="dashed")
|
||||
plt.plot(np.arange(simulation_iterations)*dt, reference_model.history_state, label="model reference")
|
||||
plt.plot(np.arange(simulation_iterations)*dt, history_error, label="error", linestyle="dashdot")
|
||||
# plt.plot(range(simulation_iterations), history_r, label="error")
|
||||
plt.xlabel("time [s]")
|
||||
plt.ylabel("y")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
# input
|
||||
# plt.plot(np.arange(simulation_iterations)*dt, controller.history_input)
|
||||
# plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue