Compare commits
6 Commits
Author | SHA1 | Date |
---|---|---|
|
eb0bf0c782 | |
|
a0f9d219f5 | |
|
f057d2669e | |
|
6519290e2e | |
|
cf30226519 | |
|
2e0ac5c2f1 |
|
@ -0,0 +1,26 @@
|
|||
name: Upload Python Package
|
||||
|
||||
on:
|
||||
release:
|
||||
types: [created]
|
||||
|
||||
jobs:
|
||||
deploy:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- name: Set up Python 3.6
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: '3.6'
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install setuptools wheel twine
|
||||
- name: Build and publish
|
||||
env:
|
||||
TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }}
|
||||
TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
|
||||
run: |
|
||||
python setup.py bdist_wheel
|
||||
twine upload dist/*
|
|
@ -116,3 +116,32 @@ def update_state_with_Runge_Kutta(state, u, functions, dt=0.01, batch=True):
|
|||
k3[:, i] = dt * func(state + k2, u)
|
||||
|
||||
return state + (k0 + 2. * k1 + 2. * k2 + k3) / 6.
|
||||
|
||||
|
||||
def line_search(grad, sol, compute_eval_val,
|
||||
init_alpha=0.001, max_iter=100, update_ratio=1.):
|
||||
""" line search
|
||||
Args:
|
||||
grad (numpy.ndarray): gradient
|
||||
sol (numpy.ndarray): sol
|
||||
compute_eval_val (numpy.ndarray): function to compute evaluation value
|
||||
|
||||
Returns:
|
||||
alpha (float): result of line search
|
||||
"""
|
||||
assert grad.shape == sol.shape
|
||||
base_val = np.inf
|
||||
alpha = init_alpha
|
||||
original_sol = sol.copy()
|
||||
|
||||
for _ in range(max_iter):
|
||||
updated_sol = original_sol - alpha * grad
|
||||
eval_val = compute_eval_val(updated_sol)
|
||||
|
||||
if eval_val < base_val:
|
||||
alpha += init_alpha * update_ratio
|
||||
base_val = eval_val
|
||||
else:
|
||||
break
|
||||
|
||||
return alpha
|
||||
|
|
|
@ -148,7 +148,7 @@ class CartPoleConfigModule():
|
|||
* CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -177,7 +177,7 @@ class CartPoleConfigModule():
|
|||
return cost_dx * CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -189,7 +189,7 @@ class CartPoleConfigModule():
|
|||
return 2. * u * np.diag(CartPoleConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -227,7 +227,7 @@ class CartPoleConfigModule():
|
|||
return hessian[np.newaxis, :, :] * CartPoleConfigModule.TERMINAL_WEIGHT
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -242,7 +242,7 @@ class CartPoleConfigModule():
|
|||
return np.tile(2.*CartPoleConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
|
|
@ -115,7 +115,7 @@ class FirstOrderLagConfigModule():
|
|||
* np.diag(FirstOrderLagConfigModule.Sf)
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -133,7 +133,7 @@ class FirstOrderLagConfigModule():
|
|||
* np.diag(FirstOrderLagConfigModule.Sf))[np.newaxis, :]
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -146,7 +146,7 @@ class FirstOrderLagConfigModule():
|
|||
return 2. * u * np.diag(FirstOrderLagConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -165,7 +165,7 @@ class FirstOrderLagConfigModule():
|
|||
return np.tile(2.*FirstOrderLagConfigModule.Sf, (1, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -181,7 +181,7 @@ class FirstOrderLagConfigModule():
|
|||
return np.tile(2.*FirstOrderLagConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from .first_order_lag import FirstOrderLagConfigModule
|
||||
from .two_wheeled import TwoWheeledConfigModule
|
||||
from .two_wheeled import TwoWheeledConfigModule, TwoWheeledExtendConfigModule
|
||||
from .cartpole import CartPoleConfigModule
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemConfigModule
|
||||
from .nonlinear_sample_system import NonlinearSampleSystemConfigModule, NonlinearSampleSystemExtendConfigModule
|
||||
|
||||
|
||||
def make_config(args):
|
||||
|
@ -12,8 +12,12 @@ def make_config(args):
|
|||
if args.env == "FirstOrderLag":
|
||||
return FirstOrderLagConfigModule()
|
||||
elif args.env == "TwoWheeledConst" or args.env == "TwoWheeledTrack":
|
||||
if args.controller_type == "NMPCCGMRES":
|
||||
return TwoWheeledExtendConfigModule()
|
||||
return TwoWheeledConfigModule()
|
||||
elif args.env == "CartPole":
|
||||
return CartPoleConfigModule()
|
||||
elif args.env == "NonlinearSample":
|
||||
if args.controller_type == "NMPCCGMRES":
|
||||
return NonlinearSampleSystemExtendConfigModule()
|
||||
return NonlinearSampleSystemConfigModule()
|
||||
|
|
|
@ -62,18 +62,11 @@ class NonlinearSampleSystemConfigModule():
|
|||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC": {
|
||||
"threshold": 1e-5,
|
||||
"max_iters": 1000,
|
||||
"learning_rate": 0.1
|
||||
},
|
||||
"NMPC-CGMRES": {
|
||||
"threshold": 1e-3
|
||||
},
|
||||
"NMPC-Newton": {
|
||||
"threshold": 1e-3,
|
||||
"max_iteration": 500,
|
||||
"learning_rate": 1e-3
|
||||
},
|
||||
"threshold": 0.01,
|
||||
"max_iters": 5000,
|
||||
"learning_rate": 0.01,
|
||||
"optimizer_mode": "conjugate"
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
|
@ -133,7 +126,7 @@ class NonlinearSampleSystemConfigModule():
|
|||
return 0.5 * (terminal_x[0]**2) + 0.5 * (terminal_x[1]**2)
