401 lines
13 KiB
Python
401 lines
13 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
import copy
|
|
|
|
# from mpc_func_with_cvxopt import MpcController as MpcController_cvxopt
|
|
from iterative_MPC import IterativeMpcController
|
|
from animation import AnimDrawer
|
|
# from control import matlab
|
|
from coordinate_trans import coordinate_transformation_in_angle, coordinate_transformation_in_position
|
|
from traj_func import make_sample_traj
|
|
from func_curvature import calc_curvatures
|
|
|
|
class WheeledSystem():
|
|
"""SampleSystem, this is the simulator
|
|
Kinematic model of car
|
|
|
|
Attributes
|
|
-----------
|
|
xs : numpy.ndarray
|
|
system states, [x, y, phi, beta]
|
|
history_xs : list
|
|
time history of state
|
|
"""
|
|
def __init__(self, init_states=None):
|
|
"""
|
|
Palameters
|
|
-----------
|
|
init_state : float, optional, shape(3, )
|
|
initial state of system default is None
|
|
"""
|
|
self.NUM_STATE = 4
|
|
self.xs = np.zeros(self.NUM_STATE)
|
|
|
|
self.tau = 0.01
|
|
|
|
self.FRONT_WHEELE_BASE = 1.0
|
|
self.REAR_WHEELE_BASE = 1.0
|
|
|
|
if init_states is not None:
|
|
self.xs = copy.deepcopy(init_states)
|
|
|
|
self.history_xs = [init_states]
|
|
|
|
def update_state(self, us, dt=0.01):
|
|
"""
|
|
Palameters
|
|
------------
|
|
u : numpy.ndarray
|
|
inputs of system in some cases this means the reference
|
|
dt : float in seconds, optional
|
|
sampling time of simulation, default is 0.01 [s]
|
|
"""
|
|
# for theta 1, theta 1 dot, theta 2, theta 2 dot
|
|
k0 = [0.0 for _ in range(self.NUM_STATE)]
|
|
k1 = [0.0 for _ in range(self.NUM_STATE)]
|
|
k2 = [0.0 for _ in range(self.NUM_STATE)]
|
|
k3 = [0.0 for _ in range(self.NUM_STATE)]
|
|
|
|
functions = [self._func_x_1, self._func_x_2, self._func_x_3, self._func_x_4]
|
|
|
|
# solve Runge-Kutta
|
|
for i, func in enumerate(functions):
|
|
k0[i] = dt * func(self.xs[0], self.xs[1], self.xs[2], self.xs[3], us[0], us[1])
|
|
|
|
for i, func in enumerate(functions):
|
|
k1[i] = dt * func(self.xs[0] + k0[0]/2., self.xs[1] + k0[1]/2., self.xs[2] + k0[2]/2., self.xs[3] + k0[3]/2, us[0], us[1])
|
|
|
|
for i, func in enumerate(functions):
|
|
k2[i] = dt * func(self.xs[0] + k1[0]/2., self.xs[1] + k1[1]/2., self.xs[2] + k1[2]/2., self.xs[3] + k1[3]/2., us[0], us[1])
|
|
|
|
for i, func in enumerate(functions):
|
|
k3[i] = dt * func(self.xs[0] + k2[0], self.xs[1] + k2[1], self.xs[2] + k2[2], self.xs[3] + k2[3], us[0], us[1])
|
|
|
|
self.xs[0] += (k0[0] + 2. * k1[0] + 2. * k2[0] + k3[0]) / 6.
|
|
self.xs[1] += (k0[1] + 2. * k1[1] + 2. * k2[1] + k3[1]) / 6.
|
|
self.xs[2] += (k0[2] + 2. * k1[2] + 2. * k2[2] + k3[2]) / 6.
|
|
self.xs[3] += (k0[3] + 2. * k1[3] + 2. * k2[3] + k3[3]) / 6.
