PythonLinearNonlinearControl/nmpc/cgmres/README.md

79 lines
4.8 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# CGMRES method of Nonlinear Model Predictive Control
This program is about Continuous gmres method for NMPC
Although usually we have to calculate the partial differential of optimal matrix, it could be really complicated.
By using CGMRES, we can pass the calculating step and get the optimal input quickly.
# Problem Formulation
- **example**
- model
<a href="https://www.codecogs.com/eqnedit.php?latex=\begin{bmatrix}&space;\dot{x_1}&space;\\&space;\dot{x_2}&space;\\&space;\end{bmatrix}&space;=&space;\begin{bmatrix}&space;x_2&space;\\&space;(1-x_1^2-x_2^2)x_2-x_1&plus;u&space;\\&space;\end{bmatrix},&space;|u|&space;\leq&space;0.5" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\begin{bmatrix}&space;\dot{x_1}&space;\\&space;\dot{x_2}&space;\\&space;\end{bmatrix}&space;=&space;\begin{bmatrix}&space;x_2&space;\\&space;(1-x_1^2-x_2^2)x_2-x_1&plus;u&space;\\&space;\end{bmatrix},&space;|u|&space;\leq&space;0.5" title="\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \\ \end{bmatrix} = \begin{bmatrix} x_2 \\ (1-x_1^2-x_2^2)x_2-x_1+u \\ \end{bmatrix}, |u| \leq 0.5" /></a>
- evaluation function
<a href="https://www.codecogs.com/eqnedit.php?latex=J&space;=&space;\frac{1}{2}(x_1^2(t&plus;T)&plus;x_2^2(t&plus;T))&plus;\int_{t}^{t&plus;T}\frac{1}{2}(x_1^2&plus;x_2^2&plus;u^2)-0.01vd\tau" target="_blank"><img src="https://latex.codecogs.com/gif.latex?J&space;=&space;\frac{1}{2}(x_1^2(t&plus;T)&plus;x_2^2(t&plus;T))&plus;\int_{t}^{t&plus;T}\frac{1}{2}(x_1^2&plus;x_2^2&plus;u^2)-0.01vd\tau" title="J = \frac{1}{2}(x_1^2(t+T)+x_2^2(t+T))+\int_{t}^{t+T}\frac{1}{2}(x_1^2+x_2^2+u^2)-0.01vd\tau" /></a>
- **two wheeled model**
- model
<a href="https://www.codecogs.com/eqnedit.php?latex=\frac{d}{dt}&space;\boldsymbol{X}=&space;\frac{d}{dt}&space;\begin{bmatrix}&space;x&space;\\&space;y&space;\\&space;\theta&space;\end{bmatrix}&space;=&space;\begin{bmatrix}&space;\cos(\theta)&space;&&space;0&space;\\&space;\sin(\theta)&space;&&space;0&space;\\&space;0&space;&&space;1&space;\\&space;\end{bmatrix}&space;\begin{bmatrix}&space;u_v&space;\\&space;u_\omega&space;\\&space;\end{bmatrix}&space;=&space;\boldsymbol{B}\boldsymbol{U}" target="_blank"><img src="https://latex.codecogs.com/gif.latex?\frac{d}{dt}&space;\boldsymbol{X}=&space;\frac{d}{dt}&space;\begin{bmatrix}&space;x&space;\\&space;y&space;\\&space;\theta&space;\end{bmatrix}&space;=&space;\begin{bmatrix}&space;\cos(\theta)&space;&&space;0&space;\\&space;\sin(\theta)&space;&&space;0&space;\\&space;0&space;&&space;1&space;\\&space;\end{bmatrix}&space;\begin{bmatrix}&space;u_v&space;\\&space;u_\omega&space;\\&space;\end{bmatrix}&space;=&space;\boldsymbol{B}\boldsymbol{U}" title="\frac{d}{dt} \boldsymbol{X}= \frac{d}{dt} \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 \\ \sin(\theta) & 0 \\ 0 & 1 \\ \end{bmatrix} \begin{bmatrix} u_v \\ u_\omega \\ \end{bmatrix} = \boldsymbol{B}\boldsymbol{U}" /></a>
- evaluation function
<a href="https://www.codecogs.com/eqnedit.php?latex=J&space;=&space;\boldsymbol{X}(t_0&plus;T)^2&space;&plus;&space;\int_{t_0}^{t_0&space;&plus;&space;T}&space;\boldsymbol{U}(t)^2&space;-&space;0.01&space;dummy_{u_v}&space;-&space;dummy_{u_\omega}&space;dt" target="_blank"><img src="https://latex.codecogs.com/gif.latex?J&space;=&space;\boldsymbol{X}(t_0&plus;T)^2&space;&plus;&space;\int_{t_0}^{t_0&space;&plus;&space;T}&space;\boldsymbol{U}(t)^2&space;-&space;0.01&space;dummy_{u_v}&space;-&space;dummy_{u_\omega}&space;dt" title="J = \boldsymbol{X}(t_0+T)^2 + \int_{t_0}^{t_0 + T} \boldsymbol{U}(t)^2 - 0.01 dummy_{u_v} - dummy_{u_\omega} dt" /></a>
if you want to see more detail about this methods, you should go https://qiita.com/MENDY/items/4108190a579395053924.
However, it is written in Japanese
# Expected Results
- example
![Figure_1.png](https://qiita-image-store.s3.amazonaws.com/0/261584/3347fb3c-3fce-63fe-36d5-8a7bb053531a.png)
- two wheeled model
- trajectory
![image.png](https://qiita-image-store.s3.amazonaws.com/0/261584/8e39150d-24ed-af13-51f0-0ca97cb5f5ec.png)
- time history
![Figure_1.png](https://qiita-image-store.s3.amazonaws.com/0/261584/e67794f3-e8ef-5162-ea84-eb6adefd4241.png)
![Figure_2.png](https://qiita-image-store.s3.amazonaws.com/0/261584/d74fa06d-2eae-5aea-4a33-6c63e284341e.png)
# Usage
- for example
```
$ python main_example.py
```
- for two wheeled
```
$ python main_two_wheeled.py
```
# Requirement
- python3.5 or more
- numpy
- matplotlib
# Reference
I`m sorry that main references are written in Japanese
- main (commentary article) (Japanse) https://qiita.com/MENDY/items/4108190a579395053924
- Ohtsuka, T., & Fujii, H. A. (1997). Real-time Optimization Algorithm for Nonlinear Receding-horizon Control. Automatica, 33(6), 11471154. https://doi.org/10.1016/S0005-1098(97)00005-8
- 非線形最適制御入門(コロナ社)
- 実時間最適化による制御の実応用(コロナ社)