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -157,7 +150,7 @@ class NonlinearSampleSystemConfigModule():
|
|||
return cost_dx
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -169,7 +162,7 @@ class NonlinearSampleSystemConfigModule():
|
|||
return 2. * u * np.diag(NonlinearSampleSystemConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -197,7 +190,7 @@ class NonlinearSampleSystemConfigModule():
|
|||
return hessian[np.newaxis, :, :]
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -212,7 +205,7 @@ class NonlinearSampleSystemConfigModule():
|
|||
return np.tile(NonlinearSampleSystemConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
@ -294,3 +287,67 @@ class NonlinearSampleSystemConfigModule():
|
|||
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class NonlinearSampleSystemExtendConfigModule(NonlinearSampleSystemConfigModule):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.opt_config = {
|
||||
"NMPCCGMRES": {
|
||||
"threshold": 1e-3,
|
||||
"zeta": 100.,
|
||||
"delta": 0.01,
|
||||
"alpha": 0.5,
|
||||
"tf": 1.,
|
||||
"constraint": True
|
||||
},
|
||||
"NMPCNewton": {
|
||||
"threshold": 1e-3,
|
||||
"max_iteration": 500,
|
||||
"learning_rate": 1e-3
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_input_with_constraint(x, lam, u, g_x, dummy_u, raw):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
dummy_u (numpy.ndarray): shape(pred_len, input_size)
|
||||
raw (numpy.ndarray): shape(pred_len, input_size), Lagrangian for constraints
|
||||
|
||||
Returns:
|
||||
F (numpy.ndarray), shape(pred_len, 3)
|
||||
"""
|
||||
if len(x.shape) == 1:
|
||||
vanilla_F = np.zeros(1)
|
||||
extend_F = np.zeros(1) # 1 is the same as input size
|
||||
extend_C = np.zeros(1)
|
||||
|
||||
vanilla_F[0] = u[0] + lam[1] + 2. * raw[0] * u[0]
|
||||
extend_F[0] = -0.01 + 2. * raw[0] * dummy_u[0]
|
||||
extend_C[0] = u[0]**2 + dummy_u[0]**2 - \
|
||||
NonlinearSampleSystemConfigModule.INPUT_LOWER_BOUND**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C])
|
||||
|
||||
elif len(x.shape) == 2:
|
||||
pred_len, _ = u.shape
|
||||
vanilla_F = np.zeros((pred_len, 1))
|
||||
extend_F = np.zeros((pred_len, 1)) # 1 is the same as input size
|
||||
extend_C = np.zeros((pred_len, 1))
|
||||
|
||||
for i in range(pred_len):
|
||||
vanilla_F[i, 0] = \
|
||||
u[i, 0] + lam[i, 1] + 2. * raw[i, 0] * u[i, 0]
|
||||
extend_F[i, 0] = -0.01 + 2. * raw[i, 0] * dummy_u[i, 0]
|
||||
extend_C[i, 0] = u[i, 0]**2 + dummy_u[i, 0]**2 - \
|
||||
NonlinearSampleSystemConfigModule.INPUT_LOWER_BOUND**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C], axis=1)
|
||||
|
||||
return F
|
||||
|
|
|
@ -29,10 +29,9 @@ class TwoWheeledConfigModule():
|
|||
Sf = np.diag([2.5, 2.5, 0.01])
|
||||
"""
|
||||
# for track goal to NMPC
|
||||
R = np.diag([0.1, 0.1])
|
||||
Q = np.diag([0.1, 0.1, 0.1])
|
||||
Sf = np.diag([0.25, 0.25, 0.25])
|
||||
|
||||
R = np.diag([1., 1.])
|
||||
Q = np.diag([0.001, 0.001, 0.001])
|
||||
Sf = np.diag([1., 1., 0.001])
|
||||
# bounds
|
||||
INPUT_LOWER_BOUND = np.array([-1.5, -3.14])
|
||||
INPUT_UPPER_BOUND = np.array([1.5, 3.14])
|
||||
|
@ -84,9 +83,10 @@ class TwoWheeledConfigModule():
|
|||
"threshold": 1e-6,
|
||||
},
|
||||
"NMPC": {
|
||||
"threshold": 1e-3,
|
||||
"max_iters": 1000,
|
||||
"learning_rate": 0.1
|
||||
"threshold": 0.01,
|
||||
"max_iters": 5000,
|
||||
"learning_rate": 0.01,
|
||||
"optimizer_mode": "conjugate"
|
||||
},
|
||||
"NMPC-CGMRES": {
|
||||
},
|
||||
|
@ -160,7 +160,7 @@ class TwoWheeledConfigModule():
|
|||
return ((terminal_diff)**2) * np.diag(TwoWheeledConfigModule.Sf)
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def gradient_cost_fn_state(x, g_x, terminal=False):
|
||||
""" gradient of costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -180,7 +180,7 @@ class TwoWheeledConfigModule():
|
|||
* np.diag(TwoWheeledConfigModule.Sf))[np.newaxis, :]
|
||||
|
||||
@staticmethod
|
||||
def gradient_cost_fn_with_input(x, u):
|
||||
def gradient_cost_fn_input(x, u):
|
||||
""" gradient of costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -193,7 +193,7 @@ class TwoWheeledConfigModule():
|
|||
return 2. * u * np.diag(TwoWheeledConfigModule.R)
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_state(x, g_x, terminal=False):
|
||||
def hessian_cost_fn_state(x, g_x, terminal=False):
|
||||
""" hessian costs with respect to the state
|
||||
|
||||
Args:
|
||||
|
@ -212,7 +212,7 @@ class TwoWheeledConfigModule():
|
|||
return np.tile(2.*TwoWheeledConfigModule.Sf, (1, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input(x, u):
|
||||
def hessian_cost_fn_input(x, u):
|
||||
""" hessian costs with respect to the input
|
||||
|
||||
Args:
|
||||
|
@ -228,7 +228,7 @@ class TwoWheeledConfigModule():
|
|||
return np.tile(2.*TwoWheeledConfigModule.R, (pred_len, 1, 1))
|
||||
|
||||
@staticmethod
|
||||
def hessian_cost_fn_with_input_state(x, u):
|
||||
def hessian_cost_fn_input_state(x, u):
|
||||
""" hessian costs with respect to the state and input
|