|
|
|
|
# save
|
|
save_states = copy.deepcopy(self.xs)
|
|
self.history_xs.append(save_states)
|
|
print(self.xs)
|
|
|
|
def _func_x_1(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
|
"""
|
|
Parameters
|
|
------------
|
|
y_1 : float
|
|
y_2 : float
|
|
y_3 : float
|
|
u_1 : float
|
|
system input
|
|
u_2 : float
|
|
system input
|
|
"""
|
|
# y_dot = u_1 * math.cos(y_3 + y_4)
|
|
y_dot = u_1 * math.cos(y_3)
|
|
|
|
return y_dot
|
|
|
|
def _func_x_2(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
|
"""
|
|
Parameters
|
|
------------
|
|
y_1 : float
|
|
y_2 : float
|
|
y_3 : float
|
|
u_1 : float
|
|
system input
|
|
u_2 : float
|
|
system input
|
|
"""
|
|
# y_dot = u_1 * math.sin(y_3 + y_4)
|
|
y_dot = u_1 * math.sin(y_3)
|
|
|
|
return y_dot
|
|
|
|
def _func_x_3(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
|
"""
|
|
Parameters
|
|
------------
|
|
y_1 : float
|
|
y_2 : float
|
|
y_3 : float
|
|
u_1 : float
|
|
system input
|
|
u_2 : float
|
|
system input
|
|
"""
|
|
# y_dot = u_1 / self.REAR_WHEELE_BASE * math.sin(y_4)
|
|
y_dot = u_1 * math.tan(y_4) / (self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE)
|
|
|
|
return y_dot
|
|
|
|
def _func_x_4(self, y_1, y_2, y_3, y_4, u_1, u_2):
|
|
"""Ad, Bd, W_D, Q, R
|
|
ParAd, Bd, W_D, Q, R
|
|
---Ad, Bd, W_D, Q, R
|
|
y_1 : float
|
|
y_2 : float
|
|
y_3 : float
|
|
u_1 : float
|
|
system input
|
|
u_2 : float
|
|
system input
|
|
"""
|
|
# y_dot = math.atan2(self.REAR_WHEELE_BASE * math.tan(u_2) ,self.REAR_WHEELE_BASE + self.FRONT_WHEELE_BASE)
|
|
y_dot = - 1. / self.tau * (y_4 - u_2)
|
|
|
|
return y_dot
|
|
|
|
class SystemModel():
|
|
"""
|
|
Attributes
|
|
-----------
|
|
WHEEL_BASE : float
|
|
wheel base of the car
|
|
Ad_s : list
|
|
list of system model matrix Ad
|
|
Bd_s : list
|
|
list of system model matrix Bd
|
|
W_D_s : list
|
|
list of system model matrix W_D_s
|
|
Q : numpy.ndarray
|
|
R : numpy.ndarray
|
|
"""
|
|
def __init__(self, tau = 0.01, dt = 0.01):
|
|
"""
|
|
Parameters
|
|
-----------
|
|
tau : time constant, optional
|
|
dt : sampling time, optional
|
|
"""
|
|
self.dt = dt
|
|
self.tau = tau
|
|
self.WHEEL_BASE = 2.2
|
|
|
|
self.Ad_s = []
|
|
self.Bd_s = []
|
|
self.W_D_s = []
|
|
|
|
def calc_predict_sytem_model(self, V, curvatures, predict_step):
|
|
"""
|
|
calc next predict systemo models
|
|
V : float
|
|
curvatures : list
|
|
this is the next curvature's list
|
|
predict_step : int
|
|
predict step of MPC
|
|
"""
|
|
for i in range(predict_step):
|
|
delta_r = math.atan2(self.WHEEL_BASE, 1. / curvatures[i])
|
|
|
|
A12 = (V / self.WHEEL_BASE) / (math.cos(delta_r)**2)
|
|
A22 = (1. - 1. / self.tau * self.dt)
|
|
|
|
Ad = np.array([[1., V * self.dt, 0.],
|
|
[0., 1., A12 * self.dt],
|
|
[0., 0., A22]])
|
|
|
|
Bd = np.array([[0.], [0.], [1. / self.tau]]) * self.dt
|
|
|
|
# -v*curvature + v/L*(tan(delta_r)-delta_r*cos_delta_r_squared_inv);
|
|
# W_D_0 = V / self.WHEEL_BASE * (delta_r / (math.cos(delta_r)**2)
|
|
W_D_0 = -V * curvatures[i] + (V / self.WHEEL_BASE) * (math.tan(delta_r) - delta_r / (math.cos(delta_r)**2))
|
|
|
|
W_D = np.array([[0.], [W_D_0], [0.]]) * self.dt
|
|
|
|
self.Ad_s.append(Ad)
|
|
self.Bd_s.append(Bd)
|
|
self.W_D_s.append(W_D)
|
|
|
|
# return self.Ad_s, self.Bd_s, self.W_D_s
|
|
|
|
def search_nearest_point(points, base_point):
|
|
"""
|
|
Parameters
|
|
-----------
|
|
points : numpy.ndarray, shape is (2, N)
|
|
base_point : numpy.ndarray, shape is (2, 1)
|
|
|
|
Returns
|
|
-------
|
|
nearest_index :
|
|
nearest_point :
|
|
"""
|
|
distance_mat = np.sqrt(np.sum((points - base_point)**2, axis=0))
|
|
|
|
index_min = np.argmin(distance_mat)
|
|
|
|
return index_min, points[:, index_min]
|
|
|
|
|
|
def main():
|
|
# parameters
|
|
dt = 0.01
|
|
simulation_time = 20 # in seconds
|
|
PREDICT_STEP = 15
|
|
iteration_num = int(simulation_time / dt)
|
|
|
|
# make simulator with coninuous matrix
|
|
init_xs_lead = np.array([0., 0., math.pi/4, 0.])