||||
|
||||
Args:
|
||||
|
@ -326,3 +326,83 @@ class TwoWheeledConfigModule():
|
|||
return lam_dot
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class TwoWheeledExtendConfigModule(TwoWheeledConfigModule):
|
||||
PRED_LEN = 20
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.opt_config = {
|
||||
"NMPCCGMRES": {
|
||||
"threshold": 1e-3,
|
||||
"zeta": 5.,
|
||||
"delta": 0.01,
|
||||
"alpha": 0.5,
|
||||
"tf": 1.,
|
||||
"constraint": True
|
||||
},
|
||||
"NMPCNewton": {
|
||||
"threshold": 1e-3,
|
||||
"max_iteration": 500,
|
||||
"learning_rate": 1e-3
|
||||
}
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_input_with_constraint(x, lam, u, g_x, dummy_u, raw):
|
||||
"""
|
||||
|
||||
Args:
|
||||
x (numpy.ndarray): shape(pred_len+1, state_size)
|
||||
lam (numpy.ndarray): shape(pred_len, state_size)
|
||||
u (numpy.ndarray): shape(pred_len, input_size)
|
||||
g_xs (numpy.ndarray): shape(pred_len, state_size)
|
||||
dummy_u (numpy.ndarray): shape(pred_len, input_size)
|
||||
raw (numpy.ndarray): shape(pred_len, input_size), Lagrangian for constraints
|
||||
|
||||
Returns:
|
||||
F (numpy.ndarray), shape(pred_len, 3)
|
||||
"""
|
||||
if len(x.shape) == 1:
|
||||
vanilla_F = np.zeros(2)
|
||||
extend_F = np.zeros(2) # 1 is the same as input size
|
||||
extend_C = np.zeros(2)
|
||||
|
||||
vanilla_F[0] = u[0] + lam[0] * \
|
||||
np.cos(x[2]) + lam[1] * np.sin(x[2]) + 2. * raw[0] * u[0]
|
||||
vanilla_F[1] = u[1] + lam[2] + 2 * raw[1] * u[1]
|
||||
|
||||
extend_F[0] = -0.01 + 2. * raw[0] * dummy_u[0]
|
||||
extend_F[1] = -0.01 + 2. * raw[1] * dummy_u[1]
|
||||
|
||||
extend_C[0] = u[0]**2 + dummy_u[0]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[0]**2
|
||||
extend_C[1] = u[1]**2 + dummy_u[1]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[1]**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C])
|
||||
|
||||
elif len(x.shape) == 2:
|
||||
pred_len, _ = u.shape
|
||||
vanilla_F = np.zeros((pred_len, 2))
|
||||
extend_F = np.zeros((pred_len, 2)) # 1 is the same as input size
|
||||
extend_C = np.zeros((pred_len, 2))
|
||||
|
||||
for i in range(pred_len):
|
||||
vanilla_F[i, 0] = u[i, 0] + lam[i, 0] * \
|
||||
np.cos(x[i, 2]) + lam[i, 1] * \
|
||||
np.sin(x[i, 2]) + 2. * raw[i, 0] * u[i, 0]
|
||||
vanilla_F[i, 1] = u[i, 1] + lam[i, 2] + 2 * raw[i, 1] * u[i, 1]
|
||||
|
||||
extend_F[i, 0] = -0.01 + 2. * raw[i, 0] * dummy_u[i, 0]
|
||||
extend_F[i, 1] = -0.01 + 2. * raw[i, 1] * dummy_u[i, 1]
|
||||
|
||||
extend_C[i, 0] = u[i, 0]**2 + dummy_u[i, 0]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[0]**2
|
||||
extend_C[i, 1] = u[i, 1]**2 + dummy_u[i, 1]**2 - \
|
||||
TwoWheeledConfigModule.INPUT_LOWER_BOUND[1]**2
|
||||
|
||||
F = np.concatenate([vanilla_F, extend_F, extend_C], axis=1)
|
||||
|
||||
return F
|
||||
|
|
|
@ -55,17 +55,3 @@ class Controller():
|
|||
self.terminal_state_cost_fn)
|
||||
|
||||
return costs
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_x(x, u, lam):
|
||||
""" gradient of hamitonian with respect to the state,
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"Implement gradient of hamitonian with respect to the state")
|
||||
|
||||
@staticmethod
|
||||
def gradient_hamiltonian_u(x, u, lam):
|
||||
""" gradient of hamitonian with respect to the input
|
||||
"""
|
||||
raise NotImplementedError(
|
||||
"Implement gradient of hamitonian with respect to the input")
|
||||
|
|
|
@ -32,12 +32,12 @@ class DDP(Controller):
|
|||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
self.gradient_cost_fn_with_state = config.gradient_cost_fn_with_state
|
||||
self.gradient_cost_fn_with_input = config.gradient_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_state = config.hessian_cost_fn_with_state
|
||||
self.hessian_cost_fn_with_input = config.hessian_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_input_state = \
|
||||
config.hessian_cost_fn_with_input_state
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
self.gradient_cost_fn_input = config.gradient_cost_fn_input
|
||||
self.hessian_cost_fn_state = config.hessian_cost_fn_state
|
||||
self.hessian_cost_fn_input = config.hessian_cost_fn_input
|
||||
self.hessian_cost_fn_input_state = \
|
||||
config.hessian_cost_fn_input_state
|
||||
|
||||
# controller parameters
|
||||
self.max_iters = config.opt_config["DDP"]["max_iters"]
|
||||
|
@ -264,31 +264,31 @@ class DDP(Controller):
|
|||
shape(pred_len, input_size, state_size)
|
||||
"""
|
||||
# l_x.shape = (pred_len+1, state_size)
|
||||
l_x = self.gradient_cost_fn_with_state(pred_xs[:-1],
|
||||
l_x = self.gradient_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_x = \
|
||||
self.gradient_cost_fn_with_state(pred_xs[-1],
|
||||
self.gradient_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
||||
|
||||
# l_u.shape = (pred_len, input_size)
|
||||
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_u = self.gradient_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_xx.shape = (pred_len+1, state_size, state_size)
|
||||
l_xx = self.hessian_cost_fn_with_state(pred_xs[:-1],
|
||||
l_xx = self.hessian_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_xx = \
|
||||
self.hessian_cost_fn_with_state(pred_xs[-1],
|
||||
self.hessian_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
||||
|
||||
# l_uu.shape = (pred_len, input_size, input_size)
|
||||
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_uu = self.hessian_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_ux.shape = (pred_len, input_size, state_size)
|
||||
l_ux = self.hessian_cost_fn_with_input_state(pred_xs[:-1], sol)
|
||||
l_ux = self.hessian_cost_fn_input_state(pred_xs[:-1], sol)
|
||||
|
||||
return l_x, l_xx, l_u, l_uu, l_ux
|
||||
|
||||
|
|
|
@ -30,12 +30,12 @@ class iLQR(Controller):
|
|||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
self.gradient_cost_fn_with_state = config.gradient_cost_fn_with_state
|
||||
self.gradient_cost_fn_with_input = config.gradient_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_state = config.hessian_cost_fn_with_state
|
||||
self.hessian_cost_fn_with_input = config.hessian_cost_fn_with_input
|
||||
self.hessian_cost_fn_with_input_state = \
|
||||
config.hessian_cost_fn_with_input_state
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
self.gradient_cost_fn_input = config.gradient_cost_fn_input
|
||||
self.hessian_cost_fn_state = config.hessian_cost_fn_state
|
||||
self.hessian_cost_fn_input = config.hessian_cost_fn_input
|
||||
self.hessian_cost_fn_input_state = \
|
||||
config.hessian_cost_fn_input_state
|
||||
|
||||
# controller parameters
|
||||
self.max_iters = config.opt_config["iLQR"]["max_iters"]
|
||||
|
@ -244,31 +244,31 @@ class iLQR(Controller):
|
|||
shape(pred_len, input_size, state_size)
|
||||
"""
|
||||
# l_x.shape = (pred_len+1, state_size)
|
||||
l_x = self.gradient_cost_fn_with_state(pred_xs[:-1],
|
||||
l_x = self.gradient_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_x = \
|
||||
self.gradient_cost_fn_with_state(pred_xs[-1],
|
||||
self.gradient_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_x = np.concatenate((l_x, terminal_l_x), axis=0)
|
||||
|
||||
# l_u.shape = (pred_len, input_size)
|
||||
l_u = self.gradient_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_u = self.gradient_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_xx.shape = (pred_len+1, state_size, state_size)
|
||||
l_xx = self.hessian_cost_fn_with_state(pred_xs[:-1],
|
||||
l_xx = self.hessian_cost_fn_state(pred_xs[:-1],
|
||||
g_x[:-1], terminal=False)
|
||||
terminal_l_xx = \
|
||||
self.hessian_cost_fn_with_state(pred_xs[-1],
|
||||
self.hessian_cost_fn_state(pred_xs[-1],
|
||||
g_x[-1], terminal=True)
|
||||
|
||||
l_xx = np.concatenate((l_xx, terminal_l_xx), axis=0)
|
||||
|
||||
# l_uu.shape = (pred_len, input_size, input_size)
|
||||
l_uu = self.hessian_cost_fn_with_input(pred_xs[:-1], sol)
|
||||
l_uu = self.hessian_cost_fn_input(pred_xs[:-1], sol)
|
||||
|
||||
# l_ux.shape = (pred_len, input_size, state_size)
|
||||
l_ux = self.hessian_cost_fn_with_input_state(pred_xs[:-1], sol)
|
||||
l_ux = self.hessian_cost_fn_input_state(pred_xs[:-1], sol)
|
||||
|
||||
return l_x, l_xx, l_u, l_uu, l_ux
|
||||
|
||||
|
|
|
@ -6,6 +6,7 @@ from .mppi_williams import MPPIWilliams
|
|||
from .ilqr import iLQR
|
||||
from .ddp import DDP
|
||||
from .nmpc import NMPC
|
||||
from .nmpc_cgmres import NMPCCGMRES
|
||||
|
||||
|
||||
def make_controller(args, config, model):
|
||||
|
@ -26,5 +27,7 @@ def make_controller(args, config, model):
|
|||
return DDP(config, model)
|
||||
elif args.controller_type == "NMPC":
|
||||
return NMPC(config, model)
|
||||
elif args.controller_type == "NMPCCGMRES":
|
||||
return NMPCCGMRES(config, model)
|
||||
|
||||
raise ValueError("No controller: {}".format(args.controller_type))
|
||||
|
|
|
@ -5,6 +5,7 @@ import scipy.stats as stats
|
|||
|
||||
from .controller import Controller
|
||||
from ..envs.cost import calc_cost
|
||||
from ..common.utils import line_search
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
@ -27,6 +28,7 @@ class NMPC(Controller):
|
|||
self.threshold = config.opt_config["NMPC"]["threshold"]
|
||||
self.max_iters = config.opt_config["NMPC"]["max_iters"]
|
||||
self.learning_rate = config.opt_config["NMPC"]["learning_rate"]
|
||||
self.optimizer_mode = config.opt_config["NMPC"]["optimizer_mode"]
|
||||
|
||||
# general parameters
|
||||
self.pred_len = config.PRED_LEN
|
||||
|
@ -46,6 +48,11 @@ class NMPC(Controller):
|
|||
"""
|
||||
sol = self.prev_sol.copy()
|
||||
count = 0
|
||||
# use for Conjugate method
|
||||
conjugate_d = None
|
||||
conjugate_prev_d = None
|
||||
conjugate_s = None
|
||||
conjugate_beta = None
|
||||
|
||||
while True:
|
||||
# shape(pred_len+1, state_size)
|
||||
|
@ -64,7 +71,35 @@ class NMPC(Controller):
|
|||
np.linalg.norm(F_hat)))
|
||||
break
|
||||
|
||||
sol -= self.learning_rate * F_hat
|
||||
if self.optimizer_mode == "conjugate":
|
||||
conjugate_d = F_hat.flatten()
|
||||
|
||||
if conjugate_prev_d is None: # initial
|
||||
conjugate_s = conjugate_d
|
||||