|
|
init_xs_follow = np.array([0., 0., math.pi/4, 0.])
|
|
lead_car = WheeledSystem(init_states=init_xs_lead)
|
|
follow_car = WheeledSystem(init_states=init_xs_follow)
|
|
|
|
# make system model
|
|
lead_car_system_model = SystemModel()
|
|
follow_car_system_model = SystemModel()
|
|
|
|
# reference
|
|
traj_ref_xs, traj_ref_ys = make_sample_traj(int(simulation_time/dt))
|
|
traj_ref = np.array([traj_ref_xs, traj_ref_ys])
|
|
|
|
# nearest point
|
|
index_min, nearest_point = search_nearest_point(traj_ref, lead_car.xs[:2].reshape(2, 1))
|
|
|
|
# get traj's curvature
|
|
NUM_SKIP = 5
|
|
MARGIN = 10
|
|
angles, curvatures = calc_curvatures(traj_ref[:, index_min + MARGIN:index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN], PREDICT_STEP, NUM_SKIP)
|
|
|
|
# evaluation function weight
|
|
Q = np.diag([100., 1., 1.])
|
|
R = np.diag([0.01])
|
|
|
|
# System model update
|
|
V = 3.0 # in pratical we should calc from the state
|
|
lead_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
|
|
follow_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
|
|
|
|
# make controller with discreted matrix
|
|
lead_controller = IterativeMpcController(lead_car_system_model, Q, R, PREDICT_STEP,
|
|
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
|
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
|
|
|
follow_controller = IterativeMpcController(follow_car_system_model, Q, R, PREDICT_STEP,
|
|
dt_input_upper=np.array([30 * dt]), dt_input_lower=np.array([-30 * dt]),
|
|
input_upper=np.array([30.]), input_lower=np.array([-30.]))
|
|
|
|
# initialize
|
|
lead_controller.initialize_controller()
|
|
follow_controller.initialize_controller()
|
|
|
|
for i in range(iteration_num):
|
|
print("simulation time = {0}".format(i))
|
|
|
|
## lead
|
|
# world traj
|
|
lead_states = lead_car.xs
|
|
|
|
# nearest point
|
|
index_min, nearest_point = search_nearest_point(traj_ref, lead_car.xs[:2].reshape(2, 1))
|
|
# end check
|
|
if len(traj_ref_ys) <= index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN:
|
|
print("break")
|
|
break
|
|
|
|
# get traj's curvature
|
|
angles, curvatures = calc_curvatures(traj_ref[:, index_min+MARGIN:index_min + PREDICT_STEP + 2 * NUM_SKIP + MARGIN], PREDICT_STEP, NUM_SKIP)
|
|
|
|
# System model update
|
|
V = 4.0 # in pratical we should calc from the state
|
|
lead_car_system_model.calc_predict_sytem_model(V, curvatures, PREDICT_STEP)
|
|
|
|
# transformation
|
|
# car
|
|
relative_car_position = coordinate_transformation_in_position(lead_states[:2].reshape(2, 1), nearest_point)
|
|
relative_car_position = coordinate_transformation_in_angle(relative_car_position, angles[0])
|
|
|
|
relative_car_angle = lead_states[2] - angles[0]
|
|
relative_car_state = np.hstack((relative_car_position[1], relative_car_angle, lead_states[-1]))
|
|
|
|
# traj_ref
|
|
relative_traj = coordinate_transformation_in_position(traj_ref[:, index_min:index_min + PREDICT_STEP], nearest_point)
|
|
relative_traj = coordinate_transformation_in_angle(relative_traj, angles[0])
|
|
relative_ref_angle = np.array(angles) - angles[0]
|
|
|
|
# make ref
|
|