conjugate_prev_d = conjugate_d
|
||||
F_hat = conjugate_s.reshape(F_hat.shape)
|
||||
else:
|
||||
prev_d = np.dot(conjugate_prev_d, conjugate_prev_d)
|
||||
d = np.dot(conjugate_d, conjugate_d - conjugate_prev_d)
|
||||
conjugate_beta = (d + 1e-6) / (prev_d + 1e-6)
|
||||
|
||||
conjugate_s = conjugate_d + conjugate_beta * conjugate_s
|
||||
conjugate_prev_d = conjugate_d
|
||||
F_hat = conjugate_s.reshape(F_hat.shape)
|
||||
|
||||
def compute_eval_val(u):
|
||||
pred_xs = self.model.predict_traj(curr_x, u)
|
||||
state_cost = np.sum(self.config.state_cost_fn(
|
||||
pred_xs[1:-1], g_xs[1:-1]))
|
||||
input_cost = np.sum(self.config.input_cost_fn(u))
|
||||
terminal_cost = np.sum(
|
||||
self.config.terminal_state_cost_fn(pred_xs[-1], g_xs[-1]))
|
||||
return state_cost + input_cost + terminal_cost
|
||||
|
||||
alpha = line_search(F_hat, sol,
|
||||
compute_eval_val, init_alpha=self.learning_rate)
|
||||
|
||||
sol -= alpha * F_hat
|
||||
count += 1
|
||||
|
||||
# update us for next optimization
|
||||
|
|
|
@ -0,0 +1,167 @@
|
|||
from logging import getLogger
|
||||
|
||||
import numpy as np
|
||||
import scipy.stats as stats
|
||||
|
||||
from .controller import Controller
|
||||
from ..envs.cost import calc_cost
|
||||
from ..common.utils import line_search
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
|
||||
class NMPCCGMRES(Controller):
|
||||
def __init__(self, config, model):
|
||||
""" Nonlinear Model Predictive Control using cgmres
|
||||
"""
|
||||
super(NMPCCGMRES, self).__init__(config, model)
|
||||
|
||||
# model
|
||||
self.model = model
|
||||
|
||||
# get cost func
|
||||
self.state_cost_fn = config.state_cost_fn
|
||||
self.terminal_state_cost_fn = config.terminal_state_cost_fn
|
||||
self.input_cost_fn = config.input_cost_fn
|
||||
|
||||
# general parameters
|
||||
self.pred_len = config.PRED_LEN
|
||||
self.input_size = config.INPUT_SIZE
|
||||
self.dt = config.DT
|
||||
|
||||
# controller parameters
|
||||
self.threshold = config.opt_config["NMPCCGMRES"]["threshold"]
|
||||
self.zeta = config.opt_config["NMPCCGMRES"]["zeta"]
|
||||
self.delta = config.opt_config["NMPCCGMRES"]["delta"]
|
||||
self.alpha = config.opt_config["NMPCCGMRES"]["alpha"]
|
||||
self.tf = config.opt_config["NMPCCGMRES"]["tf"]
|
||||
self.divide_num = config.PRED_LEN
|
||||
self.with_constraint = config.opt_config["NMPCCGMRES"]["constraint"]
|
||||
if not self.with_constraint:
|
||||
raise NotImplementedError
|
||||
# 3 means u, dummy_u, raw
|
||||
self.max_iters = 3 * self.input_size * self.divide_num
|
||||
|
||||
# initialize
|
||||
self.prev_sol = np.zeros((self.pred_len, self.input_size))
|
||||
self.opt_count = 1
|
||||
# add smaller than constraints value
|
||||
input_constraint = np.abs([config.INPUT_LOWER_BOUND])
|
||||
self.prev_dummy_sol = np.ones(
|
||||
(self.pred_len, self.input_size)) * input_constraint - 1e-3
|
||||
# add bigger than 0.01 to avoid computational error
|
||||
self.prev_raw = np.zeros(
|
||||
(self.pred_len, self.input_size)) + 0.01 + 1e-3
|
||||
|
||||
def _compute_f(self, curr_x, sol, g_xs, dummy_sol=None, raw=None):
|
||||
# shape(pred_len+1, state_size)
|
||||
pred_xs = self.model.predict_traj(curr_x, sol)
|
||||
# shape(pred_len, state_size)
|
||||
pred_lams = self.model.predict_adjoint_traj(pred_xs, sol, g_xs)
|
||||
|
||||
if self.with_constraint:
|
||||
F = self.config.gradient_hamiltonian_input_with_constraint(
|
||||
pred_xs, pred_lams, sol, g_xs, dummy_sol, raw)
|
||||
|
||||
return F
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def obtain_sol(self, curr_x, g_xs):
|
||||
""" calculate the optimal inputs
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
g_xs (numpy.ndarrya): goal trajectory, shape(plan_len, state_size)
|
||||
Returns:
|
||||
opt_input (numpy.ndarray): optimal input, shape(input_size, )
|
||||
"""
|
||||
sol = self.prev_sol.copy()
|
||||
dummy_sol = self.prev_dummy_sol.copy()
|
||||
raw = self.prev_raw.copy()
|
||||
|
||||
# compute delta t
|
||||
time = self.dt * self.opt_count
|
||||
dt = self.tf * (1. - np.exp(-self.alpha * time)) / \
|
||||
float(self.divide_num)
|
||||
self.model.dt = dt
|
||||
|
||||
# compute Fxt
|
||||
x_dot = self.model.x_dot(curr_x, sol[0])
|
||||
dx = x_dot * self.delta
|
||||
Fxt = self._compute_f(curr_x+dx, sol, g_xs, dummy_sol, raw).flatten()
|
||||
|
||||
# compute F
|
||||
F = self._compute_f(curr_x, sol, g_xs, dummy_sol, raw).flatten()
|
||||
right = - self.zeta * F - ((Fxt - F) / self.delta)
|
||||
|
||||
# compute Fuxt
|
||||
du = sol * self.delta
|
||||
ddummy_u = dummy_sol * self.delta
|
||||
draw = raw * self.delta
|
||||
Fuxt = self._compute_f(curr_x+dx, sol+du, g_xs,
|
||||
dummy_sol+ddummy_u, raw+draw).flatten()
|
||||
left = ((Fuxt - Fxt) / self.delta)
|
||||
|
||||
r0 = right - left
|
||||
r0_norm = np.linalg.norm(r0)
|
||||
|
||||
vs = np.zeros((self.max_iters, self.max_iters + 1))
|
||||
vs[:, 0] = r0 / r0_norm
|
||||
hs = np.zeros((self.max_iters + 1, self.max_iters + 1))
|
||||
e = np.zeros((self.max_iters + 1, 1))
|
||||
e[0] = 1.
|
||||
|
||||
for i in range(self.max_iters):
|
||||
reshaped_vs = vs.reshape(
|
||||
(self.divide_num, 3, self.input_size, self.max_iters+1))
|
||||
du = reshaped_vs[:, 0, :, i] * self.delta
|
||||
ddummy_u = reshaped_vs[:, 1, :, i] * self.delta
|
||||
draw = reshaped_vs[:, 2, :, i] * self.delta
|
||||
|
||||
Fuxt = self._compute_f(
|
||||
curr_x+dx, sol+du, g_xs, dummy_sol+ddummy_u, raw+draw).flatten()
|
||||
Av = ((Fuxt - Fxt) / self.delta)
|
||||
|
||||
sum_Av = np.zeros(self.max_iters)
|
||||
|
||||
for j in range(i + 1):
|
||||
hs[j, i] = np.dot(Av, vs[:, j])
|
||||
sum_Av = sum_Av + hs[j, i] * vs[:, j]
|
||||
|
||||
v_est = Av - sum_Av
|
||||
|
||||
hs[i+1, i] = np.linalg.norm(v_est)
|
||||
|
||||
vs[:, i+1] = v_est / hs[i+1, i]
|
||||
|
||||
inv_hs = np.linalg.pinv(hs[:i+1, :i])
|
||||
ys = np.dot(inv_hs, r0_norm * e[:i+1])
|
||||
|
||||
judge_value = r0_norm * e[:i+1] - np.dot(hs[:i+1, :i], ys[:i])
|
||||
|
||||
if np.linalg.norm(judge_value) < self.threshold or i == self.max_iters-1:
|
||||
update_value = np.dot(vs[:, :i-1], ys_pre[:i-1]).flatten()
|
||||
|
||||
update_value = update_value.reshape(
|
||||
(self.divide_num, 3, self.input_size))
|
||||
du_new = du + update_value[:, 0, :]
|
||||
ddummy_u_new = ddummy_u + update_value[:, 1, :]
|
||||
draw_new = draw + update_value[:, 2, :]
|
||||
break
|
||||
|
||||
ys_pre = ys
|
||||
|
||||
sol += du_new * self.delta
|
||||
dummy_sol += ddummy_u_new * self.delta
|
||||
raw += draw_new * self.delta
|
||||
|
||||
F = self._compute_f(curr_x, sol, g_xs, dummy_sol, raw)
|
||||
logger.debug("check F = {0}".format(np.linalg.norm(F)))
|
||||
|
||||
self.prev_sol = sol.copy()
|
||||
self.prev_dummy_sol = dummy_sol.copy()
|
||||
self.prev_raw = raw.copy()
|
||||
|
||||
self.opt_count += 1
|
||||
|
||||
return sol[0]
|
|
@ -59,7 +59,7 @@ class TwoWheeledConstEnv(Env):
|
|||
self.step_count = 0
|
||||
|
||||
noise = np.clip(np.random.randn(3), -0.1, 0.1)
|
||||
noise *= 0.01
|
||||
noise *= 0.1
|
||||
self.curr_x = np.zeros(self.config["state_size"]) + noise
|
||||
|
||||
if init_x is not None:
|
||||
|
|
|
@ -88,6 +88,11 @@ class Model():
|
|||
"""
|
||||
raise NotImplementedError("Implement the model")
|
||||
|
||||
def x_dot(self, curr_x, u):
|
||||
""" compute x dot
|
||||
"""
|
||||
raise NotImplementedError("Implement the model")
|
||||
|
||||
def predict_adjoint_traj(self, xs, us, g_xs):
|
||||
"""
|
||||
Args:
|
||||
|
@ -111,7 +116,7 @@ class Model():
|
|||
for t in range(pred_len-1, 0, -1):
|
||||
prev_lam = \
|
||||
self.predict_adjoint_state(lam, xs[t], us[t],
|
||||
g_x=g_xs[t], t=t)
|
||||
g_x=g_xs[t])
|
||||
# update
|
||||
lams = np.concatenate((prev_lam[np.newaxis, :], lams), axis=0)
|
||||
lam = prev_lam
|
||||
|
|
|
@ -15,7 +15,7 @@ class NonlinearSampleSystemModel(Model):
|
|||
self.dt = config.DT
|
||||
self.gradient_hamiltonian_state = config.gradient_hamiltonian_state
|
||||
self.gradient_hamiltonian_input = config.gradient_hamiltonian_input
|
||||
self.gradient_cost_fn_with_state = config.gradient_cost_fn_with_state
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
|
||||
def predict_next_state(self, curr_x, u):
|
||||
""" predict next state
|
||||
|
@ -34,7 +34,7 @@ class NonlinearSampleSystemModel(Model):
|
|||
func_2 = self._func_x_2
|
||||
functions = [func_1, func_2]
|
||||
next_x = update_state_with_Runge_Kutta(
|
||||
curr_x, u, functions, batch=False)
|
||||
curr_x, u, functions, batch=False, dt=self.dt)
|
||||
return next_x
|
||||
|
||||
elif len(u.shape) == 2:
|
||||
|
@ -42,11 +42,25 @@ class NonlinearSampleSystemModel(Model):
|
|||
def func_2(xs, us): return self._func_x_2(xs, us, batch=True)
|
||||
functions = [func_1, func_2]
|
||||
next_x = update_state_with_Runge_Kutta(
|
||||
curr_x, u, functions, batch=True)
|
||||
curr_x, u, functions, batch=True, dt=self.dt)
|
||||
|
||||
return next_x
|
||||
|
||||
def predict_adjoint_state(self, lam, x, u, g_x=None, t=None):
|
||||
def x_dot(self, curr_x, u):
|
||||
"""
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
Returns:
|
||||
x_dot (numpy.ndarray): next state, shape(state_size, )
|
||||
"""
|
||||
state_size = curr_x.shape[0]
|
||||
x_dot = np.zeros(state_size)
|
||||
x_dot[0] = self._func_x_1(curr_x, u)
|
||||
x_dot[1] = self._func_x_2(curr_x, u)
|
||||
return x_dot
|
||||
|
||||
def predict_adjoint_state(self, lam, x, u, g_x=None):
|
||||
""" predict adjoint states
|
||||
|
||||
Args:
|
||||
|
@ -78,7 +92,7 @@ class NonlinearSampleSystemModel(Model):
|
|||
terminal_lam (numpy.ndarray): terminal adjoint state,
|
||||
shape(state_size, )
|
||||
"""
|
||||
terminal_lam = self.gradient_cost_fn_with_state(
|
||||
terminal_lam = self.gradient_cost_fn_state(
|
||||
terminal_x, terminal_g_x, terminal=True) # return in shape[1, state_size]
|
||||
return terminal_lam[0]
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@ class TwoWheeledModel(Model):
|
|||
self.dt = config.DT
|
||||
self.gradient_hamiltonian_state = config.gradient_hamiltonian_state
|
||||
self.gradient_hamiltonian_input = config.gradient_hamiltonian_input
|
||||
self.gradient_cost_fn_with_state = config.gradient_cost_fn_with_state
|
||||
self.gradient_cost_fn_state = config.gradient_cost_fn_state
|
||||
|
||||
def predict_next_state(self, curr_x, u):
|
||||
""" predict next state
|
||||
|
@ -56,6 +56,20 @@ class TwoWheeledModel(Model):
|
|||
|
||||
return next_x
|
||||
|
||||
def x_dot(self, curr_x, u):
|
||||
""" compute x dot
|
||||
Args:
|
||||
curr_x (numpy.ndarray): current state, shape(state_size, )
|
||||
u (numpy.ndarray): input, shape(input_size, )
|
||||
Returns:
|
||||
x_dot (numpy.ndarray): next state, shape(state_size, )
|
||||
"""
|
||||
B = np.array([[np.cos(curr_x[-1]), 0.],
|
||||
[np.sin(curr_x[-1]), 0.],
|
||||
[0., 1.]])