lead_reference = np.array([[relative_traj[1, -1], relative_ref_angle[i], 0.] for i in range(PREDICT_STEP)]).flatten()
|
|
|
|
print("relative car state = {}".format(relative_car_state))
|
|
print("nearest point = {}".format(nearest_point))
|
|
# input()
|
|
|
|
# update system matrix
|
|
lead_controller.update_system_model(lead_car_system_model)
|
|
|
|
lead_opt_u = lead_controller.calc_input(relative_car_state, lead_reference)
|
|
|
|
lead_opt_u = np.hstack((np.array([V]), lead_opt_u))
|
|
|
|
print("opt_u = {}".format(lead_opt_u))
|
|
# input()
|
|
|
|
lead_car.update_state(lead_opt_u, dt=dt)
|
|
follow_car.update_state(lead_opt_u, dt=dt)
|
|
|
|
# figures and animation
|
|
lead_history_states = np.array(lead_car.history_xs)
|
|
follow_history_states = np.array(follow_car.history_xs)
|
|
|
|
"""
|
|
time_history_fig = plt.figure()
|
|
x_fig = time_history_fig.add_subplot(311)
|
|
y_fig = time_history_fig.add_subplot(312)
|
|
theta_fig = time_history_fig.add_subplot(313)
|
|
|
|
car_traj_fig = plt.figure()
|
|
traj_fig = car_traj_fig.add_subplot(111)
|
|
traj_fig.set_aspect('equal')
|
|
|
|
x_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 0], label="lead")
|
|
x_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 0], label="follow")
|
|
x_fig.set_xlabel("time [s]")
|
|
x_fig.set_ylabel("x")
|
|
x_fig.legend()
|
|
|
|
y_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 1], label="lead")
|
|
y_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 1], label="follow")
|
|
y_fig.plot(np.arange(0, simulation_time+0.01, dt), [4. for _ in range(iteration_num+1)], linestyle="dashed")
|
|
y_fig.set_xlabel("time [s]")
|
|
y_fig.set_ylabel("y")
|
|
y_fig.legend()
|
|
|
|
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_states[:, 2], label="lead")
|
|
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_states[:, 2], label="follow")
|
|
theta_fig.plot(np.arange(0, simulation_time+0.01, dt), [0. for _ in range(iteration_num+1)], linestyle="dashed")
|
|
theta_fig.set_xlabel("time [s]")
|
|
theta_fig.set_ylabel("theta")
|
|
theta_fig.legend()
|
|
|
|
time_history_fig.tight_layout()
|
|
|
|
traj_fig.plot(lead_history_states[:, 0], lead_history_states[:, 1], label="lead")
|
|
traj_fig.plot(follow_history_states[:, 0], follow_history_states[:, 1], label="follow")
|
|
traj_fig.set_xlabel("x")
|
|
traj_fig.set_ylabel("y")
|
|
traj_fig.legend()
|
|
plt.show()
|
|
|
|
lead_history_us = np.array(lead_controller.history_us)
|
|
follow_history_us = np.array(follow_controller.history_us)
|
|
input_history_fig = plt.figure()
|
|
u_1_fig = input_history_fig.add_subplot(111)
|
|
|
|
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), lead_history_us[:, 0], label="lead")
|
|
u_1_fig.plot(np.arange(0, simulation_time+0.01, dt), follow_history_us[:, 0], label="follow")
|
|
u_1_fig.set_xlabel("time [s]")
|
|
u_1_fig.set_ylabel("u_omega")
|
|
|
|
input_history_fig.tight_layout()
|
|
plt.show()
|
|
"""
|
|
|
|
animdrawer = AnimDrawer([lead_history_states, follow_history_states, traj_ref])
|
|
animdrawer.draw_anim()
|
|
|
|
if __name__ == "__main__":
|
|
main() |