|
||||
x_dot = np.matmul(B, u[:, np.newaxis])
|
||||
return x_dot.flatten()
|
||||
|
||||
def predict_adjoint_state(self, lam, x, u, g_x=None, t=None):
|
||||
""" predict adjoint states
|
||||
|
||||
|
@ -88,7 +102,7 @@ class TwoWheeledModel(Model):
|
|||
terminal_lam (numpy.ndarray): terminal adjoint state,
|
||||
shape(state_size, )
|
||||
"""
|
||||
terminal_lam = self.gradient_cost_fn_with_state(
|
||||
terminal_lam = self.gradient_cost_fn_state(
|
||||
terminal_x, terminal_g_x, terminal=True) # return in shape[1, state_size]
|
||||
return terminal_lam[0]
|
||||
|
||||
|
|
22
README.md
22
README.md
|
@ -17,8 +17,8 @@ Due to use only basic libralies (scipy, numpy), this library is easy to extend f
|
|||
|:----------|:---------------: |:----------------:|:----------------:|:----------------:|:----------------:|
|
||||
| Linear Model Predictive Control (MPC) | ✓ | x | x | x | x |
|
||||
| Cross Entropy Method (CEM) | ✓ | ✓ | x | x | x |
|
||||
| Model Preidictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x |
|
||||
| Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x |
|
||||
| Model Predictive Path Integral Control of Nagabandi, A. (MPPI) | ✓ | ✓ | x | x | x |
|
||||
| Model Predictive Path Integral Control of Williams, G. (MPPIWilliams) | ✓ | ✓ | x | x | x |
|
||||
| Random Shooting Method (Random) | ✓ | ✓ | x | x | x |
|
||||
| Iterative LQR (iLQR) | x | ✓ | x | ✓ | x |
|
||||
| Differential Dynamic Programming (DDP) | x | ✓ | x | ✓ | ✓ |
|
||||
|
@ -36,10 +36,10 @@ Following algorithms are implemented in PythonLinearNonlinearControl
|
|||
- [Cross Entropy Method (CEM)](https://arxiv.org/abs/1805.12114)
|
||||
- Ref: Chua, K., Calandra, R., McAllister, R., & Levine, S. (2018). Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In Advances in Neural Information Processing Systems (pp. 4754-4765)
|
||||
- [script](PythonLinearNonlinearControl/controllers/cem.py)
|
||||
- [Model Preidictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
|
||||
- [Model Predictive Path Integral Control of Nagabandi, A. (MPPI)](https://arxiv.org/abs/1909.11652)
|
||||
- Ref: Nagabandi, A., Konoglie, K., Levine, S., & Kumar, V. (2019). Deep Dynamics Models for Learning Dexterous Manipulation. arXiv preprint arXiv:1909.11652.
|
||||
- [script](PythonLinearNonlinearControl/controllers/mppi.py)
|
||||
- [Model Preidictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
|
||||
- [Model Predictive Path Integral Control of Williams, G. (MPPIWilliams)](https://ieeexplore.ieee.org/abstract/document/7989202)
|
||||
- Ref: Williams, G., Wagener, N., Goldfain, B., Drews, P., Rehg, J. M., Boots, B., & Theodorou, E. A. (2017, May). Information theoretic MPC for model-based reinforcement learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1714-1721). IEEE.
|
||||
- [script](PythonLinearNonlinearControl/controllers/mppi_williams.py)
|
||||
- [Random Shooting Method (Random)](https://arxiv.org/abs/1805.12114)
|
||||
|
@ -56,7 +56,7 @@ Following algorithms are implemented in PythonLinearNonlinearControl
|
|||
- [script](PythonLinearNonlinearControl/controllers/nmpc.py)
|
||||
- [Constrained Nonlinear Model Predictive Control -CGMRES- (NMPC-CGMRES)](https://www.sciencedirect.com/science/article/pii/S0005109897000058)
|
||||
- Ref: Ohtsuka, T., & Fujii, H. A. (1997). Real-time optimization algorithm for nonlinear receding-horizon control. Automatica, 33(6), 1147-1154.
|
||||
- [script (Coming soon)]()
|
||||
- [script](PythonLinearNonlinearControl/controllers/nmpc_cgmres.py)
|
||||
- [Constrained Nonlinear Model Predictive Control -Newton- (NMPC-Newton)](https://www.sciencedirect.com/science/article/pii/S0005109897000058)
|
||||
- Ref: Ohtsuka, T., & Fujii, H. A. (1997). Real-time optimization algorithm for nonlinear receding-horizon control. Automatica, 33(6), 1147-1154.
|
||||
- [script (Coming soon)]()
|
||||
|
@ -83,25 +83,19 @@ You could know abount our environmets more in [Environments.md](Environments.md)
|
|||
## To install this package
|
||||
|
||||
```
|
||||
python setup.py install
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
pip install .
|
||||
$ pip install PythonLinearNonlinearControl
|
||||
```
|
||||
|
||||
## When developing the package
|
||||
|
||||
```
|
||||
python setup.py develop
|
||||
$ python setup.py develop
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```
|
||||
pip install -e .
|
||||
$ pip install -e .
|
||||
```
|
||||
|
||||
# Basic concepts
|
||||
|
|
|
@ -40,8 +40,8 @@ def run(args):
|
|||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--controller_type", type=str, default="NMPC")
|
||||
parser.add_argument("--env", type=str, default="TwoWheeledTrack")
|
||||
parser.add_argument("--controller_type", type=str, default="NMPCCGMRES")
|
||||
parser.add_argument("--env", type=str, default="TwoWheeledConst")
|
||||
parser.add_argument("--save_anim", type=bool_flag, default=0)
|
||||
parser.add_argument("--result_dir", type=str, default="./result")
|
||||
|
||||
|
|
2
setup.py
2
setup.py
|
@ -14,7 +14,7 @@ setup(
|
|||
install_requires=install_requires,
|
||||
url='https://github.com/Shunichi09/PythonLinearNonlinearControl',
|
||||
license='MIT License',
|
||||
packages=find_packages(exclude=('tests')),
|
||||
packages=find_packages(exclude=('tests', 'scripts')),
|
||||
setup_requires=setup_requires,
|
||||
test_suite='tests',
|
||||
tests_require=tests_require
|
||||
|
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
from PythonLinearNonlinearControl.configs.cartpole \
|
||||
import CartPoleConfigModule
|
||||
|
||||
|
||||
class TestCalcCost():
|
||||
def test_calc_costs(self):
|
||||
# make config
|
||||
|
@ -25,17 +26,18 @@ class TestCalcCost():
|
|||
|
||||
assert costs.shape == (pop_size, pred_len, 1)
|
||||
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],
|
||||
g_xs[:, -1, :])
|
||||
|
||||
assert costs.shape == (pop_size, 1)
|
||||
|
||||
|
||||
class TestGradient():
|
||||
def test_state_gradient(self):
|
||||
"""
|
||||
"""
|
||||
xs = np.ones((1, 4))
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_with_state(xs, None)
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_state(xs, None)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -59,7 +61,7 @@ class TestGradient():
|
|||
"""
|
||||
xs = np.ones(4)
|
||||
cost_grad =\
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(xs, None,
|
||||
CartPoleConfigModule.gradient_cost_fn_state(xs, None,
|
||||
terminal=True)
|
||||
|
||||
# numeric grad
|
||||
|
@ -83,7 +85,7 @@ class TestGradient():
|
|||
"""
|
||||
"""
|
||||
us = np.ones((1, 1))
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_with_input(None, us)
|
||||
cost_grad = CartPoleConfigModule.gradient_cost_fn_input(None, us)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -106,7 +108,7 @@ class TestGradient():
|
|||
"""
|
||||
"""
|
||||
xs = np.ones((1, 4))
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_with_state(xs, None)
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_state(xs, None)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -115,12 +117,12 @@ class TestGradient():
|
|||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] + eps
|
||||
forward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=False)
|
||||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] - eps
|
||||
backward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=False)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
@ -132,7 +134,7 @@ class TestGradient():
|
|||
"""
|
||||
xs = np.ones(4)
|
||||
cost_hess =\
|
||||
CartPoleConfigModule.hessian_cost_fn_with_state(xs, None,
|
||||
CartPoleConfigModule.hessian_cost_fn_state(xs, None,
|
||||
terminal=True)
|
||||
|
||||
# numeric grad
|
||||
|
@ -142,12 +144,12 @@ class TestGradient():
|
|||
tmp_x = xs.copy()
|
||||
tmp_x[i] = xs[i] + eps
|
||||
forward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=True)
|
||||
tmp_x = xs.copy()
|
||||
tmp_x[i] = xs[i] - eps
|
||||
backward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_state(
|
||||
CartPoleConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, None, terminal=True)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
@ -159,7 +161,7 @@ class TestGradient():
|
|||
"""
|
||||
us = np.ones((1, 1))
|
||||
xs = np.ones((1, 4))
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_with_input(us, xs)
|
||||
cost_hess = CartPoleConfigModule.hessian_cost_fn_input(us, xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -168,12 +170,12 @@ class TestGradient():
|
|||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] + eps
|
||||
forward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_input(
|
||||
CartPoleConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] - eps
|
||||
backward = \
|
||||
CartPoleConfigModule.gradient_cost_fn_with_input(
|
||||
CartPoleConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
|
|
@ -4,6 +4,7 @@ import numpy as np
|
|||
from PythonLinearNonlinearControl.configs.two_wheeled \
|
||||
import TwoWheeledConfigModule
|
||||
|
||||
|
||||
class TestCalcCost():
|
||||
def test_calc_costs(self):
|
||||
# make config
|
||||
|
@ -27,12 +28,13 @@ class TestCalcCost():
|
|||
|
||||
assert costs == pytest.approx(expected_costs**2 * np.diag(config.Q))
|
||||
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],\
|
||||
costs = config.terminal_state_cost_fn(pred_xs[:, -1, :],
|
||||
g_xs[:, -1, :])
|
||||
expected_costs = np.ones((pop_size, state_size))*0.5
|
||||
|
||||
assert costs == pytest.approx(expected_costs**2 * np.diag(config.Sf))
|
||||
|
||||
|
||||
class TestGradient():
|
||||
def test_state_gradient(self):
|
||||
"""
|
||||
|
@ -40,7 +42,7 @@ class TestGradient():
|
|||
xs = np.ones((1, 3))
|
||||
g_xs = np.ones((1, 3)) * 0.5
|
||||
cost_grad =\
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_state(xs, g_xs)
|
||||
TwoWheeledConfigModule.gradient_cost_fn_state(xs, g_xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -66,7 +68,7 @@ class TestGradient():
|
|||
"""
|
||||
us = np.ones((1, 2))
|
||||
cost_grad =\
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_input(None, us)
|
||||
TwoWheeledConfigModule.gradient_cost_fn_input(None, us)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -93,7 +95,7 @@ class TestGradient():
|
|||
g_xs = np.ones((1, 3)) * 0.5
|
||||
xs = np.ones((1, 3))
|
||||
cost_hess =\
|
||||
TwoWheeledConfigModule.hessian_cost_fn_with_state(xs, g_xs)
|
||||
TwoWheeledConfigModule.hessian_cost_fn_state(xs, g_xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -102,12 +104,12 @@ class TestGradient():
|
|||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] + eps
|
||||
forward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_state(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, g_xs, terminal=False)
|
||||
tmp_x = xs.copy()
|
||||
tmp_x[0, i] = xs[0, i] - eps
|
||||
backward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_state(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_state(
|
||||
tmp_x, g_xs, terminal=False)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
@ -119,7 +121,7 @@ class TestGradient():
|
|||
"""
|
||||
us = np.ones((1, 2))
|
||||
xs = np.ones((1, 3))
|
||||
cost_hess = TwoWheeledConfigModule.hessian_cost_fn_with_input(us, xs)
|
||||
cost_hess = TwoWheeledConfigModule.hessian_cost_fn_input(us, xs)
|
||||
|
||||
# numeric grad
|
||||
eps = 1e-4
|
||||
|
@ -128,12 +130,12 @@ class TestGradient():
|
|||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] + eps
|
||||
forward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_input(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
tmp_u = us.copy()
|
||||
tmp_u[0, i] = us[0, i] - eps
|
||||
backward = \
|
||||
TwoWheeledConfigModule.gradient_cost_fn_with_input(
|
||||
TwoWheeledConfigModule.gradient_cost_fn_input(
|
||||
xs, tmp_u)
|
||||
|
||||
expected_hess[0, :, i] = (forward - backward) / (2. * eps)
|
||||
|
|
Loading…
Reference in New Issue